高考物理动量守恒定律真题汇编(含答案)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
qB2 则 Q 在磁场中运动的最长时间: t T 127 • 2 m2 127 s
360 360 qB2 360 此时对应的 角:1 90 和 2 143
3.如图甲所示,物块 A、B 的质量分别是 mA=4.0kg 和 mB=3.0kg.用轻弹簧拴接,放在光 滑的水平地面上,物块 B 右侧与竖直墙相接触.另有一物块 C 从 t=0 时以一定速度向右运 动,在 t=4s 时与物块 A 相碰,并立即与 A 粘在一起不再分开,物块 C 的 v-t 图象如图乙所 示.求:
0.00129u
由质能方程,则有△E=△m c2=-0.00129×931=-1.20MeV
故这一核反应是吸收能量的反应,吸收的能量为 1.20MeV
(2)根据动量守恒定律,则有:mHe v0=mH vH+mOvO 又:vO:vH=1:50 解得:vO=1.8×106m/s
8.一列火车总质量为 M,在平直轨道上以速度 v 匀速行驶,突然最后一节质量为 m 的车 厢脱钩,假设火车所受的阻力与质量成正比,牵引力不变,当最后一节车厢刚好静止时, 前面火车的速度大小为多少? 【答案】Mv/(M-m) 【解析】 【详解】 因整车匀速运动,故整体合外力为零;脱钩后合外力仍为零,系统的动量守恒.
联立以上方程可得
,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为:
2.如图:竖直面内固定的绝缘轨道 abc,由半径 R=3 m 的光滑圆弧段 bc 与长 l=1.5 m 的粗 糙水平段 ab 在 b 点相切而构成,O 点是圆弧段的圆心,Oc 与 Ob 的夹角 θ=37°;过 f 点的 竖直虚线左侧有方向竖直向上、场强大小 E=10 N/C 的匀强电场,Ocb 的外侧有一长度足够 长、宽度 d =1.6 m 的矩形区域 efgh,ef 与 Oc 交于 c 点,ecf 与水平向右的方向所成的夹角 为 β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量 m2=3×10-3 kg、电 荷量 q=3×l0-3 C 的带正电小物体 Q 静止在圆弧轨道上 b 点,质量 m1=1.5×10-3 kg 的不带电 小物体 P 从轨道右端 a 以 v0=8 m/s 的水平速度向左运动,P、Q 碰撞时间极短,碰后 P 以 1 m/s 的速度水平向右弹回.已知 P 与 ab 间的动摩擦因数 μ=0.5,A、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小 g=10 m/s2.求: (1)碰后瞬间,圆弧轨道对物体 Q 的弹力大小 FN; (2)当 β=53°时,物体 Q 刚好不从 gh 边穿出磁场,求区域 efgh 内所加磁场的磁感应强度 大小 B1; (3)当区域 efgh 内所加磁场的磁感应强度为 B2=2T 时,要让物体 Q 从 gh 边穿出磁场且在磁 场中运动的时间最长,求此最长时间 t 及对应的 β 值.
l t1
得 Ep=9 J 考点:考查了动量守恒定律,机械能守恒定律的应用 【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量 守恒定律、能量守恒定律、动量定理即可正确解题.
4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量 M1= 1 kg,车上另有一个质量为 m=0.2 kg 的小球,甲车静止在水平面上,乙车以 v0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量 M2=2 kg,问:甲车至少以多大的水平速 度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)
【答案】①0.7m/s, -0.2m/s ②0.27J 【解析】 试题分析:①根据已知,由动量守恒定律得 联立得
②由能量守恒得
代入数据得 考点:考查了动量守恒,能量守恒定律的应用 【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒 定律与能量守恒定律分析解题
6.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为 m,人在极端的时间 内给第一辆车一水平冲量使其运动,当车运动了距离 L 时与第二辆车相碰,两车以共同速 度继续运动了距离 L 时与第三车相碰,三车以共同速度又运动了距离 L 时停止。车运动时 受到的摩擦阻力恒为车所受重力的 k 倍,重力加速度为 g,若车与车之间仅在碰撞时发生相 互作用,碰撞时间很短,忽略空气阻力,求:
A.调节天平,称出两个碰撞端分别贴有尼龙扣滑块的质量 m1 和 m2. B.安装好 A、B 光电门,使光电门之间的距离为 50cm.导轨通气后,调节导轨水平,使 滑块能够作_________运动. C.在碰撞前,将一个质量为 m2 滑块放在两光电门中间,使它静止,将另一个质量为 m1 滑块放在导轨的左端,向右轻推以下 m1,记录挡光片通过 A 光电门的时间 t1. D.两滑块相碰后,它们粘在一起向右运动,记录挡光片通过_______________的时间 t2. E.得到验证实验的表达式__________________________.
(2)若入射氦核以 v0=3×107m/s 的速度沿两核中心连线方向轰击静止氮核。反应生成的氧 核和质子同方向运动,且速度大小之比为 1:50。求氧核的速度大小。
【答案】(1)吸收能量,1.20MeV;(2)1.8×106m/s
【解析】
(1)这一核反应中,质量亏损:△m=mN+mHe-mO-mp=14.00753+4.00387-17.00454-1.00815=-
m2 gR(1
cos )
1 2
m2vc2
1 2
m2v22
解得: vc 2m/s
进入磁场后: Q 所受电场力 F qE 3102 N m2 g , Q 在磁场做匀速率圆周运动
由牛顿第二定律得:
qvc B1
m2vc2 r1
Q 刚好不从 gh 边穿出磁场,由几何关系: r1 d 1.6m
解得: B1 1.25T
【答案】(1) FN 4.6 102 N (2) B1 1.25T
(3) t
127 360
s,
1
900 和2
1430
【解析】
【详解】
解:(1)设 P 碰撞前后的速度分别为 v1 和 v1 , Q 碰后的速度为 v2
从
a
到
b
,对
P
,由动能定理得:
-m1gl
1 2
m1v
2 1
1 2
m1v
2 0
解得: v1 7m/s
①物块 C 的质量? ②B 离开墙后的运动过程中弹簧具有的最大弹性势能 EP? 【答案】(1)2kg(2)9J 【解析】 试题分析:①由图知,C 与 A 碰前速度为 v1=9 m/s,碰后速度为 v2=3 m/s,C 与 A 碰撞 过程动量守恒.mcv1=(mA+mC)v2 即 mc=2 kg ②12 s 时 B 离开墙壁,之后 A、B、C 及弹簧组成的系统动量和机械能守恒,且当 A、C 与 B 的速度相等时,弹簧弹性势能最大 (mA+mC)v3=(mA+mB+mC)v4
高考物理动量守恒定律真题汇编(含答案)
一、高考物理精讲专题动量守恒定律
1.在图所示足够长的光滑水平面上,用质量分别为 3kg 和 1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板 P.现将两滑块由静止释放,当弹簧 恢复原长时,甲的速度大小为 2m/s,此时乙尚未与 P 相撞.
碰撞过程中,对 P , Q 系统:由动量守恒定律: m1v1 m1v1 m2v2
取向左为正方向,由题意 v1 1m/s ,
解得: v2 4m/s
b
点:对 Q
,由牛顿第二定律得: FN
m2 g
m2
v22 R
解得: FN 4.6 102 N
(2)设 Q 在 c 点的速度为 vc ,在 b 到 c 点,由机械能守恒定律:
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
10.如图所示,用气垫导轨做“验证动量守恒”实验中,完成如下操作步骤:
【答案】25m/s 【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以 M1、M2、m 组成的系统为研究对象,水平方向动量守恒:
0 M2v0 M1 m M2 v共 ,解得 v共 5m / s 以 小 球 与 乙 车 组 成 的 系 统 , 水 平 方 向 动 量 守 恒 : M2v0 mv m M2 v共 , 解 得
v 25m / s
考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
5.如图,质量分别为 m1=1.0kg 和 m2=2.0kg 的弹性小球 a、b,用轻绳紧紧的把它们捆在一 起,使它们发生微小的形变.该系统以速度 v0=0.10m/s 沿光滑水平面向右做直线运动.某 时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间 t=5.0s 后,测得两球相距 s=4.5m,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两 球分开过程中释放的弹性势能为_____________.
(1)碰后 A 球的速度大小; (2)碰撞过程中 A、B 系统损失的机械能.
【答案】 vA 1.0m / s , E损 0.25J
【解析】 试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度. (2)由能量守恒定律可以求出损失的机械能. 解:(1)碰撞过程,以 A 的初速度方向为正,由动量守恒定律得: mAvA+mBvB=mAv′A+mBv′B 代入数据解:v′A=1.0m/s ②碰撞过程中 A、B 系统损失的机械能量为:
【答案】匀速直线运动 小车经过光电门的时间 【解析】
m1 m2
t1
t2
【详解】
为了让物块在水平方向上不受外力,因此当导轨通气后,调节导轨水平,使滑块能够作匀
速直线运动;
根据实验原理可知,题中通过光电门来测量速度,因此应测量小车经过光电门的时间
设光电门的宽度为 l
,则有:经过光电门的速度为 v1
(1)整个过程中摩擦阻力 所做的总功; (2)人给第一辆车水平冲量的大小; (3)第一次与第二次碰撞系统功能损失之比。 【答案】
【解析】略
7.卢瑟福用 α 粒子轰击氮核发现质子。发现质子的核反应为:
。已
知氮核质量为 mN=14.00753u,氧核的质量为 mO=17.00454u,氦核质量 mHe=4.00387u,质 子(氢核)质量为 mp=1.00815u。(已知:1uc2=931MeV,结果保留 2 位有效数字)求: (1)这一核反应是吸收能量还是放出能量的反应?相应的能量变化为多少?
①求弹簧恢复原长时乙的速度大小; ②若乙与挡板 P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板 P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 和 ,对两滑块及弹簧组成的系统,设向 左的方向为正方向,由动量守恒定律可得:
又知
取列车原来速度方向为正方向.由动量守恒定律,可得 Mv M mv m0
解得,前面列车的速度为 v Mv ; M m
9.光滑水平面上质量为 1kg 的小球 A,以 2.0m/s 的速度与同向运动的速度为 1.0m/s、质 量为 2kg 的大小相同的小球 B 发生正碰,碰撞后小球 B 以 1.5m/s 的速度运动.求:
(3)当所加磁场 B2
2T
, r2
m2vc qB2
1m
要让 Q 从 gh 边穿出磁场且在磁场中运动的时间最长,则 Q 在磁场中运动轨迹对应的圆心
角最大,则当 gh 边或 ef 边与圆轨迹相切,轨迹如图所示:
设最大圆心角为 ,由几何关系得: cos(180 ) d r2 r2
解得: 127 运动周期:T 2 m2
360 360 qB2 360 此时对应的 角:1 90 和 2 143
3.如图甲所示,物块 A、B 的质量分别是 mA=4.0kg 和 mB=3.0kg.用轻弹簧拴接,放在光 滑的水平地面上,物块 B 右侧与竖直墙相接触.另有一物块 C 从 t=0 时以一定速度向右运 动,在 t=4s 时与物块 A 相碰,并立即与 A 粘在一起不再分开,物块 C 的 v-t 图象如图乙所 示.求:
0.00129u
由质能方程,则有△E=△m c2=-0.00129×931=-1.20MeV
故这一核反应是吸收能量的反应,吸收的能量为 1.20MeV
(2)根据动量守恒定律,则有:mHe v0=mH vH+mOvO 又:vO:vH=1:50 解得:vO=1.8×106m/s
8.一列火车总质量为 M,在平直轨道上以速度 v 匀速行驶,突然最后一节质量为 m 的车 厢脱钩,假设火车所受的阻力与质量成正比,牵引力不变,当最后一节车厢刚好静止时, 前面火车的速度大小为多少? 【答案】Mv/(M-m) 【解析】 【详解】 因整车匀速运动,故整体合外力为零;脱钩后合外力仍为零,系统的动量守恒.
联立以上方程可得
,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为:
2.如图:竖直面内固定的绝缘轨道 abc,由半径 R=3 m 的光滑圆弧段 bc 与长 l=1.5 m 的粗 糙水平段 ab 在 b 点相切而构成,O 点是圆弧段的圆心,Oc 与 Ob 的夹角 θ=37°;过 f 点的 竖直虚线左侧有方向竖直向上、场强大小 E=10 N/C 的匀强电场,Ocb 的外侧有一长度足够 长、宽度 d =1.6 m 的矩形区域 efgh,ef 与 Oc 交于 c 点,ecf 与水平向右的方向所成的夹角 为 β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量 m2=3×10-3 kg、电 荷量 q=3×l0-3 C 的带正电小物体 Q 静止在圆弧轨道上 b 点,质量 m1=1.5×10-3 kg 的不带电 小物体 P 从轨道右端 a 以 v0=8 m/s 的水平速度向左运动,P、Q 碰撞时间极短,碰后 P 以 1 m/s 的速度水平向右弹回.已知 P 与 ab 间的动摩擦因数 μ=0.5,A、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小 g=10 m/s2.求: (1)碰后瞬间,圆弧轨道对物体 Q 的弹力大小 FN; (2)当 β=53°时,物体 Q 刚好不从 gh 边穿出磁场,求区域 efgh 内所加磁场的磁感应强度 大小 B1; (3)当区域 efgh 内所加磁场的磁感应强度为 B2=2T 时,要让物体 Q 从 gh 边穿出磁场且在磁 场中运动的时间最长,求此最长时间 t 及对应的 β 值.
l t1
得 Ep=9 J 考点:考查了动量守恒定律,机械能守恒定律的应用 【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量 守恒定律、能量守恒定律、动量定理即可正确解题.
4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量 M1= 1 kg,车上另有一个质量为 m=0.2 kg 的小球,甲车静止在水平面上,乙车以 v0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量 M2=2 kg,问:甲车至少以多大的水平速 度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)
【答案】①0.7m/s, -0.2m/s ②0.27J 【解析】 试题分析:①根据已知,由动量守恒定律得 联立得
②由能量守恒得
代入数据得 考点:考查了动量守恒,能量守恒定律的应用 【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒 定律与能量守恒定律分析解题
6.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为 m,人在极端的时间 内给第一辆车一水平冲量使其运动,当车运动了距离 L 时与第二辆车相碰,两车以共同速 度继续运动了距离 L 时与第三车相碰,三车以共同速度又运动了距离 L 时停止。车运动时 受到的摩擦阻力恒为车所受重力的 k 倍,重力加速度为 g,若车与车之间仅在碰撞时发生相 互作用,碰撞时间很短,忽略空气阻力,求:
A.调节天平,称出两个碰撞端分别贴有尼龙扣滑块的质量 m1 和 m2. B.安装好 A、B 光电门,使光电门之间的距离为 50cm.导轨通气后,调节导轨水平,使 滑块能够作_________运动. C.在碰撞前,将一个质量为 m2 滑块放在两光电门中间,使它静止,将另一个质量为 m1 滑块放在导轨的左端,向右轻推以下 m1,记录挡光片通过 A 光电门的时间 t1. D.两滑块相碰后,它们粘在一起向右运动,记录挡光片通过_______________的时间 t2. E.得到验证实验的表达式__________________________.
(2)若入射氦核以 v0=3×107m/s 的速度沿两核中心连线方向轰击静止氮核。反应生成的氧 核和质子同方向运动,且速度大小之比为 1:50。求氧核的速度大小。
【答案】(1)吸收能量,1.20MeV;(2)1.8×106m/s
【解析】
(1)这一核反应中,质量亏损:△m=mN+mHe-mO-mp=14.00753+4.00387-17.00454-1.00815=-
m2 gR(1
cos )
1 2
m2vc2
1 2
m2v22
解得: vc 2m/s
进入磁场后: Q 所受电场力 F qE 3102 N m2 g , Q 在磁场做匀速率圆周运动
由牛顿第二定律得:
qvc B1
m2vc2 r1
Q 刚好不从 gh 边穿出磁场,由几何关系: r1 d 1.6m
解得: B1 1.25T
【答案】(1) FN 4.6 102 N (2) B1 1.25T
(3) t
127 360
s,
1
900 和2
1430
【解析】
【详解】
解:(1)设 P 碰撞前后的速度分别为 v1 和 v1 , Q 碰后的速度为 v2
从
a
到
b
,对
P
,由动能定理得:
-m1gl
1 2
m1v
2 1
1 2
m1v
2 0
解得: v1 7m/s
①物块 C 的质量? ②B 离开墙后的运动过程中弹簧具有的最大弹性势能 EP? 【答案】(1)2kg(2)9J 【解析】 试题分析:①由图知,C 与 A 碰前速度为 v1=9 m/s,碰后速度为 v2=3 m/s,C 与 A 碰撞 过程动量守恒.mcv1=(mA+mC)v2 即 mc=2 kg ②12 s 时 B 离开墙壁,之后 A、B、C 及弹簧组成的系统动量和机械能守恒,且当 A、C 与 B 的速度相等时,弹簧弹性势能最大 (mA+mC)v3=(mA+mB+mC)v4
高考物理动量守恒定律真题汇编(含答案)
一、高考物理精讲专题动量守恒定律
1.在图所示足够长的光滑水平面上,用质量分别为 3kg 和 1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板 P.现将两滑块由静止释放,当弹簧 恢复原长时,甲的速度大小为 2m/s,此时乙尚未与 P 相撞.
碰撞过程中,对 P , Q 系统:由动量守恒定律: m1v1 m1v1 m2v2
取向左为正方向,由题意 v1 1m/s ,
解得: v2 4m/s
b
点:对 Q
,由牛顿第二定律得: FN
m2 g
m2
v22 R
解得: FN 4.6 102 N
(2)设 Q 在 c 点的速度为 vc ,在 b 到 c 点,由机械能守恒定律:
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
10.如图所示,用气垫导轨做“验证动量守恒”实验中,完成如下操作步骤:
【答案】25m/s 【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以 M1、M2、m 组成的系统为研究对象,水平方向动量守恒:
0 M2v0 M1 m M2 v共 ,解得 v共 5m / s 以 小 球 与 乙 车 组 成 的 系 统 , 水 平 方 向 动 量 守 恒 : M2v0 mv m M2 v共 , 解 得
v 25m / s
考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
5.如图,质量分别为 m1=1.0kg 和 m2=2.0kg 的弹性小球 a、b,用轻绳紧紧的把它们捆在一 起,使它们发生微小的形变.该系统以速度 v0=0.10m/s 沿光滑水平面向右做直线运动.某 时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间 t=5.0s 后,测得两球相距 s=4.5m,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两 球分开过程中释放的弹性势能为_____________.
(1)碰后 A 球的速度大小; (2)碰撞过程中 A、B 系统损失的机械能.
【答案】 vA 1.0m / s , E损 0.25J
【解析】 试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度. (2)由能量守恒定律可以求出损失的机械能. 解:(1)碰撞过程,以 A 的初速度方向为正,由动量守恒定律得: mAvA+mBvB=mAv′A+mBv′B 代入数据解:v′A=1.0m/s ②碰撞过程中 A、B 系统损失的机械能量为:
【答案】匀速直线运动 小车经过光电门的时间 【解析】
m1 m2
t1
t2
【详解】
为了让物块在水平方向上不受外力,因此当导轨通气后,调节导轨水平,使滑块能够作匀
速直线运动;
根据实验原理可知,题中通过光电门来测量速度,因此应测量小车经过光电门的时间
设光电门的宽度为 l
,则有:经过光电门的速度为 v1
(1)整个过程中摩擦阻力 所做的总功; (2)人给第一辆车水平冲量的大小; (3)第一次与第二次碰撞系统功能损失之比。 【答案】
【解析】略
7.卢瑟福用 α 粒子轰击氮核发现质子。发现质子的核反应为:
。已
知氮核质量为 mN=14.00753u,氧核的质量为 mO=17.00454u,氦核质量 mHe=4.00387u,质 子(氢核)质量为 mp=1.00815u。(已知:1uc2=931MeV,结果保留 2 位有效数字)求: (1)这一核反应是吸收能量还是放出能量的反应?相应的能量变化为多少?
①求弹簧恢复原长时乙的速度大小; ②若乙与挡板 P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板 P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 和 ,对两滑块及弹簧组成的系统,设向 左的方向为正方向,由动量守恒定律可得:
又知
取列车原来速度方向为正方向.由动量守恒定律,可得 Mv M mv m0
解得,前面列车的速度为 v Mv ; M m
9.光滑水平面上质量为 1kg 的小球 A,以 2.0m/s 的速度与同向运动的速度为 1.0m/s、质 量为 2kg 的大小相同的小球 B 发生正碰,碰撞后小球 B 以 1.5m/s 的速度运动.求:
(3)当所加磁场 B2
2T
, r2
m2vc qB2
1m
要让 Q 从 gh 边穿出磁场且在磁场中运动的时间最长,则 Q 在磁场中运动轨迹对应的圆心
角最大,则当 gh 边或 ef 边与圆轨迹相切,轨迹如图所示:
设最大圆心角为 ,由几何关系得: cos(180 ) d r2 r2
解得: 127 运动周期:T 2 m2