双闭环直流调速系统(课程设计)剖析
双闭环直流调速系统设计
一、课程设计目的在《电机与拖动》、《电力电子技术》、《伺服系统》和《电力拖动自动控制系统》课程知识的基础上,完成课程的综合性设计。
通过课程设计环节的训练,包括设计方案的论证、参数计算、系统仿真和设计报告的撰写,掌握系统综合应用项目的设计流程和方法,加深对完整项目开发的的理解和掌握,培养应用系统的设计能力,初步积累双闭环直流调速系统的设计方法,以及分析问题和解决问题的能力,并进一步拓宽专业知识面,培养实践应用技能和创新意识。
电力系统综合课程课程设计是电气工程及其自动化专业的一门专业课程,它是一次综合性的理论与实践相结合的训练,也是本专业的一次基本技能训练,其主要目的是:1、理论联系实际,掌握根据实际工艺要求设计电力拖动自动控制系统的基本方法。
2、对一种典型的双闭环调速自动控制系统进行综合性分析设计,掌握各部件和整个系统的设计调试步骤、方法及操作实际系统的方法。
加强基本技能训练。
3、掌握参数变化对系统性能影响的规律,培养灵活运用所学理论解决控制系统中各种实际问题的能力。
4、培养分析问题、解决问题的独立工作能力,学会实验数据的分析与处理能力及编写设计说明书和技术总结报告的能力。
为下学期毕业设计作准备。
5、通过设计熟练地查阅有关资料和手册。
二、课程设计内容与要求1、本课程设计的对象直流伺服电机:学生自行查找电机型号直流测速机:学生根据设计任务选择2、本课程设计的内容要求设计一个直流双闭环调速系统。
其主要内容为:1、测定综合实验中所用控制对象的参数(在实验室完成)。
2、根据给定指标设计电流调节器和转速调节器,并选择调节器参数和具体实现电路。
3、按设计结果组成系统,以满足给定指标。
4、研究参数变化对系统性能的影响。
5、在时间允许的情况下进行调试。
3、本课程设计的设计要求a.调速范围D=5~10,静差率S≤5%。
b.空载启动时电流超调σi≤5%,转速超调σn≤10%(在额定转速时)。
c.动态速降小于10%。
d.振荡次数小于2次。
运动控制课程设计不可逆直流PWM双闭环调速系统
运动控制课程设计-不可逆直流PWM双闭环调速系统运动控制课程设计-不可逆直流PWM双闭环调速系统一、设计背景和目的随着工业自动化的快速发展,运动控制系统的应用越来越广泛。
其中,不可逆直流PWM双闭环调速系统在许多场合具有重要作用。
本设计旨在加深对运动控制理论的理解,通过实际操作,掌握不可逆直流PWM双闭环调速系统的设计方法。
二、系统概述不可逆直流PWM双闭环调速系统主要包括电流反馈环和速度反馈环。
电流反馈环主要用于控制电流,速度反馈环则主要用于控制转速。
通过两个环路的协同作用,实现对电机转速的精确控制。
三、系统设计1.硬件设计本系统主要由功率电路、控制电路、检测电路和驱动电路组成。
功率电路包括PWM逆变器和整流器,用于实现直流电转换为交流电,并根据控制信号调节输出电压。
控制电路主要包括控制器和算法,用于实现对电流和转速的反馈控制。
检测电路包括电流检测和速度检测,用于实时监测电流和转速。
驱动电路包括PWM驱动器和H桥驱动器,用于驱动电机旋转。
2.软件设计本系统的软件部分主要包括电流控制环和速度控制环的实现。
电流控制环通过比较实际电流与设定电流的差值,运用PI(比例积分)控制算法调节PWM逆变器的输出电压,以实现对电流的精确控制。
速度控制环则通过比较实际速度与设定速度的差值,运用PI控制算法调节PWM驱动器的占空比,以实现对转速的精确控制。
两个环路之间采用串联连接,电流控制环作为速度控制环的内环,以实现对电流和转速的高效控制。
四、测试与分析1.测试方法为验证本系统的性能,需要进行电流控制环测试和速度控制环测试。
在电流控制环测试中,设定电流值,观察实际电流是否能够快速、准确地跟踪设定值。
在速度控制环测试中,设定转速值,观察实际转速是否能够快速、准确地跟踪设定值。
2.结果分析通过测试,可以发现本系统在电流控制环和速度控制环方面均具有较好的性能。
在电流控制环测试中,实际电流能够快速、准确地跟踪设定值,跟踪误差较小。
直流电动机双闭环调速系统设计
1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。
相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。
双闭环控制那么很好的弥补了他的这一缺陷。
双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。
其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。
正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。
本次课程设计目的就是旨在对双闭环进展最优化的设计。
整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。
共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。
变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。
三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。
为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。
三相桥式全控整流电路的工作原理是当a=0°时的工作情况。
双闭环直流调速系统的课程设计
双闭环直流调速系统的课程设计————————————————————————————————作者:————————————————————————————————日期:自动控制原理课程设计——双闭环直流调速系统课程设计班级电气自动化二班姓名程传伦学号110101225指导教师张琦2013年6月10日目录摘要第1章系统方案设计1.1 任务分析1。
2 方案比较论证1.3 系统方案确定第2章系统主电路设计及参数计算2。
1 主电路结构设计与确定2.2 主电路器件选择与计算2.2.1 整流变压器的参数计算和选择2.2.2 整流元件晶闸管的选型2.3 电抗器的设计2.4 主电路保护电路的设计2.4.1 过压保护设计2。
4.2 过流保护设计第3章双闭环调节系统调节器的设计3.1 电流调节器的设计3.2转速调节器的设计小结心得体会参考文献摘要直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的.该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流.并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。
第1章系统方案设计1。
1 任务分析本课题所涉及的调速方案本质上是改变电枢电压调速。
该调速方法可以实现大范围平滑调速,是目前直流调速系统采用的主要调速方案.但电机的开环运行性能远远不能满足要求.按反馈控制原理组成转速闭环系统是减小或消除静态转速降落的有效途径。
双闭环直流电动机调速系统
04
系统软件设计
控制算法设计
算法选择
算法实现
根据系统需求,选择合适的控制算法, 如PID控制、模糊控制等。
将控制算法用编程语言实现,并集成 到系统中。
算法参数整定
根据系统性能指标,对控制算法的参 数进行整定,以实现最优控制效果。
调节器设计
调节器类型选择
根据系统需求,选择合适 的调节器类型,如PI调节 器、PID调节器等。
在不同负载和干扰条件下测试系统的性能, 验证系统的鲁棒性。
06
结论与展望
工作总结
针对系统中的关键问题,如电流和速度的动态 调节、超调抑制等,进行了深入研究和改进。
针对实际应用中可能出现的各种干扰和不确定性因素 ,进行了充分的考虑和实验验证,提高了系统的鲁棒
性和适应性。
实现了双闭环直流电动机调速系统的优化设计 ,提高了系统的稳定性和动态响应性能。
通过对实验数据的分析和比较,验证了所设计的 双闭环直流电动机调速系统的可行性和优越性。
研究展望
进一步研究双闭环直流电动机 调速系统的控制策略,提高系
统的动态性能和稳定性。
针对实际应用中的复杂环境和 工况,开展更为广泛和深入的 实验研究,验证系统的可靠性
和实用性。
探索双闭环直流电动机调速系 统在智能制造、机器人等领域 的应用前景,为相关领域的发 展提供技术支持和解决方案。
功率驱动模块
总结词
控制直流电动机的启动、停止和方向。
详细描述
功率驱动模块是双闭环直流电动机调速系统的核心部分,负责控制直流电动机的启动、停止和方向。它通常 由电力电子器件(如晶体管、可控硅等)组成,通过控制电动机的输入电压或电流来实现对电动机的速度和 方向的控制。功率驱动模块还需要具备过流保护、过压保护和欠压保护等功能,以确保电动机和整个系统的
双闭环直流调速系统课程设计报告
1双闭环直流调速系统课程设计报告第一章主电路设计与参数计算调速系统方案的选择因为电机上网容量较大又要求电流的脉动小应采纳三相全控桥式整流电路供电方案。
电动机额定电压为220V 为保证供电质量应采纳三相减压变压器将电源电压降低。
为防止三次谐波电动势的不良影响三次谐波电流对电源的扰乱。
主变压器采纳 A/D 联络。
因调速精度要求较高应采纳转速负反应调速系统。
采纳电流截止负反应进行限流保护。
出现故障电流时过电流继电器切断主电路电源。
为使线路简单工作靠谱装置体积小宜采纳 KJ004 构成的六脉冲集成触发电路。
该系统采纳减压调速方案故励磁应保持恒定励磁绕组采纳三相不控桥式整流电路供电电源可从主变压器二次侧引入。
为保证先加励磁后加电枢电压主接触器主触点应在励磁绕组通电后方可闭合同时设有弱磁保护环节电动机的额定电压为 220V 为保证供电质量应采纳三相减 2 压变压器将电源电压降低为防止三次谐波电动势的不良影响三次谐波电流对电源的扰乱主变压器采纳D/Y 联络。
1.1 整流变压器的设计 1.1.1 变压器二次侧电压U2 的计算U2 是一个重要的参数选择过低就会没法保证输出额定电压。
选择过大又会造成延迟角α加大功率因数变坏整流元件的耐压高升增添了装置的成本。
一般可按下式计算即BAUUd2.112 1-1 式中 A-- 理想状况下α0°时整流电压 Ud0 与二次电压U2 之比即AUd0/U2B-- 延缓角为α时输出电压Ud 与 Ud0 之比即BUd/Ud0 ε——电网颠簸系数系数依据设计要求采纳公式11.2——考虑各样因数的安全BAUUd2.112 1-3由表查得A2.34 取ε 0.9 角α考虑 10°裕量则Bcosα 0.985222011.21061272.340.90.985UV 取 U2120V 。
电压比KU1/U2380/1203.2 。
1.1.2 一次、二次相电流 I1 、I2 的计算由表查得 KI10.816 KI20.816 考虑变压器励磁电流得取1.1.3 变压器容量的计算S1m1U1I1 1-4 S2m2U2I2 1-5S1/2S1S2 1-6 式中 m1、m2 -- 一次侧与二次侧绕组的相数表查得 m13m23 S1m1U1I13× 380×1415.6KVA由S2m2U2I23×110×44.914.85 KVA考虑励磁功率LP220×1.60.352kW 取 S15.6kvA 1.2 晶闸管元件的选择晶闸管的额定电压晶闸管实质蒙受的最大峰值电压TNU 乘以 23 倍的安全裕量参照标准电压等级即可确立晶闸管的额定电压 TNU 即 TNU 23mU 整流电路形式为三相全控桥查表得26UUm 则223236236110539808TNmUUUV 3-7 取晶闸管的额定电流选择晶闸管额定电流的原则是一定使管子同意经过的额定电流有效值TNI 大于实质流过管子电流最大有效值TI8 即 4 TNI 1.57AVTITI 或AVTI57.1TI57.1TIddIIKdI 1-8 考虑 1.52 倍的裕量AVTI1.52KdI 1-9 式中KTI/1.57dI-- 电流计算系数。
双闭环直流调速系统课程设计
一、 变流变压器容量的计算和选择在一般情况下,晶闸管装置所要求的交流供电电压与电网电压往往不一致;此外,为了尽量减小电网与晶闸管装置的相互干扰,要求它们相互隔离,故通常要配用整流变压器,这里选项用的变压器的一次侧绕组采用△联接,二次侧绕组采用Y 联接。
S 为整流变压器的总容量,S 为变压器一次侧的容量,1U 为一次侧电压, 1I 为一次侧电流,2S 为变压器二次侧的容量,2U 为二次侧电压,2I 为二次侧的电流,1m 、2m 为相数,以下就是各量的推导和计算过程。
为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压2U 只能在一个较小的范围内变化,为此必须精确计算整流变压器次级电压2U 。
影响2U 值的因素有:(1)2U 值的大小首先要保证满足负载所需求的最大电流值的max d I 。
(2)晶闸管并非是理想的可控开关元件,导通时有一定的管压降,用T V 表示。
(3)变压器漏抗的存在会产生换相压降。
(4)平波电抗器有一定的直流电阻,当电流流经该电阻时就要产生一定的电压降。
(5)电枢电阻的压降。
综合以上因素得到的2U 精确表达式为:⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-++=d d k TD d d P D N I IU C B A nU r I Ir r U U max max 2100)(1ε式中maxd dNI I λ=06759.0===∑NN D a U R I r rV I IU C B A nU r I Ir r U U d d k TD d d P D N 76.355100)(1max max 2=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-++=ε816.022==dI I I K A I K I K I N I d I 3792.123222===λKVA I u m I u m I u m S S S 25.133)(21)(2122222211121==+=+=变流变压器的计算系数综上:选择变压器二次侧输出电压为:360VSCB10-140KVA /380V /360VS 的意思表示此变压器为三相变压器,如果S换成D则表示此变压器为单相。
转速电流双闭环直流调速系统_课程设计
目录目录 (1)摘要 .................................................................................................................. 错误!未定义书签。
第〇章任务书........................................................................................... 错误!未定义书签。
(一)设计参数....................................................................................... 错误!未定义书签。
(二)设计要求....................................................................................... 错误!未定义书签。
第一章主电路设计................................................................................... 错误!未定义书签。
(一)系统组成............................................................................... 错误!未定义书签。
(二)主电路原理........................................................................... 错误!未定义书签。
(三)主电路元器件参数计算及器件选型................................... 错误!未定义书签。
1.3.1整流元器件参数计算与选型.................................................. 错误!未定义书签。
双闭环直流调速系统课程设计剖析
图2 转速、电流双闭环直流调速系统结构图2中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统综上所述,采用转速,电流双闭环直流调速系统能更好的完成本题的设计要求,现采用转速,电流双闭环直流调速系统进行设计,如图3所示:用MATLAB 的SUMLINK 模块做的双闭环调速系统仿真模型图如 图4所示:图3 双闭环直流调速系统的动态结构U *nαU c-I dLnU d0 U n+- -β+- U iW ASR (sW ACR (s)K sT s s +1 1/R T l s+1R T m sU*iI d1/C e +E0.050.005s+1Transfer Fcn710.18s+1Transfer Fcn610.005s+1Transfer Fcn510.03s+1Transfer Fcn310.005s+1Transfer Fcn2350.0017s+1Transfer Fcn10.0070.005s+1Transfer FcnStepScope2Scope1Saturation2Saturation1Saturation Ramp1sIntegrator11sIntegrator-K-Gain4-K-Gain3-K-Gain2-K-Gain1-K-Gain图4 双闭环调速系统仿真模型图双闭环系统仿真波形及分析:ASR输出限幅值* 1.5*3*1.2 5.4im dlU I Vλβ===(4-1)ACR输出限幅值0.113*1600 1.2*9.56.4130e dcsC n I RU VK++===(4-2)调节限度器1将ASR输出限幅值的Upper Limit和Lower Limit进行适当的调节。
可得到上升时间最大的波形(r t=7.7s 限幅值=±3.8V)和上升时间最小(r t=0.7s限幅值=±14V)的波形。
双闭环直流调速系统课程设计方案
双闭环直流调速系统课程设计专业:应用电子技术班级:应用电子1班学号:32姓名:吴嘉鑫设计题目:双闭环直流调速系统2012年11月目录1 绪论...................................................................................................................................... - 1 -2 双闭环直流调速系统.......................................................................................................... - 2 - 一双闭环直流调速系统的组成结构与原理.......................................................................... - 4 - 二采用转速双闭环的理由...................................................................................................... - 4 - 三双闭环直流调速系统的动态数学模型................................................. 错误!未定义书签。
3课程设计任务与要求.......................................................................................................... - 4 - 一课程设计指标......................................................................................... 错误!未定义书签。
直流电动机双闭环调速系统课程设计
直流电动机双闭环调速系统课程设计一、引言直流电动机是一种常见的电动机,广泛应用于工业生产和日常生活中。
在实际应用中,为了满足不同的工作要求,需要对电动机进行调速。
传统的电动机调速方法是通过改变电源电压或者改变电动机的极数来实现,但这种方法存在调速范围小、调速精度低、调速响应慢等问题。
因此,现代工业中普遍采用电子调速技术,其中双闭环调速系统是一种常用的调速方案。
二、直流电动机双闭环调速系统的原理直流电动机双闭环调速系统由速度环和电流环组成。
速度环是通过测量电动机转速来控制电动机的转速,电流环是通过测量电动机电流来控制电动机的负载。
两个环路相互独立,但又相互联系,通过PID控制器对两个环路进行控制,实现电动机的精确调速。
三、直流电动机双闭环调速系统的设计1.硬件设计硬件设计包括电源模块、电机驱动模块、信号采集模块和控制模块。
其中电源模块提供电源,电机驱动模块将电源转换为电机驱动信号,信号采集模块采集电机转速和电流信号,控制模块根据采集到的信号进行PID控制。
2.软件设计软件设计包括PID控制器设计和程序编写。
PID控制器是直流电动机双闭环调速系统的核心,其作用是根据采集到的信号计算出控制量,控制电机的转速和负载。
程序编写是将PID控制器的计算结果转换为电机驱动信号,实现电机的精确调速。
四、直流电动机双闭环调速系统的实现1.电路连接将电源模块、电机驱动模块、信号采集模块和控制模块按照设计要求连接起来。
2.参数设置根据电机的参数和工作要求,设置PID控制器的参数,包括比例系数、积分系数和微分系数等。
3.程序编写根据PID控制器的计算结果,编写程序将其转换为电机驱动信号,实现电机的精确调速。
五、直流电动机双闭环调速系统的应用直流电动机双闭环调速系统广泛应用于工业生产和日常生活中,如机床、风机、水泵、电梯等。
其优点是调速范围广、调速精度高、调速响应快、负载能力强等。
六、总结直流电动机双闭环调速系统是一种常用的电子调速方案,其原理是通过速度环和电流环相互独立但相互联系的方式,通过PID控制器对两个环路进行控制,实现电动机的精确调速。
双闭环直流调速系统的课程设计报告
电力传动课程设计课题:双闭环直流调速糸统班级:电气工程及其自动化1004学号:3100501091姓名:贾斌彬指导老师:康梅、乔薇日期:2014年1月9日目录第 1 章系统方案设计1.1 任务摘要 (3)1.2 任务分析. (3)1.3 设计目的、意义 (3)1.4 方案设计. (4)第 2 章晶闸管直流调速系统参数和环节特性的测定2.1 电枢回路电阻R 的测定. (5)2.2 主电路电磁时间常数的测定 (6)2.3系统机电时间常数TM的测定 (7)2.4测速电机特性UTG=f(n)的测定 (7)2.5 晶闸管触发及整流装置特性Ug=f (Ug)的测定 (7)第 3 章双闭环调速系统调节器的设计3.1 电流调节器的设计 (7)3.2 转速调节器的设计 (9)第 4 章系统特性测试4.1 系统突加给定 (11)4.2 系统突撤给定...................... 错误! 未定义书签。
4.2.2 突加负载时 (12)4.2.3 突降负载时 (12)第 5 章设计体会第 1 章系统方案设计1.1 设计一个双闭环晶闸管不可逆调速系统设计要求:电流超调(T i < 5%转速超调(T n < 10%静态特性无静差给定参数:电机额定功率185W 额定转速1600r/min 额定励磁电流<0.16A 额定电流1.1A 额定电压220V 额定励磁电压220V转速反馈系数a =0.004 V • min/r电流反馈系数B =6V/A1.2 任务分析采用转速、电流双闭环晶闸管不可逆直流调速系统为对像来设计直流电动机调速控制电路,为了实现转速和电流两种负反馈分别起作用,可在系统中设计两个调节器,电流调节器和速度调节器,为了实现电流和转速分别起作用,二者之间实行串级连接,即把转速调节器的输出当做电流调节器的输入,在把电流调节器的输出去控制晶闸管整流器的触发装置。
该双闭环调速系统的两个调节器ASR 和ACF都采用PI调节器,以便能保证系统获得良好的静态和动态性能转速调节器在双闭环直流调速系统中的作用是减小转速误差,采用PI 调节器可实现无静差;对负载变化起抗扰作用;其输出限幅决定电动机允许的最大电流; 电流调节器在双闭环直流调速系统中的作用是使电流紧紧跟随其给定电压的变化;对电网的波动起及时抗干扰作用;加快动态过程;堵转或过载时起快速自动保护作用。
双闭环不可逆直流调速系统课程设计方案.doc
双闭环不可逆直流调速系统课程设计方案(matlab仿真设计方案)1随着社会化大生产的不断发展,电力传动装置在现代化工业生产中的得到广泛应用,对其生产工艺、产品质量的要求不断提高,这就需要越来越多的生产机械能够实现制动调速,因此我们就要对这样的自动调速系统作一些深入的了解和研究。
本次设计的课题是双闭环晶闸管不可逆直流调速系统,包括主电路和控制回路。
主电路由晶闸管构成,控制回路主要由检测电路,驱动电路构成,检测电路又包括转速检测和电流检测等部分。
目录1 双闭环直流调速系统的工作原理(1)1.1双闭环直流调速系统的介绍(1)1.2双闭环直流调速系统的组成(2)1.3双闭环直流调速系统的稳态结构和静特性(2)1.4双闭环直流调速系统的数学模型(3)1.5双闭环直流调速系统两个调节器的作用(3)2 双闭环直流调速系统启动过程分析(4)2.1双闭环直流调速系统起动时的转速和电流波形(4)2.2双闭环直流调速系统的起动过程(4)2.3双闭环直流调速系统的动态抗扰性能(5) 2.3.1双闭环直流调速系统的抗负载扰动(5) 2.3.2双闭环直流调速系统的抗电网电压扰动(5) 3 双闭环调速系统的主电路各器件的选择和计算(6) 3.1主电路参数的选择与确定(6)3.1.1直流电机的基本参数(6)3.1.2设计指标(6)3.2.参数的选取和计算(6)3.2.1模块参数设置(6)3.2.2电流调节器的设计(7)3.2.3转速调节器的设计(7)4 MATLAB/SIMULINK仿真软件(7)4.1仿真软件介绍(7)4.2仿真软件操作过程(8)4.2.1建立自控系统的数学模型(8)4.2.2建立自控系统的仿真模型(8)4.2.3编制自控系统仿真程序(8)5.仿真设计(9)6.仿真结果分析(11)6.1电机转速曲线(11)6.2电流电流曲线(12)7.设计结论(12)总结与体会(13)参考文献(14)1 双闭环直流调速系统的工作原理1.1 双闭环直流调速系统的介绍双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。
vm双闭环直流调速系统课程设计
vm双闭环直流调速系统课程设计以vm双闭环直流调速系统为主题的课程设计是电气工程专业中的一门重要课程。
该课程旨在培养学生对直流调速系统的设计和实现能力,以及对电力电子技术的理解和应用能力。
本文将围绕该课程的设计和实施方案展开讨论。
一、引言直流调速系统是电气工程中常用的一种调速控制系统,广泛应用于工业自动化领域。
通过对电机电压和电流进行调节,实现对电机转速的精确控制。
而vm双闭环直流调速系统则是在传统的单闭环调速系统基础上,进一步引入了速度环和电流环,提高了系统的稳定性和响应速度。
二、系统设计方案1. 系统结构vm双闭环直流调速系统由速度环、电流环和功率模块组成。
速度环负责测量和控制电机的转速,电流环负责测量和控制电机的电流,功率模块负责将输入电压转换为电机所需的控制信号。
2. 系统参数设置为了实现精确的转速控制,需要对系统的参数进行准确的设置。
包括电机的额定转速、额定电流和转矩常数等。
同时还需要根据具体的应用场景,确定速度环和电流环的控制参数,如比例增益、积分时间等。
3. 闭环控制算法vm双闭环直流调速系统采用基于PID控制算法的闭环控制策略。
通过对速度和电流的反馈信号进行处理,计算出合适的控制信号,实现对电机转速和电流的精确控制。
三、系统实施方案1. 硬件实施在实际的电气工程中,需要使用电机、编码器、传感器等硬件设备来搭建vm双闭环直流调速系统。
其中,电机负责转动,编码器负责测量转速,传感器负责测量电流。
这些硬件设备需要按照设计方案进行连接和配置。
2. 软件实施vm双闭环直流调速系统的软件实施主要包括控制算法的编程和参数调试。
通过编写控制程序,实现对速度环和电流环的控制。
同时,还需要进行参数调试,优化控制算法的性能。
3. 系统测试与优化在实际应用中,需要对vm双闭环直流调速系统进行测试和优化。
通过对系统的实时性、稳定性和精确性进行评估,找出存在的问题并进行改进。
同时,还可以根据不同的应用需求,对系统的性能进行优化。
双闭环直流电机调速系统课程设计剖析
学院: 专业班级: 姓名: 学号:双闭环直流调速系统的方案设计设计内容和要求设计内容:1. 根据题目的技术要求,分析论证并确定主电路的结构形式和闭环调速系统的组成,画出系统组成的原理框图。
2. 调速系统主电路元部件的确定及其参数计算。
3. 驱动控制电路的选型设计。
4.动态设计计算:根据技术要求,对系统进行动态校正,确定ASR 调节器与ACR 调节器的结构形式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。
5. 绘制V —M 双闭环直流不可逆调速系统电器原理图,并研究参数变化时对直流电动机动态性能的影响。
设计要求(假想参数):1. 该调速系统能进行平滑地速度调节,负载电机不可逆运行,具有较宽地转速调速范围(10D ≥),系统在工作范围内能稳定工作。
2. 系统静特性良好,无静差(静差率2S ≤)。
3. 动态性能指标:转速超调量8%n δ<,电流超调量5%i δ<,动态最大转速降810%n ∆≤~,调速系统的过渡过程时间(调节时间)1s t s ≤。
4. 系统在5%负载以上变化的运行范围内电流连续。
5. 调速系统中设置有过电压、过电流保护,并且有制动措施。
6. 主电路采用三项全控桥。
学院: 专业班级: 姓名: 学号:双闭环直流调速系统总设计框图在生活中,直接提供的是三相交流760V 电源,而直流电机的供电需要三相直流电, 因此要进行整流,本设计采用三相桥式整流电路将三相交流电源变成三相直流电源,最后达到要求把电源提供给直流电动机。
如图2-1设计的总框架。
双闭环直流调速系统设计总框架三相交流电路的交、直流侧及三相桥式整流电路中晶闸管中电路保护有电压、电流保护。
一般保护有快速熔断器,压敏电阻,阻容式。
根据不同的器件和保护的不同要求采用不同的方法。
驱动电路是电力电子主电路与控制电路之间的接口,是电力电子装置的重要环节, 它将信息电子电路传来的信号按照其控制目标的要求,转换为加在电力电子器件控制端和公共端之间,可以使其开通 或关断的信号。
双闭环直流调速系统课程设计
电力拖动自动控制系统课程设计报告题目:晶闸管双闭环直流调速系统摘要双闭环直流调速系统即速度和电流双闭环直流调速系统,是由单闭环直流调速系统发展起来的,调速系统使用比例积分调节器,可以实现转速的无静差调速。
又采用电流截止负反馈环节,限制了起(制)动时的最大电流。
这对一般的要求不太高的调速系统,基本上已经能满足要求。
但是由于电流截止负反馈限制了最大电流,加上电动机反电势随着转速的上升而增加,使电流到达最大值后迅速降下来,这样,电动机的转矩也减小了,使起动加速过程变慢,起动的时间比较长。
在这些系统中为了尽快缩短过渡时间,所以就希望能够充分利用晶闸管元件和电动机所允许的过载能力,使起动的电流保护在最大允许值上,电动机输出最大转矩,从而转速可直线迅速上升,使过渡过程的时间大大的缩短。
另一方面,在一个调节器的输出端有综合几个信号,各个参数互相调节比较困难。
为了克服这一缺点就应用转速,电流双闭环直流调速系统。
关键词:双闭环直流调速系统 ASR ACR1.设计要求直流电动机设计双闭环直流晶闸管调速系统,技术要求如下:1.1直流电动机的额定参数P N=1.1KW、U N=110V、I N=1.2A、n N=1500r/min,电枢电阻R=1a Ω,电枢绕组电感L a=28mH,系统飞轮矩GD2=0.1375Kg·m2,电流过载倍数λ=1.5。
1.2电压参数电网电压:线电压U=380V采用三相晶闸管桥式整流电路供电1.3设计要求稳态无静差,电流超调量σi≤5%;转速超调量σn≤10%。
2.双闭环直流调速系统系统总设计为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级连接,如下图所示,即把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。
该双闭环调速系统的两个调节器ASR和ACR一般都采用PI调节器。
因为PI调节器作为校正装置既可以保证系统的稳态精度,使系统在稳态运行时得到无静差调速,又能提高系统的稳定性;作为控制器时又能兼顾快速响应和消除静差两方面的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.29.5
0.0274
0.113281.2% 2.1 4.2%10%
16000.1⨯=⨯⨯⨯⨯=< (3-27) 满足课题所给要求。
4.仿真实验:
为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,如图2所示。
图2 转速、电流双闭环直流调速系统结构
图2中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统
综上所述,采用转速,电流双闭环直流调速系统能更好的完成本题的设计要求,现采用转速,电流双闭环直流调速系统进行设计,如图3所示:
图5双闭环调速系统上升时间最大波形图上升时间最小波形如图6所示:
图6 双闭环调速系统上升时间最小波形图
经过双闭环调速系统上升时间最大波形与双闭环调速系统上升时间最小波形对比可知:限幅值越大上升时间r t 越小,限幅值越小上升时间r t 越大;同时r t 值越大,超调越小;r t 值越小,超调越大。
在符合设计要求的情况下,经过多次的参数调整,得到一组较好的调节参数,如表1和图7所示:
晶闸管放
大系数Ks 机电时间
常数m T
电磁时间常数l T
电流反馈系数
转速反馈系数α 允许过载倍数λ
30
0. 1s
0.01s
3V/A
0.005vmin/r
1.5
on T oi T e C R r t ASR 限幅值
0.02s 0.002s 0.113Vmin/r
9.5Ω
2s ±6.1V
ACR
ASR
ACR 限幅值
n τ
i K I K n K N K ±8.7V 0.137s 0.143 135.11S -
15.6
159.842
S -
i R i C n R n C i τ 6K Ω
1.75F
μ
550K Ω
0.22F
μ
0.01s
表1双闭环调速系统调节参数
图7 双闭环调速系统波形图
由此可得:双闭环调速系统采用PI调节规律,它不同于P调节器的输出量总是正比与其输入量,PI调节器它的输出量在动态过程中决定于输入量的积分,到达稳态时,输入为零,输出的稳态值与输入无关,是由它后面的环节的需要来决定的。
5.仿真波形分析
从波形中,我们分析可知其起动过程可分三个阶段来分析:
第Ⅰ阶段:电流上升阶段。
突加给定电压Un*后,通过两个调节器的控制,使Ua,Ud,Ud0都上升。
由于机电惯性的作用,转速的增长不会很快。
在这一阶段中,ASR由不饱和很快达到饱和,而ACR 不饱和,确保电流环的调节作用.
第Ⅱ阶段:是恒流升速阶段。
从电流升到最大值开始,到转速升到给定值n*为止,这是起动过程中的重要阶段。
在这个阶段,ASR一直是饱和的,转速环相当于开环状态,系统表现为在恒值电流给定Uim*作用下的电流调节系统,基本上保持恒定。
因而拖动系统的加速度恒定,转速呈线性增长。
第Ⅲ阶段:转速调节阶段。
在这阶段开始,转速已达到给定值,转速调节器的给定与反馈电压平衡,输入偏差为零。
转速超调后,ASR输入端出现负的偏差电压,使他退出饱和状态,其输出电压的给定电压Ui*立即下降,主电流Id也因而下降。
但在一段时间内,转速仍继续上升。
达到最大值后,转速达到峰值。
此后,电机才开始在负载下减速,电流Id也出现一段小于Id0的过程,直到稳定。
在这最后的阶段,ASR和ACR都不饱和,同时起调节作用。
根据仿真波形,我们可以对转速调节器和电流调节器在双闭环直流调速系统中的作用归纳为:。