高中数学椭圆、双曲线、抛物线知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学椭圆、双曲线、抛物线知识点

《圆锥曲线》知识点小结

一、椭圆:(1)椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。

注意:||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹; (2)椭圆的标准方程、图象及几何性质:

3.常用结论:(1)椭圆)0(12222>>=+b a b

y a x 的两个焦点为21,F F ,过1F 的直线交椭圆于B A ,两点,则2ABF ∆的周长=

(2)设椭圆)0(122

22>>=+b a b

y a x 左、右两个焦点为21,F F ,过1F 且垂直于

对称轴的直线交椭圆于Q P ,两点,则Q P ,的坐标分别是

=||PQ

二、双曲线:

(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。

其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。

注意:a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。

||221F F a =表示两条射线;||221F F a >没有轨迹;

(2)双曲线的标准方程、图象及几何性质:

(3)双曲线的渐近线: ①求双曲线12

222

=-b

y a x

的渐近线,可令其右边的1为0,即得022

22=-b

y a x ,因式分解

得到0x y a

b

±=。

②与双曲线122

22=-b y a x 共渐近线的双曲线系方程是λ=-2222y x ;

(4)等轴双曲线为2

22t y x =-2(4)常用结论:(1)双曲线)0,0(12222

>>=-b a b

y a x 的两个焦点为21,F F ,过1F 的直

线交双曲线的同一支于B A ,两点,则2ABF ∆的周长=

(2)设双曲线)0,0(12222

>>=-b a b

y a x 左、右两个焦点为21,F F ,过1F 且垂

直于对称轴的直线交双曲线于Q P ,两点,则Q P ,的坐标分别是

=||PQ

三、抛物线:

(1)抛物线的定义:平面内与一个定点的距离和一条定直线的距离相等的点的轨迹。

其中:定点为抛物线的焦点,定直线叫做准线。 (2)抛物线的标准方程、图象及几何性质:0>p

|

|14)(1||1||2212212212A k x x x x k x x k AB ∆⋅

+=-+⋅+=-+= 其中,∆,A 分别是联立直线方程和圆锥曲线方程,消去 y 后所得关于x 的一元二次方程的判别式和2x 的系数 五、弦的中点坐标的求法

法(一):(1)求出或设出直线与圆锥曲线方程;(2)联立两方程,消去y,得关于x 的一元二次方程,02

=++C Bx Ax 设),(11y x A ,),(22y x B ,由韦达定理求出A

B

x x -

=+21;(3)设中点),(00y x M ,由中点坐标公式得2210x x x +=;

再把0x x =代入直线方程求出0y y =。

法(二):用点差法,设),(11y x A ,),(22y x B ,中点),(00y x M ,由点在曲线

上,线段的中点坐标公式,过A 、B 两点斜率公式,列出5个方程,通过相减,代入等变形,求出00,y x 。

六、求离心率的常用方法:法一,分别求出a,c ,再代入公式

法二、建立a,b,c 满足的关系,消去b,再化为关于e 的方程,最后解方程求e (求e 时,要注意椭圆离心率取值范围是0﹤e ﹤1,而双曲线离心率取值范围是e ﹥1)

高考专题训练 椭圆、双曲线、抛物线 一、选择题:

1.(2011·辽宁)已知F 是抛物线y 2=x 的焦点,A ,B 是抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点M 到y 轴的距离为( )

A.3

4 B .1 C.5

4

D.74

答案:C

2.(2011·湖北)将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则( )

A .n =0

B .n =1

C .n =2

D .n ≥3

答案:C

3.(2011·全国Ⅱ)已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C 交于A,B两点,则cos∠AFB=( )

A.4

5

B.

3

5

C.-3

5

D.-

4

5

答案:D

4.(2011·浙江)已知椭圆C1:x2

a2

y2

b2

=1(a>b>0)与双曲线C2:x2-

y2

4

=1有

公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则( )

A.a2=13

2

B.a2=13

C.b2=1

2

D.b2=2

答案:C

5.(2011·福建)设圆锥曲线的两个焦点分别为F1,F2,若曲线上存在点P 满足|PF1|:|F1F2|:|PF2|=4:3:2,则曲线的离心率等于( )

A.1

2

3

2

B.

2

3

或2

C.1

2

或2 D.

2

3

3

2

答案:A

相关文档
最新文档