固体碱催化剂的研究进展
近十年固体超强碱催化剂的研究进展
![近十年固体超强碱催化剂的研究进展](https://img.taocdn.com/s3/m/53bacbd984254b35eefd34b9.png)
C l g C e s a d h m c l n i ei , u a n esy C a g h 1 0 2 H n n C ia ol e f hmi  ̄ n e i gn r g H n nU i ri , h n s a 0 8 , u a , h e o t C aE e n v t 4 n
,
今 为 J, 卜 已报 道 的超 强碱 种 类 少 , 部 分 足 以 金属 氧化 物 为载 体 制 得 , 需 在 苛 刻 条件 下制 备和 使 用 从 而 限 制 了 其发 展 和 应 用 . 人 且
,
此 外 , 关超 强碱 位 形 成 机 理 的 研 究 也 鲜 见报 道 . 有 该领 域 的发 展 趋 势 在 于 开 发 出 可 用 于 制 备 固体 超 强 碱 的 新 型 载 体 材料 和 新 的 修饰 组 分 , 以及 拓 展超 强碱 在 催 化 反 应 尤 其 是 高 温催 化 反 应 中 的应 用 . 关键 词:固 体超 强碱 ;氰 化 钙 ;硝 酸 钾 ;氧 化 铝 ;氧 化 锆 ;氢 氧 化 钾 ;硝 酸 钙 ;S A 1 B 一5分 了筛
韦玉丹 ,张树 国 ,李贵 生 ,尹双凤 ,区泽棠 1 , , 2
湖 南 大 学 化 学 化 工 学 院,湖 南长 沙 4 0 8 10 2 香 港 浸 会 大 学 化 学 系,香港 九 龙 塘
摘 要 :综 述 了近 十年 来 体超 强碱 催 化 剂 的 研 究 进展 , 要 包 括超 强碱 的类 型 、制 备 方 法 及 其应 用 以及 碱 性位 的产 生 机 理 . 主 迄
磺酸型固体酸催化剂的制备与应用研究进展
![磺酸型固体酸催化剂的制备与应用研究进展](https://img.taocdn.com/s3/m/00c464f6f705cc175527091b.png)
第31卷第6期2009年11月南 京 工 业 大 学 学 报 (自然科学版)J OURNAL O F NAN JI NG UN I V ERS I TY OF TEC HNOLOGY (N atural Science Ed i tion)V o.l 31N o .6N ov .2009do:i 10.3969/.j issn .1671-7627.2009.06.023磺酸型固体酸催化剂的制备与应用研究进展曾昌凤1,陈军2,张利雄2,路勇3(1.南京工业大学机械与动力工程学院,江苏南京210009;2.南京工业大学化学化工学院,材料化学工程国家重点实验室,江苏南京210009;3.华东师范大学绿色化学与化工过程绿色化上海市重点实验室,上海200062)收稿日期:2009-04-13基金项目:华东师范大学绿色化学与化工过程绿色化上海市重点实验室开放课题基金资助项目作者简介:曾昌凤(1966 ),女,四川彭州人,副教授,硕士,主要研究方向为化工反应与分离设备;张利雄(联系人),教授,E m ai:l m ail 4catalys i s@yahoo .co .摘 要:将磺酸基团引入到固体载体表面制备磺酸型固体酸以替代传统的硫酸催化剂.对磺酸型固体酸催化剂的制备和应用研究进展进行了综述.介绍了在中孔硅分子筛(如M C M 41、SB A 15)、中孔炭分子筛(如C M K 3、C MK 5)、半炭化炭材料、炭纳米管等载体上引入磺酸基团的方法和其中一些催化剂的催化性能,探讨这些制备方法和所制得催化材料的优点和存在的问题.关键词:磺酸型固体酸;浓硫酸;催化材料;分子筛中图分类号:O 611 62 文献标志码:A 文章编号:1671-7627(2009)06-0104-07Revie w on preparati on and application of sulfonated soli d aci d catal ystsZENG Chang feng 1,CHEN Jun 2,Z HANG L i x i o ng 2,L U Yong3(1.Co lleg e o fM echanic and Dyna m ic Eng i neering ,N an ji ng U niversity of T echnology ,N anji ng 210009,Ch i na ;2.State K ey L aboratory o fM ater i a l s O r i ented Che m ica l Eng ineer i ng ,Coll ege o f Che m i stry and Chem i ca l Eng i neering ,N an ji ng U niversity of T echnology ,N anji ng 210009,Ch i na ;3.Shanghai K ey L aboratory of G reen Che m istry and Che m ical P rocesses ,D epart ment o f Che m i stry ,East Chi na N or m a lU n i versity ,Shangha i 200062,Ch i na)Abst ract :Su lfonate ac i d group ( SO 3H )w as i n troduced on the surface of solid supports to prepare sul fonated so lid acid catalysts for substituting traditional sulfuric ac i d catalys.t The research progress on the preparati o n and the applicati o n of su lfonated so li d cata l y sts w as rev ie w ed .The m ethods for i n troducingSO 3H i n to or dered m esoporous silicas (such as MC M 41and SBA 15),ordered m esopo r ous carbons (such as C MK 3and C MK 5),i n co m plete carbonized or gan ic products ,and carbon nanotubes and the catalytic properties of the resu lting cata l y stsw ere presented .The advantages and pr oble m s o f t h ese prepa rati o n m ethods w ere d iscussed .K ey w ords :sulfonated so li d ac i d ;su lfuric acid ;cata l y tic m ateria;l m o lecu lar sieve 酸催化反应是化学工业中重要的反应之一,目前工业生产中还在大量使用液体酸,如H 2SO 4、H F 等酸催化剂.但是液体酸在使用过程中容易腐蚀设备,需要特殊的中和步骤来分离酸和产物,而且无法重复利用,仅因无法回收使用,每年有超过15M t 的浓H 2SO 4被丢弃[1],对环境造成了很大的污染.这些都造成生产成本增加、环境污染等不良后果,也浪费大量的资源.鉴于 绿色化学 和 绿色工业 的原则[2],必须改进生产工艺,以减少化工生产对环境和人类健康所造成的不利影响.相对于液体酸而言,固体酸具有无毒、不易腐蚀设备、环境友好、可循环使用等优点,因而受到人们的广泛关注.近几十年来,人们一直在寻找开发能够代替液体酸的固体酸催化剂[3-4].磺酸型固体酸的开发成为一个研究的热点,其研究思路是在一些载体(如中孔硅分子筛、中孔炭分子筛、无定型炭等)上通过各种方法引入磺酸基团,使之具有与硫酸相当的酸性.本文以各种主要载体为类别,对这些方法和所制得的酸性催化剂的性能进行综述.1 中孔硅分子筛沸石分子筛,如Y、ZS M 5等是石油化工和化学工业领域中非常重要的催化材料.由于其孔径较小,对涉及大分子的催化反应性能欠佳.自1992年M o b il公司成功合成M41S系列孔径在2~50nm中孔硅分子筛以来,分子筛在催化领域的研究进入了一个新的阶段[5].但它们的表面酸性很弱,必须进行后处理或通过在骨架中引入其他元素来满足反应所需的酸性.所以M argolese等[6-10]以此为载体,在其上引入磺酸根、丙基磺酸等酸性基团,制得磺酸型分子筛.所采用的方法主要有后合成嫁接法[8,11-14]和原位共缩合合成法[7,9,15-17].采用这2种方法所制备的新型固体酸在缩聚、酯化及酰化等反应中表现出较好催化性能[7,9,15-20].1 1 后合成嫁接法后合成嫁接法主要是利用中孔硅分子筛表面的硅羟基与巯基( S H)烷氧基硅烷反应,将 SH接入中孔分子筛,后经H2O2将 S H氧化成磺酸基,从而得到负载有机磺酸的固体酸.如将3 巯基烷氧基硅烷与预先合成的M C M 41反应,使部分共价硫醇嫁接到M C M 41的 OH上,再经H2O2氧化制得H SO3 丙基 M C M 41;该固体酸在甘油和月桂酸、油酸的酯化反应中表现出较好的催化活性[8].随后D iaz等[21]发现,用甲基代替丙基,所得H SO3 甲基 M C M 41的酸性更强.此外,为了避免使用昂贵的巯基烷氧基硅烷和后续的氧化步骤,陈静等[11]采用两步后合成法,即先将纯硅M C M 41与苯甲醇反应使其表面接枝苄基,再通过苄基与氯磺酸反应将苯磺酸接枝到介孔分子筛上,制备了H SO3 苯基 MC M 41固体酸,其比表面积和孔容分别为976m2/g和0 42c m3/g,比接枝前的MC M 41稍有减少,酸量为4 2mm ol/g.袁兴东等[22]采用后合成法制备出含碘酸基的介孔分子筛SBA 15 SO3H,并与直接法获得的催化剂进行了比较,发现后者的酸中心多于前者;酯化反应结果表明,直接法合成的催化剂比后合成法具有更高的稳定性,且简便、快捷、高效[23].高国华等[24]利用后接枝法将含有磺酸基团的硅烷偶联剂引入MC M 41,得到的酸性介孔有机 无机杂化材料在苯甲醛与乙二醇的缩醛反应中显示了较好的催化活性.合成嫁接法制备磺酸型中孔硅分子筛尽管操作较简单,但所能嫁接上的磺酸基团的数量受到中孔硅分子筛表面活性羟基数量的限制;同时,由于孔道大小的制约,不是所有的内表面羟基都能得以利用,从而导致有机酸性基团不能均匀地接到载体上.此外,依所选烷基的不同还可能导致中孔硅分子筛的孔道被堵塞[25].这些都是在采用该方法时需要注意的问题.1 2 原位共缩合合成法原位共缩合合成法是在合成中孔硅分子筛的溶胶 凝胶过程中,将含有巯基的烷氧基硅烷作为反应物与合成中孔硅分子筛所需的硅源、表面活性剂和碱同时加入到合成液中,经水热自组装后,再用HNO3或H2O2将 SH氧化成磺酸基得到负载有机磺酸的固体酸.Li m等[26]将3 巯基烷氧基硅烷(M PTS)、正硅酸甲酯(T MOS)、十六烷基三甲基溴化铵(CTAB)、Na OH、水和甲醇按摩尔比为1 2 5 0 42 0 96 272 66配制合成液,室温下搅拌12h 后于95 合成36h,再在HC l/C H3OH/H2O中回流处理以萃取出表面活性剂,得到含有机基团的MC M 41,其中S质量分数为10 88%(n(S)/ m(S i O2)=4 7mm o l/g),与原始配料中S含量(n(S)/m(S i O2)=4 8mm o l/g)相当.该材料先用20%HNO3润湿后,再在浓HNO3中搅拌24h即可将巯基氧化为磺酸基,且S含量保持不变,从而制得磺酸型MC M 41.不过MC M 41的有序度稍有降低.与此类似,M argo lese等[6]在合成SBA 15的反应物中直接加入3 巯基烷氧基硅烷,在313K下搅拌20h,再在373K下老化24h后,过滤干燥,用乙醇回流除去模板,得到含巯丙基的SBA 15.在室温下用H2O2将巯丙基氧化成丙基磺酸后,用1m o l/L 的硫酸处理试样2h,过滤烘干后得到了酸量较高的磺酸型SB A 15.其XRD峰形与SB A 15完全相同,仅峰强度有所减小.而H2O2的氧化时间对试样的峰强度有很大的影响,氧化时间越长,峰强度越105第6期曾昌凤等:磺酸型固体酸催化剂的制备与应用研究进展低,说明试样的有序度减弱.其比表面积也随着氧化时间的增加而减小.由酸碱滴定可知,试样的酸量随着氧化时间的增加而增大.所以,通过调节H2O2的氧化时间就可以制备出一系列不同比表面积、不同酸量的磺酸型SB A 15,以满足不同反应体系的需求.之后,为了得到孔径较大的磺酸型中孔硅,M ar go lese等[6]通过调节正硅酸乙酯(TEOS)的用量,制备了孔径大于6nm、比表面积为674m2/g、酸量为1 64mm o l/g的磺酸型SBA 15.该催化剂在醇类脱水生成醚的反应中显示出较高的选择性,特别是在甲醇和丁醇的脱水反应中,在温度低于400K的情况下,选择性达100%[27].随后的研究也表明,采用该方法所制备的磺酸型中孔硅分子筛中的磺酸基团的浓度大于采用后合成嫁接法制备的试样[28].同时,产物的孔径也较大,有利于大分子如脂肪酸及其酯在孔道中的扩散[29].后续的研究表明,通过选择与磺酸基团相连的有机基团的类型,可以调变所制得的磺酸基中孔硅分子筛的酸强度[30].如采用巯基上带吸电子能力更强的基团(如苯基基团)的硅烷,所制得的磺酸基中孔硅分子筛的酸强度得到显著的提高.此外,有机基团的选择还影响最终酸性催化剂的活性.M baraka 等[17]分别将丙基磺酸根和芳香基磺酸根连接到SBA-15上,之后在H2O2中氧化、干燥、水洗,最后用1m o l/L的硫酸酸化处理、水洗干燥后,得到比表面积为735和540m2/g、酸量为1 44和0 92mm o l/ g(H+)的SBA-15-SO3H和SBA-15-ph-SO3H.它们被用于棕榈酸的酯化反应,在酸醇摩尔比为1 20、反应温度为358K、催化剂用量为棕榈酸质量的10%的反应条件下,尽管SB A-15-ph-SO3H的比表面积和酸量都低于SB A-15-SO3H,但是SBA -15-ph-SO3H的催化活性要明显高于SB A-15 -SO3H,说明磺酸根连接的有机基团对最终制备的催化剂的催化活性确实有较大的影响.D iaz等[31]在研究前人成果的基础上,由原位合成法制备了H SO3 -甲基-MC M-41、H SO3-乙基 MC M 41、H SO3 甲基/乙烯基 M C M 41固体酸,用于丙三醇与月桂酸、油酸的酯化反应,并研究了烷基链长度对所得固体酸催化活性的影响.由实验结果可知,在丙三醇与月桂酸的酯化反应中,H SO3 乙基 MC M 41表现出最高的催化活性,373K下反应6h,月桂酸的转化率高达93%;而相同条件下,用H SO3 甲基/乙烯基 M C M 41催化,其转化率只有80%;相比之下,H SO3 甲基 M C M 41的催化活性最低,其转化率仅为63%.相同的情况也发生在丙三醇与油酸的酯化反应中,393K的温度下反应4h,油酸的转化率分别为90%、60%和40%.由上述结果可知,当磺酸根与MC M 41表面的距离即烷基链长度有一个最佳值,此时的磺酸型固体酸的催化活性最高.这主要是由于甲基的引入,导致固体酸的亲水性有所降低,不利于反应的进行.因此,有研究先采用原位共缩合合成法制备有机磺酸 中孔硅分子筛固体酸,再采用后合成接枝法调变磺酸型中孔分子筛的表面亲/疏水性.M baraka 等[13,31]将用原位共缩合合成法制得的SBA 15 SO3H在398K下干燥后,将其与疏水的有机硅烷混合,在甲苯中回流4h,再于空气中干燥过夜和萃取器中用C H2C l2/(C2H5)2O萃取24h,干燥后得到含有有机磺酸根和有机疏水基团的SB A 15 SO3H,并用于生物柴油的制备.由于该疏水型SBA 15 SO3H 含有疏水基团,所以油脂较易与SBA 15孔道壁上的酸性基团接触,且反应后水和脂肪酸甲酯易于排除孔道,有利于酸催化反应的进行.张明伟等[32]亦采用水热法直接合成表面含丙磺酸基和不同烷基(如甲基、辛基和十六烷基)的疏水性介孔分子筛固体酸SBA 15 SO3H,其硫质量分数为3 53%~ 4 255%,酸含量为(0 84~1 08)mm o l/g,相对润湿接触角 r(SBA 15SO3H)< r(C H3 SB A 15 SO3H) < r(C8H17 SBA 15 SO3H)< r(C16H33 SBA 15 SO3H),催化剂对冰醋酸和正丁醇的酯化反应转化率可达75 5%,转化率随相对润湿角的增大而增大.2 无定型炭炭材料由于其在强酸碱环境下良好的化学稳定性一直都是催化剂研究中广泛采用的载体.2004年,H ara等[1]将萘在N2保护下半炭化,再用大量浓H2SO4于523K下磺化15h,引入磺酸根,得到具有酸性的炭材料.试样经核磁共振谱仪检测确定磺酸基团被引入到芳香碳原子上.由中和滴定测得试样的酸量为4 9mm ol/g,大约为萘酸量的5倍.由试样的热质量损失分析可知,该材料能在473K的高温下保持稳定.将其代替浓硫酸,用于乙酸乙酯的合成、2,3 二甲基 2丁烯的水合反应,其催化效果接近于浓硫酸,明显优于铌酸等传统固体酸.而在乙酸环己酯的水解反应中,其催化活性是浓硫酸的2倍.但106南 京 工 业 大 学 学 报 (自然科学版)第31卷是在一定反应温度下或在大于323K的水中,由萘为原料制备的磺酸型炭材料的磺酸根容易脱落,导致催化剂失活.其后,研究者们以价格更为低廉的蔗糖[33]、葡萄糖[2]等为原料,在高于573K的高温下热解后,得到黑色的带有少量羟基的多环芳香炭材料,随后在浓H2SO4或发烟H2SO4中于423K磺化,用磺酸根取代羟基,得到比较坚硬的磺酸型炭材料.由试样的结构分析可知,它是由含有 OH、 COOH和 SO3H的无定型炭组成,而且不同的炭化温度和不同的硫酸浓度均对最终炭材料的酸量和催化活性有很大的影响.由元素分析和中和滴定[2]的结果综合而得,相对于其他的炭化温度,在673K下炭化再磺化而得的炭材料的酸量最大.随着炭化温度的升高,炭材料上的羟基减少,磺化引入的磺酸根也相对减少;用发烟硫酸磺化而得的炭材料的酸量要比用浓硫酸磺化的大将近一倍.由于发烟硫酸的价格以及操作上的危险性等因素,一般选择价格低廉而又相对安全的浓硫酸.这些由糖类炭化、磺化而制得的酸性炭材料几乎不溶于任何溶剂(如水、甲醇、乙醇、苯、己烷和N,N-二甲基甲酰胺等),而且仅需通过简单的机械搅拌,它们就能均匀地分散在溶液中,停止搅拌一段时间后,由于重力作用而沉积在容器底部,易于与溶液分离.这有利于催化反应结束后固体催化剂与液体反应物、产物的分离.以蔗糖为原料制备的炭材料被用于生物柴油的制备[33],其催化活性约为浓硫酸的1/2,是萘催化剂[1]的2倍.而用发烟硫酸磺化,所得磺酸型炭材料的酸密度是浓硫酸磺化的2倍,催化活性也相应地成倍增加.反应完毕过滤出催化剂后,在滤液中没有发现 SO3H,这说明以蔗糖为原料制备的磺酸型炭材料能重复使用,而且没有失活现象发生.以葡萄糖为原料制备的磺酸型炭材料被用于2,3-二甲基-2-丁烯的水合以及乙酸的酯化反应[2],并与浓H2SO4、铌酸等传统的酸性催化剂作了比较.结果表明,在2,3-二甲基-2-丁烯的水合反应中,相同的反应条件下,由浓H2SO4催化所得2,3-二甲基-2-丁醇的产率为4 4%,铌酸仅为0 4%,而磺酸型炭材料表现出较好的催化活性,产率为3%,若用发烟H2SO4磺化,所得炭材料的催化活性略优于浓H2SO4,产率达4 5%;在乙酸的酯化反应中,磺酸型炭材料依然表现出优越的催化活性,约为浓H2SO4活性的1/7,用发烟H2SO4磺化而得的炭材料的催化活性依然是用浓H2SO4磺化所得炭材料的2倍.由反应数据可知,炭化温度确实对所得炭材料的催化活性有很大的影响.当炭化温度小于723K,所得的炭材料的催化活性较好;随着炭化温度的升高,炭材料的活性降低,所以一般选择673K的炭化温度.但是上述材料均为无定形结构,且比表面积较小,仅2m2/g.较小的比表面积不利于有机分子的扩散,导致反应物分子不能与酸性位很好的接触,使反应速度变慢.为了解决上述磺酸型炭材料的缺点,人们将此方法应用于规整中孔炭分子筛.3 中孔炭分子筛中孔炭分子筛分别继承了中孔硅分子筛孔道结构和炭材料稳定性的优点,而在催化、吸附、传感器、电容器等领域受到广泛的关注[34-37].2007年,Bu dar i n等[38]以玉米淀粉为原料,在水中形成凝胶后再结晶,为了防止结构的坍塌而采用低表面张力的溶剂(一般为乙醇)交换出材料中的水,干燥后得到膨胀的中孔淀粉.最后,在中孔玉米淀粉中掺杂有机酸(如对甲苯磺酸等)后,在真空下炭化,制得具有中孔结构的磺酸型炭材料.炭化温度不同,所得的中孔炭材料的结构也不同.炭化温度由423K升至923K,所得的炭材料从无定形结构变为石墨结构,表面也由亲水性变为疏水性.该材料虽然具有较大的比表面积(180m2/g),平均孔径为6nm,但是它并非是有序的中孔结构,材料中还含有一定量的孔径在0 5nm左右的微孔,而且其制备方法较为复杂,玉米淀粉的选取也较为苛刻.所以,Bossaert 等[29]和W ang等[39]直接在中孔炭分子筛C MK-3和C MK-5上,分别采用气相沉积法和表面化学改性法,制备了孔径分布均匀、结构有序的磺酸型中孔炭分子筛H SO3-C MK-3和H SO3-C MK-5.其中,W ang等[39]在制备H SO3-C MK-5时,是直接以高温炭化而得的中孔炭分子筛C MK-5为基底,在其表面用次磷酸还原重氮盐(4-苯基-重氮磺酸盐),引入磺酸根.C MK-5磺化后,其孔径、比表面积和孔容均有所减小,分别从4 6n m、1436m2/ g和2 0c m3/g降至3 3nm、843m2/g和0 82c m3/g.由其电子显微镜图可知,磺化并没有改变C MK-5的六边形结构,仅X射线衍射峰强度较C MK 5有所减小.由酸碱滴定可知,H SO3 C MK 5的酸量为(1 93 0 08)mm o l/g(H+),远远高于磺酸型中孔分子筛的酸量.C MK 5是疏水性材料,而107第6期曾昌凤等:磺酸型固体酸催化剂的制备与应用研究进展H SO3 C MK 5由于含有亲水性的H SO3基团,变为亲水性材料,所以它可用于疏水和亲水的反应体系.该H SO3 C MK 5被用于双酚A的催化合成反应,酚到双酚A的最大转换率为28 6%,在其他的一些酸催化反应中也显示出较高的催化活性和较强的稳定性,回收重复反应5次后,没有发生明显的失活现象.传统制备中孔炭分子筛的方法一般采用高温炭化,这有助于得到较为坚硬的中孔结构,但是高温炭化使所得炭材料上缺少有机基团.而X i n g等[40]通过控制炭化温度,得到富含羟基等有机基团的中孔炭分子筛C MK-3,X射线衍射表征结果显示,炭化温度对所得中孔炭材料的结构有较大的影响:在炭化温度高于773K时,所得炭材料在小角度有明显X射线衍射峰,说明在较低的炭化温度下,所得的中孔炭分子筛也具有规整的中孔结构.炭化温度既影响了中孔炭分子筛C MK-3的结构,也影响了最终磺酸型中孔炭分子筛的酸强度.不同炭化温度下所得试样的红外光谱表征结果表明,在823K炭化的C MK-3上有大量的有机基团存在.该试样经磺化后有明显的S O振动峰,其酸量为1 2mm o l/g;而在1173K炭化的C MK-3在磺化后没有发现S O振动峰,说明1173K的高温已经使试样完全炭化,所以无法引入磺酸根.优化的制备H SO3-C MK-3磺酸型中孔炭分子筛的条件为823K炭化和气相磺化法引入磺酸根.所制备的试样经核磁共振和N2吸附等表征显示,磺化并没有改变中孔炭分子筛的结构,但磺化后的C MK-3的比表面积、孔容和孔径均有所减小.将其用于催化环己酮肟经Beckm ann重排制备己内酰胺的反应,环己酮肟的转化率达91%,己内酰胺的选择性为84%,而且仅需通过简单的活化处理,就可恢复其催化活性,且能重复反应多次.同样,磺酸型中孔炭分子筛的催化活性来源于其上的 SO3H.但是过低的炭化温度致使所得中孔炭分子筛的强度减弱,炭层较松散,而过高的炭化温度致使炭材料上的有机基团全部被热解,难以引入磺酸根,所以想要得到坚硬而且酸量高的磺酸型中孔炭分子筛,需要改变制备方法.为此,Liu 等[41]采用浸渍法先将蔗糖负载在MC M-48的表面,再经半炭化和磺化,制得酸性C-MC M-48复合催化材料,在中孔硅分子筛表面负载一层炭有利于提高其水热稳定性.4 炭纳米管炭纳米管作为一种结构新颖的材料也被广泛应用制备催化剂的研究.如有研究以H2SO4-HNO3混合溶液对炭纳米管进行化学改性,使其表面产生羧酸基团[42],得到具有酸性的催化材料.但由于炭纳米管表面的酸性基团很少,因此,通过表面改性以增加酸性基团密度的研究还需深入.对于磺酸型炭纳米管的制备,是先将炭纳米管在1m o l/g的HNO3中于333K氧化3h,再于393K下干燥得到酸化的炭纳米管.之后,将其在大量浓硫酸中,于523K下磺化18h,冷却水洗过滤后,得到了酸量为1 90mm o l/g的磺酸型炭纳米管[43].在此过程中炭纳米管没有被浓硫酸氧化.将这种新型的质子酸催化剂用于乙酸甲酯的催化,并与硫酸处理的活性炭、硝酸处理的炭纳米管作比较,结果发现,磺酸型炭纳米管的催化活性明显优于其他两种催化剂,为它们的3倍.而且在重复使用3次后,其催化活性依然保持不变,完全可以代替传统的液体酸.5 结论与展望从以上的介绍可以看出,磺酸型固体酸催化材料由于其催化性能与传统的硫酸相当,有望成为环境友好型的替代催化剂,所以,十多年来,其研究十分活跃.总的来说,通过选择适宜的载体、制备方法和磺化措施可以调节磺酸型固体酸的比表面积、酸量和表面亲/疏水性质,从而调变其催化性能.不过,还存在以下一些问题需要进一步研究1)在载体的选择方面,中孔硅分子筛由于其固有的水热稳定性方面的弱点和表面羟基数量较少的问题,作为磺酸型固体酸的制备还需在这两个方面进行改性;无定型炭和炭纳米管比表面积还有待提高;中孔炭分子筛的价格较高,需要开发新方法以降低其成本.2)在制备方法方面,制备过程中要采用昂贵的巯基烷氧基硅烷,有些制备步骤繁多,还需要进一步开发新的制备技术.3)上述制备得到的磺酸型固体酸的催化稳定性及重复性还有待提高,特别是在一些催化反应中结构容易塌陷、酸性基团容易脱落等;其中,水中的稳定性尤为重要,因为许多反应如酯化、水解等都会有水产生,而上述研究中的许多磺酸型固体酸的结构在沸水中容易塌陷,而有关催化剂失活再生的问题还少有研究.4)寻找适宜这种磺酸型催化材料反应的工作还有待加强,因为目前这些催化剂108南 京 工 业 大 学 学 报 (自然科学版)第31卷参与的反应体系大多是如酯化和醚化等有水产生的反应.5)磺酸型固体酸还具有良好的离子交换和质子传导性能,这方面的研究还非常缺乏.这些都是使其实现工业化所需进行的研究方向.目前有研究表明,在中孔硅分子筛表面负载一层炭有利于提高其水热稳定性[41],也许将中孔硅分子筛与炭材料相结合制备磺酸型固体酸可能会成为一个研究方向.参考文献:[1] H ara M,Yos h i da T,Takagak i T,et a.l A car b on m aterial as astrong p rot on i c aci d[J].Ange w Che m In t Ed,2004,43(22):2955-2958.[2] Ok a mu raM,Takagak i A,Toda M,et a.l Aci d catal yzed reacti onson flexible pol ycycli c aro m ati c carbon i n a m orphous carbon[J].Che m M ater,2006,18(13):3039-3045.[3] Cor m a A.Inorgan ic solid aci ds and their use i n aci d catal yzed hyd rocarbon reacti ons[J].Che m Rev,1995,95(3):559-614.[4] H aller G.Ne w catal yti c concepts fro m ne w m ateri als:understandi ng catal ysis fro m a fundamen tal perspective,past,presen t,andf u t u re[J].J C at a,l2003,216(1/2):12-22.[5] K res ge C T,Leono w i czM E,Roth W J,et a.l Ord ered m es oporousm olecu l ar s i eves syn t hesized by a li qu i d cryst a l te m p l ate m echan is m[J].N at u re,1992,359:710-712.[6] M argolese D,C hristiansen S C,Chm el k a B F,et a.l D irect syn t hes es of ordered SBA 15m es oporous silica contai n i ng su lf on ic acidgroups[J].Che m M ater,2000,12(8):2448-2450.[7] Isabel D,C arlos M A,Fed ericoM,et a.l Co m b i ned al ky l and s u lf on i c aci d f uncti onali zati on ofM CM 41 t ype silica,esteri fi cati onof glycero l w i th f atty aci ds:esteri fi cati on of glycerol w it h fattyaci d s[J].J Cata,l2000,193(2):295-302.[8] M erci er L,Pi nnavaia T J.Access i n m esoporous materi als:advantages of a un i for m pore stru cture i n t he des i gn of a heavy m etalion ads orben t f or environm en t al re m ed i ation[J].Adv M ater,1997,9(6):500-503.[9] BossaertW D,D evos D E,van Rh ij n W M,et a.l M esoporou s s u lf on i c aci ds as selecti ve heterogen eous catal ysts for t he syn t hesisofm on ogl yceri des[J].J C at a,l1999,182(1):156-164. [10] van Rh ij n W M,Devos D E,S el s B F,et a.l A n e w fa m ily of mes oporous m olecu l ar si eves prepared w ith li qu i d crystal te m plat es[J].C he m Co mmun,1998(3):317-318.[11] 陈静,韩梅,孙蕊,等.卞基磺酸接枝M C M-41介孔分子筛的合成与表征[J].无机化学学报,2006,22(9):1568-1572.Chen J i ng,H an M e,i Sun Ru,i et a.l Syn t hesis and characterizati onof b enz y l s u l phonic acid f unctionalizedM C M 41[J].C h i n J InorgChe m,2006,22(9):1568-1572.[12] Dufaud V,DavisM E.Design of heterogen eou s catal ysts vi a mu ltip le acti ve site pos iti oning i n organ ic i n organ ic hybri d m ateri als[J].J Am Che m Soc,2003,125(31):9403-9413.[13] M barak a I K,Shank s B H.D es i gn of mu ltifuncti on ali zed m esoporous sili cas for es t erification of fatt y aci d[J].J C at a,l2005,229(2):365-373.[14] Para m badath S,Ch i da m bara m M,S i ngh A P.Synthes i s,ch aract eri zation and catal ytic prop erties of b enzyl sulph on i c aci d f un cti onalized Zr T M S catalysts[J].C atal Tod ay,2004,97(4):233-240.[15] Jaen icke S,C huah G K,Li n X H,et a.l O rgan ic i norgan i c hyb ri dcatal ysts for aci d and base cat alyzed reacti on s[J].M icroporM esoporM at er,2000,35:143-153.[16] D i az I,M o'h i no F,Perez Pari en t e J.et a.l S ynthesis,characteri zati on and catal ytic activit y of M CM 41 t yp e m es oporous s ilicasf uncti onalized w it h s u lf onic aci d[J].App l C atal A:Gen,2001,205(1/2):19-30.[17] M baraka IK,R adu D R,L i n V C,et a.l O rganosu lf on ic aci d functi ona li zed m es oporous sili cas for the esterifi cati on of f atty aci d[J].J Cata,l2003,219(2):329-336.[18] B runel D,B l an c A C,Gal arneau A,et a.l Ne w trends i n t he des i gn of s upported catal ysts on m es oporous silicas and their app licati ons i n fi ne che m icals[J].C atal Tod ay,2002,73(1/2):139-152.[19] Das D,Lee J F,Ch eng S.Selecti ve s ynthesis of b i sph enol A overm esoporou sM CM s ilica catal ysts functi onaliz ed w ith su lf on ic aci dgroups[J].J Cata,l2004,223(1):152-160.[20] 黄艳蕾,陈扬英,刘秀梅,等.苯基改性的中孔分子筛SBA 15的合成及其磺化[J].催化学报,2004,25(5):413-416H uang Yan l e,i Chen Yangyi ng,L i u X i u m e,i et a.l Synthesis andsulfonati on of phenyl m od ifi ed SBA 15m es oporous m ol ecu l ars i eve[J].Ch i n J C at a,l2004,25(5):413-416.[21] D i az I,Pariente E,Sastre.Syn t h es i s ofM C M 41materi als functi ona li sed w i th dial kylsilane group s and t he i r cat alytic acti vity i nthe esterifi cati on of gl ycerol w ith fatty aci ds[J].App l C atal A:Gen,2003,242(1):161-169.[22] 袁兴东,沈健,李国辉,等.表面含磺酸基的介孔分子筛催化剂SBA-15-SO3H的制备及其催化性能[J].高等学校化学学报,2002,23(12):2332-2335.Yuan X i ngdong,Shen Ji an,L iGuohu,i et a.l Preparari on of h i gh lyacti ve esterificati on catal yst SBA 15m esoporou s s ilica functi onali zed w it h s u lfon i c aci d group[J].Ch e m J Ch i n U n i v,2002,23(12):2332-2335.[23] 袁兴东,沈健,李国辉,等.表面含磺酸基的介孔分子筛SBA15 SO3H的直接合成[J].催化学报,2003,24(2):83-860.Yuan X i ngdong,Shen Jian,L i Guohu,i et a.l D i rect s yn t h es i s ofSBA 15m esoporous sili ca f unctionalized w it h s u lfon i c acid groups[J].Ch i n J C ata,l2003,24(2):83-86.[24] 高国华,周文娟,何鸣元.磺酸基功能化M C M-41有机-无机杂化材料的合成与表征[J].催化学报,2005,26(5):357-359.Gao Guohua,Zh ouW en j u an,H eM i ngyuan.Synthes i s and c h aracteri zation ofM CM 41 SO3H organ ic i norgan ic hybri ds[J].Ch i n JC at a,l2005,26(5):357-359.109第6期曾昌凤等:磺酸型固体酸催化剂的制备与应用研究进展。
黄连木籽油制备生物柴油固体碱催化剂研究
![黄连木籽油制备生物柴油固体碱催化剂研究](https://img.taocdn.com/s3/m/38712643cf84b9d528ea7a77.png)
中 国粮 油 学 报
J u n lo e C ie eC rasa d O l Aso it n o r a ft hn s ee l n i scai h s o
Vo . 6, 1 2 No. 1 1
第2 6卷第 1 1期
NO . 01 V2 1
1 材 料 与方 法
1 1 试 剂 与仪器 .
物油脂与短链醇经酯交 换反应得到 的液体燃料 , 其 成分为多种脂 肪酸 甲酯。由于 原料具 有 可再生 性 能、 资源丰富 、 无污染 、 可生物降解 , 使其具有与优质 石 油柴 油相 近 的燃 烧 性 能 , 放 性 能 大 大 优 于 石 化 排 柴油 , 是石化柴油 的良好替代燃料 , 可在内燃机 中直 接使用 。 卜 相对 于以棉籽、 油菜 等油料作 物为原料 的生物 柴 油生产 , 本生 物 柴 油开 发 以山地 资 源 为 对 象 , 木 不 与粮争地 , 与人争粮争食用油 , 不 不需要 每年种植 , 节省劳力 。黄连木为漆树科 落叶乔木 , 土壤要 求 对 不严 , 耐干旱瘠薄 , 喜光 , 不耐严寒 , 是一种优 良木本
油 料树种 。黄 连 木 在 我 国 分 布 广 泛 , 种 籽 含 油 率 其 达 4 % 以上 , 黄 连 木 种 籽 生 产 的 生 物 柴 油 是 清 洁 0 用 的可再生 能 源 , 优质 的石 油柴 油代 用 品 是 。 目前 生 物 柴 油 合 成 方 法 主 要 为 均 相 酯 交 换 法 ,
收稿 日期 :0 0—1 2 2 1 2— 2 作 者简介 : 晓平 , ,95年出生 , 邢 女 17 博士 , 副用浸渍法。取 1 g 0gM O溶于 6 0g
去 离 子 水 中 , 入 一 定 量 的 LN 在 室 温 下 搅 拌 加 iO
固体碱催化剂的研究进展
![固体碱催化剂的研究进展](https://img.taocdn.com/s3/m/4e17448802d276a200292e28.png)
( o eeo hmir n i c n e We a eces nvr t, h a x We a 10 0, hn ) C l g f e syadLf S i c , i nT ah r U i sy S a ni i n7 4 0 C ia l C t e e n ei n
摘 要 : 综述了固体碱的种类, 选择一些以固体碱作为催化剂的反应来说明固体碱催化剂的应用, 着重介绍了固体碱催化剂在
有机反应 中的应用 , 并做简短 的论述 , 进而对 固体碱催化剂 的研究作 了展望 。
关键 词 : 固体碱催化剂; 有机固体碱 ; 无机固体碱
中 图分类 号 :67 0 4
催 化 科 学 在 国 民 经 济 中 具有 十 分 重 要 的 意 义 。每 种 新 催 化
剂和新催 化工艺的研 制成 功都会 引起包 括化工 、 油加工 等重 石 大工业在内的生产工艺上的改革 , 生产 成本可 以大幅度 降低 , 并 为改变人类生活习惯提供一 系列新产 品和新 材料 。其 中对 固体 碱的应用最为突出。固体碱 就是 指能够化学 吸附酸 的固体或能 使酸性指示剂变色 的 固体 。 目前 固体 碱大 多制备 复 杂、 本 昂 成 贵 、 度 较 差 、 易 被 大 气 中 的 C :H O 等 杂 质 污 染 , 比表 面 强 极 O、 且 积小 , 因此众多学者 都正 在积极地 研究 如何简 单地制 备成 本低 廉、 强度高 、 易被 杂质 污染 的固体碱。 目前新 的 固体碱 材料不 不 断的被开发 ,固体碱催化剂 的应用也 将越来 越广泛 。随着表 面 科学和多相催 化的进 一步发 展 , 表面科 学和多 相催化 的结 合使 包 括 环境 友好 催 化 在 内 的等 众 多 研 究 应 用 越 来 越 多 地 被 人 们 重 视 , 固体碱催化 剂作 为环境 友好 催化 剂也 成 为研究 的热 点。 而 本 文通过对 固体碱种类及其在应 用中的反应机 理进行 了理论性 的 阐 述 , 以总 结 分 析 , 而 对 固体 碱 未 来 发 展 做 了展 望 。 加 进
耐水性固体酸﹑碱催化剂的应用
![耐水性固体酸﹑碱催化剂的应用](https://img.taocdn.com/s3/m/338b46dd5022aaea998f0f39.png)
• 环氧丙烷与脂肪醇加成反应的催化剂有酸、 碱、某些盐类和氧化物,其中主要是酸、 碱催化剂。碱性催化剂的特点是反应较平 稳,副产物少,产物主要是伯醚;而酸性 催化剂活性较高,但易生成副产物,产物 中仲醚含量甚高,因此选择合适的催化剂 非常关键。
固体酸催化剂
• 由于液体酸催化剂存在一定的腐蚀性,且产品的 后处理较为麻烦,人们又开发了合成丙二醇醚的固 体酸催化剂。用固体酸催化剂催化合成丙二醇醚 反应具有活性高、产物分子量分布窄、流程简单、 催化剂与产物易于分离等优点,因此受到世界各 国研究者的青睐。从已发表的文献和专利来看, 用于催化合成丙二醇醚的固体酸催化剂主要有离 子交换粘土、阳离子交换树脂、改性氧化铝和沸 石分子筛等。
• 按催化剂作用机理分类 1.酸-碱型催化剂 2.氧化-还原型催化剂 3.配合型催化剂 其他分类方法:催化剂的元素及化合态、 催化剂来源、催化单元反应、工业类型等 等。
固体酸碱定义
• • • • • • Brönsted酸碱质子理论定义 固体酸是指一类能够给出质子的固体。 固体碱是指一类能够接受质子的固体。 Lewis酸碱电子理论定义 固体酸是指一类能够接受电子对的固体。 固体碱是指一类能够给出电子对的固体。
生物柴油生产原料路线大概分为四类
生物柴油生产原料 应用国家或地区
菜籽油 欧盟国家
大豆油
废弃油脂 含油作物的种子
美国
中国 东南亚地区
根据欧盟委员会资料统计,2006年底全球生物柴油生产 能力已达到1000万吨,生物柴油产量超过600万吨。 2006年底我国有25家生物柴油生产企业,生产能力达到 120万吨,生产原料多以废餐饮油和食品加工企业回收的 废油为主。
固体酸的分类
序 号
名 称
举 例
氧化钙固体碱催化剂的制备及在制备生物柴油中的应用
![氧化钙固体碱催化剂的制备及在制备生物柴油中的应用](https://img.taocdn.com/s3/m/a8f227b9dc3383c4bb4cf7ec4afe04a1b071b0f9.png)
氧化钙固体碱催化剂的制备及在制备生物柴油中的应用何理;周长行【摘要】实验研究了碳酸钙、氢氧化钙和氧化钙在催化大豆油和甲醇酯交换制备生物柴油的催化活性,并以轻质碳酸钙为原料,经过高温焙烧制备了氧化钙固体碱催化剂,考察了焙烧温度和焙烧时间对催化剂催化活性高低的影响.选取活性最高的氧化钙催化大豆油和甲醇制备生物柴油,利用气相色谱仪检测生成物中甲酯的含量来计算生物柴油的收率,结果表明:催化剂用量为大豆油质量的3.5%、醇油摩尔比为10∶1、回流时间为3.5h,生物柴油收率可高达97.3%.通过实验进一步证明:在同一反应条件下短链醇的直链越短,支链越少,生物柴油收率越高.【期刊名称】《科学技术与工程》【年(卷),期】2014(014)006【总页数】4页(P234-236,246)【关键词】氧化钙;生物柴油;轻质碳酸钙;固体碱催化剂【作者】何理;周长行【作者单位】北京石油化工工程有限公司,北京100070;山东鲁西兽药股份有限公司,德州251100【正文语种】中文【中图分类】TQ645.8生物柴油具有可再生、可降解、无毒、闪点高、十六烷值高、环境友好等优点,是由动植物油脂与短链醇发生酯交换反应而制成的绿色燃料[1]。
目前限制生物柴油工业化生产的瓶颈是寻找具有高催化活性的催化剂,且价廉易得。
研究表明[2]碱土金属氧化物,尤其是氧化钙[3—5]在催化酯交换反应中表现极高的催化活性,但因制备原材料及方法的不同,得到的氧化钙催化活性存在明显的差距,而分析纯的氧化钙又比较昂贵,以致难以实现其用于生物柴油的工业化生产。
本文考察了钙基催化剂的酯交换催化活性,并以廉价的轻质碳酸钙为原料制备出高催化活性的氧化钙固体碱催化剂,并将其用于催化制备生物柴油,实验优化出了制备生物柴油的最佳反应条件,还进一步研究了在制备生物柴油中选取不同短链醇作为反应物时对产品收率的影响。
1 实验部分1.1 试剂与仪器轻质碳酸钙(工业级);大豆油(食用级);碳酸钙、氢氧化钙、氧化钙、甲醇、乙醇、丙醇、异丙醇、正丁醇、月桂酸乙酯均为分析纯;FULI9790气相色谱仪(浙江福立分析仪器厂);SX2.5—10箱式电阻炉(河北黄骅市综合电器厂)。
固体碱催化制备生物柴油的研究进展
![固体碱催化制备生物柴油的研究进展](https://img.taocdn.com/s3/m/91469662a98271fe910ef952.png)
摘要 综述 了固体 碱催 化 剂的 种类 及其 特点 , 论 了 固体碱 催 化 剂在 油脂 酯 交换反 应 中的 应 用。 讨 0 1— 6 1 2 0 )5 0 0 5 0 5 7 6 1 (0 8 0 — 2 0 — 3 关键词 生物柴 油 ; 酯交换 反应 ; 固体碱催 化 剂 中图分 类号 ¥ 1 . 2 62 文献标 识码 A 文章编 号
Re e r h o r s n t e ar tono o i e o c in ldBa eCa a y t s a c Pr g e so hePr p a i fBi d e l s Pr du to bySoi s t l s
S ONG ami t l ( yL brtr f n w beE eg , nsr giutr eP o l Re u l f hn , olg c a ia Hu - ne a Ke a oaoyo e a l n ry Miit o A rcl eo t e peS p bi o ia C l eo Me h ncl Re yf u f h c C e f
Ke ywor Bidis lTrn e tr c to : ldb s aay t ds o e e; a s sei ain Soi a ec tls
目前 , 制 备 生 物柴 油过 程 中主要 通 过 酯 交 换 反 应制 在
2 制 备生物 柴 油 的固体 碱催 化剂 研 究进 展 自 Gyl i 等 r ec g w z 通过 对 菜 籽 油 甲酯 化反 应 的研 究 , 发 现 M O和 C O能够 在 菜 籽 油 的 酯交 换 反 应 中起 到 多 相碱 g a 催 化 的 作用 后 , 相继 出现 了 水 滑石 、 性 阴 离 子交 换 树脂 、 碱 负载型 固体 碱 等作 为多 相催 化 剂用 于 油脂 酯交 换 反应 的报
固体碱催化剂及在有机合成中催化应用研究
![固体碱催化剂及在有机合成中催化应用研究](https://img.taocdn.com/s3/m/5653dcc1dc88d0d233d4b14e852458fb760b385f.png)
固体碱催化剂及在有机合成中催化应用研究下载温馨提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
本文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注。
Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!固体碱催化剂在有机合成中扮演着关键角色,其独特的化学性质和广泛的应用领域引起了广泛关注。
用固体碱催化Michael加成反应的研究
![用固体碱催化Michael加成反应的研究](https://img.taocdn.com/s3/m/76d1b2d8195f312b3169a5de.png)
收稿日期:2002212213;修回日期:2003205215基金项目:江西省自然科学基金资助项目(9920009)文章编号:100421656(2003)0620847202用固体碱催化Michael 加成反应的研究徐景士,王红明,陈慧宗(江西师范大学化学学院,江西南昌 330027)关键词:固体碱;催化;M ichael 反应中图分类号:O62117 文献标识码:A 用固体碱催化Michael 加成反应已有报道[1]。
本文报道用K 2O/γ2Al 2O 3和用微波法制备的K F/γ2Al 2O 3、MgO/γ2Al 2O 3、MgO/NaY 作为催化剂催化某些Michael 反应。
产物的编号如下:CH 3C O CH CH CH 3CH 2CHOC O OC 2H 5 CH 3COCH CH CH 2CNC OOC 2H 5 CH 2CH 2CNCH 2CN A B C1 实验部分将所用γ2Al 2O 3、NaY 分子筛分别研磨并过(100目)筛,与干燥的MgO 、K F 按一定比例混合研磨混合均匀,分别置于微波炉中加热20min 。
一定量的K NO 3与上述粉末混合研磨均匀,置于马弗炉中在737K 焙烧3h 。
100ml 的三颈烧瓶中加入8ml 无水乙醇和1g 催化剂,按等物质的量加入两种反应物,反应温度80℃,一定时刻取样用气相色谱分析(FI D 检测,归一法定量)。
产物B 的分离:反应一定时间后,过滤,取滤液在常压下蒸干2/3的溶液后在余液中加入足量水,有大量晶体析出,静置过夜,过滤,晶体用无水乙醇重结晶。
产物归属如下:A :(N o.11708)黄色固体,m.p.93~95℃,IR (K Br )ν:296014,293118,287511(C 2H ),173213,170914,168014(C =O ),145517,133712(C 2H ).B :(N o.11076)白色晶体,m.p.106~108℃,IR (K Br )ν:299014,296313,283512(C 2H ),225011(C ≡N ),173713,170515(C =O ),146412,145114(CH 3),137016(CH 3).C :(N o.5187)无色液体,IR (K Br )ν:297814,293518,287715(C 2H ),225117(C ≡N ),144613,137917(C 2H ).2 结果与讨论211 Michael 催化反应表1为K 2O/γ2Al 2O 3、K F/γ2Al 2O 3和MgO/γ2Al 2O 3催化Michael 反应的结果,产率均达85%以上,特别是乙酰乙酸乙酯与巴豆醛反应生成产物(A ),产率高达96%。
分子筛固体碱催化制备生物柴油的研究进展
![分子筛固体碱催化制备生物柴油的研究进展](https://img.taocdn.com/s3/m/e0262b0da6c30c2259019e4d.png)
工业应用前景。其 中, 分子筛 固体碱催化剂因原料
来源充足 、 成本低 、 制备工艺简单 、 催化性 能较好等 特点, 成为当前研究的热点。 分子筛是一种硅铝酸盐的晶体 , 属于固体酸类 , 不适 用 于碱性催 化 反 应 , 但 分 子 筛 具 有 明确 的孔 腔
分布、 高 比表面 积和 良好 的热稳 定 性 , 可 以作 为载 体
a l y s t s or f b i o di e s e l we r e p r e s e nt e d. Ke y wo r d s: b i o d i e s e l ;t r a n s e s t e r i ic f a t i o n;mo l e c u l a r s i e v e s o l i d b a s e
生物 柴油是 环境 友好 型可 再生 能源 , 目前 , 二 [ 业 上 主要 采用 均相 催 化法 制 备 , 但 存 在 着 反 应 完 成后 催 化剂 分离 困难 , 产物需 要 水洗 , 产 生大量 废 水 的问
格 中的 N a 和 C l 一 全 部 换 成 笼 , 并 用 y笼 连接 起
i n c l u d i n g MC M- 4 1 , S B A 一 1 5, e t c . m o d i i f e d m i c r o p o r o u s a n d( A, X a n d Y)t y p e m e s o p o r o u s mo l e c u l a r
新型固体碱催化剂在生物柴油合成中的应用分析
![新型固体碱催化剂在生物柴油合成中的应用分析](https://img.taocdn.com/s3/m/f6f953002bf90242a8956bec0975f46526d3a774.png)
2021| 02科研开发当代化工研究Modern Chemical R esearch-i- J J新型固体破催化剂在生物柴油合成中的应用分析*王屹然祝媛媛*(湖北大学知行学院生物与化学工程学院湖北430000)搞要:由于人类行为的不节制,造成了目前世界共享资源紧缺,环境污染问题越来越严重,世界上的各个国家开始关注可再生的清洁材料,尤其是生物柴油,如何研究出来简单、有效并且低成本的固体碱催化剂是目前各国关注的重点。
本文主要研究三种不同的固体碱,利 用大豆油催化去合成生物柴油,与此同时,还可以通过脂肪酸曱酯和乙二醇单曱酸之间的反应合成新型的生物柴油。
分别通过研磨配置ZnO/Ca(OH)2/KF催化剂;使用研磨法配置纳米级的NaSiO/CaO/KF催化剂;通过使用浸渍法配置KF/MMT催化剂,并用蒙拓土作为载体,主 要用作催化大豆的油醋交换去制作生物柴油•关键词:固体碱催化剂;生物柴油;应用分析中图分类TQ 文献标识码:AApplication of New Solid Base Catalyst in Biodiesel SynthesisWang Yiran,Zhu Yuanyuan*(School of Biological and Chemical Engineering,Zhixing College,Hubei University,Hubei,430000) Abstract'. Due to the uncontrolled human behavior, the world's shared resources are in short supply, and the problem of environmental pollution is becoming more and more serious. Countries in the world begin to p ay attention to renewable clean materials, especially biodiesel How to develop simple, effective and low-cost solid base catalyst is the f ocus of a ttention of a ll countries. In this p aper, three kinds o f s olid bases were used to catalyze the synthesis of b iodiesel. At the same time, the reaction between f atty acid m ethyl ester and ethylene g lycol monomethyl ether can also be used to synthesize new biodiesel. ZnO / Ca(OH)2 /K F catalyst was prepared by grinding; nanoscale NaSi〇3 / CaO /K F catalyst was p repared by grinding method; KF /M MT catalyst was prepared by impregnation method, and montmorillonite was used as support to catalyze the transesterification of soybean oil to produce biodiesel.Key words i solid base catalyst;biodiesel-, application analysis21世纪以来,我国科技日益发达,各行各业都在稳定健康 发展,其中最重要的能源产业更是不可忽视。
工业催化剂作用原理—固体酸碱催化剂
![工业催化剂作用原理—固体酸碱催化剂](https://img.taocdn.com/s3/m/5c2aa041a7c30c22590102020740be1e650ecc26.png)
工业催化剂作用原理—固体酸碱催化剂工业催化剂是一种能够加速化学反应速率,并且能够在反应结束后原封不动地保留在反应系统中的物质,其作用原理多种多样。
其中,固体酸碱催化剂是一类重要的催化剂,在催化反应中发挥着重要的作用。
其作用原理涉及酸碱理论以及固体催化剂表面反应活性等方面的知识。
固体酸催化剂的作用原理主要涉及酸的质子(H+)捐赠能力。
在催化反应中,酸性固体酸催化剂能够将反应基质中的酸性氢质子化,形成带正电荷的离子。
这个离子会在催化剂表面与反应物进行相互作用并形成中间体,从而提高反应速率。
例如,氧化钒(V)可以从硫酸中脱水剥离出H+,然后与烷烃分子发生反应,生成碳碳双键。
与之相对应的是固体碱催化剂的作用原理。
碱性固体碱催化剂能够从溶液中吸收质子(H+),形成负电荷的离子。
这些离子在与酸性物质反应时能够中和酸性环境,从而增加反应速率。
例如,氢氧化钠可以中和酸性物质中的质子,使得反应物质变得更易于反应。
固体酸碱催化剂的催化作用可以分为两个步骤:吸附和反应。
在催化过程中,反应物分子首先被催化剂表面吸附,并且与表面原子或离子发生相互作用。
吸附可以分为物理吸附和化学吸附两种形式。
在物理吸附中,反应物与催化剂之间的相互作用主要是吸引力力,吸附是可逆的。
在化学吸附中,反应物与催化剂之间形成新的化学键,吸附是不可逆的。
吸附后,反应物分子变得更加容易发生化学反应。
反应发生后,产物分子从催化剂表面解吸释放出来。
此外,固体酸碱催化剂的催化活性与其表面性质相关。
催化剂表面的活性位点可以提供吸附反应物的位置,并且能够提供活化能较低的路径,使得反应能够更快进行。
这些活性位点可以是表面缺陷、孔道结构、拓扑位点等。
总而言之,固体酸碱催化剂的作用原理涉及酸碱理论以及固体催化剂表面反应活性等方面的知识。
通过吸附和反应两个步骤,酸性催化剂可以质子化、碱性催化剂可以质子化,从而提高反应速率。
此外,催化剂表面的活性位点也对催化性能起着关键作用。
绿色化工催化剂研究进展
![绿色化工催化剂研究进展](https://img.taocdn.com/s3/m/1e1ea5cac281e53a5902ff22.png)
绿色化学化工催化剂研究进展系别:专业名称:学生姓名:学号:指导教师姓名:完成日期 2010年10月17日绿色化学化工催化剂研究进展摘要:对绿色化工中催化剂的研究进展进行了综合叙述,主要介绍了固体酸催化剂、固体碱催化剂和金属催化剂的研究现状,并对其应用和发展前景作了总结和评述.关键词:绿色化工催化剂;同体酸催化剂;同体碱催化剂;金属催化剂Advance in Green Chcmistry CatalystAbstract:Advances in research and development of new-calalyst were reviewed in this paper Researches in solid acid catalyst 、solid base catalyst and metal catalyst and their prospect of application were discussed.Key words: green chemistry catalyst; solid acid catalyst ;solid base catalyst;metal catalyst目录1引言 (1)2 固体酸催化剂的研究进展 (1)2.1金属氧化物催化剂 (1)2.2金属盐催化剂 (1)2.3分子筛 (1)2.4杂多酸催化剂 (2)3 固体碱催化剂的研究进展 (3)4金属催化剂的研究进展 (3)5 结语 (4)参考文献 (4)1引言随着近年地球环境的不断恶化,世界各国日益重视可持续发展战略,绿色化学和化工将给化学工业和环境工程带来革命性变化,要实现环境友好的绿色化工,研究开发新的催化剂及催化方法成为当前关注的重要课题之一。
绿色化工催化剂主要包括固体酸催化剂、固体碱催化剂、金属催化剂等,这些催化剂不仅具有较高活性和选择性,而且催化剂和反应体系易于分离,新型绿色化工催化已成为实现化学工业从低污染向无污染方向转变的关键。
Al2 O3固体碱催化剂的应用及进展
![Al2 O3固体碱催化剂的应用及进展](https://img.taocdn.com/s3/m/e8c38e88ec3a87c24028c4d9.png)
Al2 O3固体碱催化剂的应用及进展摘要:概述了固体碱催化剂的分类和制备方法及其在催化反应中应用的最新进展,总结了近年来以三氧化二铝为载体的固体碱催化剂在工业中的应用,并对固体碱催化剂的发展及应用进行了展望。
关键词:固体碱;催化剂;三氧化二铝引言随着环保意识的加强以及绿色化学的发展,人们越来越重视环境友好的催化新工艺过程,固体酸碱代替液体酸碱在精细化工生产过程中的应用研究越来越广泛。
固体碱就是指能够化学吸附酸的固体或能使酸性指示剂变色的固体,与液体碱相比,固体碱具有几个突出优点:(1)可循环使用,环境友好,无腐蚀,避免使用极性溶剂或相转移剂;(2)高选择性,高催化活性,反应条件温和,产物易于分离;(3)可使反应工艺过程连续化,提高设备的生产能力;(4)可在高温甚至气相中反应。
在固体酸催化条件下,生成CO2的反应可继续进行,而一般情况下CO2会毒化催化剂;(5)固体碱催化剂在某些反应中还具有几何空间效应。
1.固体碱分类与制备方法1.1 分类固体碱[1]按照载体和活性位的性质不同,固体碱大体可分为有机固体碱,有机无机复合固体碱,以及无机固体碱,其中无机固体碱又可分为金属氧化物型和负载型。
目前负载型固体碱的载体主要有三氧化二铝和分子筛(沸石)两种。
固体碱作为催化剂具有反应条件温和、产物易分离、可循环使用等诸多优点,正发挥着越来越明显的优势,渴望成为新一代友好的催化材料。
其中,而以Al2O3为载体的固体碱由于具有制备简单,碱强度分布范围宽,热稳定性好等优点而受到广泛应用。
1.2 制备方法Al2O3固体碱的制备主要方法有:浸渍法,微波辐射法,浸渍-微波法,混捏法,热分解法,离子交换法等。
2.固体碱在工业上的应用2.1 石油工业中应用KF/Al2 O3催化剂由于其催化活性高,价格低廉,且易于保存被广泛应用于各类有机合成反应。
鲍德艳[2]等人采用浸渍法制备了KF/Al2 O3固体碱催化剂,并将其应用于大豆油与甲醇酯交换制备生物柴油的反应。
酯化反应的碱催化机制研究
![酯化反应的碱催化机制研究](https://img.taocdn.com/s3/m/bf83662659fafab069dc5022aaea998fcc2240b4.png)
酯化反应的碱催化机制研究酯化反应是一种重要的有机合成方法,广泛应用于化工、医药、食品等领域。
酯化反应通常需要使用催化剂来提高反应速率和产率,其中碱催化剂是最常用的类型之一。
本文将重点探讨酯化反应中碱催化的机制。
一、碱催化的背景和原理碱催化在酯化反应中起到了重要的作用。
酯化反应是一种酸碱催化的热力学控制反应,其中碱催化剂主要用于促进酸碱中间体的生成和水的中和。
碱催化剂能够与酸催化剂相互补充,提高反应速率和稳定性。
碱催化还可以在温和条件下进行,减少副反应的发生,并且催化剂可回收利用。
二、碱催化机制的研究进展碱催化机制的研究主要包括两个方面:催化剂类型和反应机理。
1. 催化剂类型常用的碱催化剂包括无机碱和有机碱。
无机碱催化剂主要是碱金属和碱土金属的氢氧化物或碳酸盐,如氢氧化钠、氢氧化钾、碳酸钠等。
有机碱催化剂包括吡啶、吡啶衍生物、季铵盐等。
不同的催化剂类型对反应速率和产率有一定影响,研究人员通过比较不同催化剂的性能和对比实验来确定最适合的催化剂类型。
2. 反应机理酯化反应的碱催化机理涉及酸碱中间体的生成和水的中和两个过程。
碱催化主要通过中性化酸(通常是羧酸)来提高反应速率。
其中,碱与羧酸反应生成的碱盐中间体是反应中间体,它能够辅助生成酯化物。
羧酸与碱反应生成的盐酸可以被水中和,从而抑制副反应的发生。
反应机理的研究需要运用理论计算、实验方法和表征技术,并结合实际应用中的调节参数进行验证。
三、碱催化反应条件的优化为了提高酯化反应的效率和产率,研究人员通常通过优化反应条件来实现。
以下是一些常见的反应条件优化方法:1. 催化剂用量催化剂的用量是影响反应速率和产率的关键因素之一。
过量的催化剂可能导致副反应的发生,而催化剂不足则会抑制反应的进行。
通过对比实验和理论计算,确定最佳的催化剂用量以实现高效的酯化反应。
2. 反应温度反应温度也是酯化反应中的重要参数。
过低的温度可能导致反应速率过慢,而过高的温度则可能引起副反应。
用于制备生物柴油的固体催化剂研究进展
![用于制备生物柴油的固体催化剂研究进展](https://img.taocdn.com/s3/m/e2f4230fde80d4d8d15a4fb4.png)
2 0 1 3年 9月
生 物 质 化 学 工 程
Bi o ma s s Ch e mi c a l En g i n e e r i ng
V o 1 . 4 7 No . 5 S e p .2 01 3
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 6 7 3 - 5 8 5 4 . 2 0 1 3 . 0 5 . 0 1 0
・
Hale Waihona Puke 综述 评论 — — 生物 质 能 源 ・
用 于 制 备 生 物 柴 油 的 固体 催 化 剂 研 究 进 展
司展, 蒋剑春 , 王 奎
( 中国林业科 学研 究院 林 产化 学工业研 究所 ;生物质化学利用 国家工程 实验 室; 国家林业局 林产化 学工程重点开放性 实验 室;江 苏省 生物质能 源与材料 重点实验 室 ,江苏 南京 2 1 0 0 4 2 )
N a n j i n g 2 1 0 0 4 2 , C h i n a )
Ab s t r a c t : T h e a r t i c l e b ie r l f y i n t r o d u c e s t h e b i o d i e s e l a n d i t s p r e p a r a t i o n me t h o d s ,w e a l s o ma i n l y r e v i e ws t h e a p p l i c a t i o n s o f s o l i d c a t a l y s t s or f b i o d i e s e l p r o d u c t i o n i n r e c e n t y e a r s .I n a d d i t i o n, t h e p a p e r h a s l o o k e d i n t o t h e f u t u r e o f t h e s o l i d c a t ly a s t s ,a s w e l 1 . Ke y wo r d s : b i o d i e s e l ; s o l i d a c i d c a t ly a s t ; s o l i d b a s e c a t a l y s t
无机固体碱催化剂的研究进展
![无机固体碱催化剂的研究进展](https://img.taocdn.com/s3/m/4a9134cbd5bbfd0a79567365.png)
OH,作为 自由电 子 的 中心¨ 。当 固体 的 碱 强度 函数 H。 2 ] ( 也称为 Ha mmet t 函数[ )大 于+2 3 ] 6时 ,此 固体则 称为 固 体超强碱 。所谓碱催化 就是指 :催化 剂参 与反应 过程 中 一 通过接受质子或给 出电子对作用 ,与反应物形 成活 泼的负 碳离子 中间化合物 ( 活化的主要方式) ,从而为进一步 的分 解或者合成产物起到催化作用 。 固体碱所具有的一般 特征 为 :使 酸性 指示 剂变色 ;酸
本 较 高 。而 无 机 固体 碱 催 化 剂 热 稳 定 性 好 ,制 备 简 单 、碱
主要是 酸性催化 剂 ,碱性催化 剂 的应 用却很 少 。这 是因 为 碱性催化剂还存在着 许多 不能满足 实际需要 的缺 点 ,如碱 性 的控制 ,活性 中心 的溶 水性 、易 中毒 、再生 困难 、使用 寿命短 、成本高等等 缺点 。不过 固体碱 性催化 剂所 具有 的
可持续发展 。近 2 O多年来 ,由于新 的现代化仪器分 析技术
的进 步 、新 催 化 材 料 的 出 现 、金 属 有 机 多 相 催 化 的 发 展 及
理论化学和计算机技 术 的应 用 ,对认识 催化作用 起 到了 巨 大 的推动 ,不断有新催化剂和催化技术 出现『 。 1 ] 固体催化剂具有 反应条 件温 和、催 化 活性高 、活性组 分可变 、使用温度 范 围宽 、制备 简单 、成本 低 、易 与产物 分离 、寿命长 、可重 复使用 、易再 生、催 化生 产 中对 产 品 和环境 污染小 、产物后处理简单 、且纯度高等优点 。
产 品 中 不 残 留催 化 剂 。所 以 ,对 碱 性 催 化 剂 的 研 究 一 直 很
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性 , 纯 ZO 相 比, 载 碱 土金 属 化 合 物 的 催 化 剂 与 r 负
样 品 的碱位 分布范 围较 宽 , 的 强 度 与数 量 都 有很 碱
() 2 阴离子 交换树 脂 。 ( )活 性 炭 1 7 K 热 处 理 或 用 N O、 H 3 13 N ”
Z C2 H C —C 2 n I一N 4 I O 活化 。 ( ) 属 氧 化 物 B O, O, u B O, r 4 金 e Mg C O, a SO,
随着 世界 环保 意识 的增 强和 绿色化 学 的持续发 展 , 们越 来越 重视 对环 境友好 催 化剂 的研制工 作 , 人
固体碱催 化剂 也 吸引 了不少研 究者 的 目光 。固体碱 就是 指能 够化学 吸附酸 的 固体 或 能使酸性 指示 剂变
色 的固体 , 它与 均相 溶液 碱相 比具 有几个 突 出优 点 :
碱催 化剂在 某 些反应 中还具有 几何 空间效 应 。相对
一
( ) 和 氧 化 物 SO 6混 i 一Mg SO O, i 一C O, i a SO
S O , i 一 Ba , O2 一 ZnO , O2 一 AIO3 S O2 r S O2 O Si Si 2 ,i
一
T hO2, i S O2一 Ti O2, i S O2一 Zr O2, i 一 Mo S O2 O3, i S O2 W O3, AIO3一 M g , 2 2 O AIO3 一 Th , 2 O2 AIO3 一 Ti , O2
KC 3 2 O 或油 中 ; R 、 H3K H 载 在 A 2 3 ; i N 3N 、 N 2 I 上 L2 O O
载在 SO 上 。 i2
物 是 制备 固体碱 的பைடு நூலகம் 要 途 径之 一 , 月香 等 研 究 朱 了碱 土金属 化合 物 在 ZO r 表 面 上 的分 散 状 况 及 碱
地 拓展 固体碱 催化剂 用 于化学 合成 的领 域 。表 1列
1 固体 碱 的 分 类
固体 碱种 类 繁多 , 分类 的方法 也各 有差异 , 田部 浩 三对 固体碱 的种 类进 行 了以下 总结 … :
( )负 载 碱 N O K H 载 在 SO 1 a H、 O i 或 A 3 I O
( 金 属 盐 类 N O , O , H O , N - 5) aC 3 K C 3 K C 3 K a
C 3 C C 3 SC 3 B C 3 ( H ) C 3 N 2 4 O , a O , rO , a O , N 4 2 O , aWO —
2 2 , H O KCN 。
催 化剂容 易从反 应 混 合 物 中 分离 出来 ; 应后 催 化 反 剂容 易再 生 ; 反应 设 备 没 有 严重 腐 蚀 ; 外 , 对 另 固体
举 部 分 固体碱催 化剂 及其对 应 的反应 。如何 制备 碱 性 强 、 活化 的固体 碱 并 应用 到 化 学 反 应 中去 已经 易
成 为重 要 的研究课 题 。负 载碱金 属或 碱土金 属化合
上; 碱金属 或 碱 土金 属 分 散 在 SO 、 I , 活 性 炭 、 i A: 、 O
固 体碱 催 化 剂 的 研究 进 展
李俊 鹏
( 东轻工职业技术学院 汽车系 , 东 广州 500 ) 广 广 13 0
摘
要 : 绍 了 固体碱 的分 类 、 介 固体碱催 化 齐 的反 应机 制 , 述 了固体碱 催 化 剂 的最新 研 】 概
究进展 , 选择 工业 上一些 以固体 碱作 为催 化剂 的反 应 来说 明 固体碱 催 化 剂在 工业 上 的应 用, 并做 简短 的论 述 。此 外 , 望 了 固体碱 催化 剂未 来 的研 究 方向 。 展
大 提 高 。 吕 亮 等 研 制 了 固 体 碱 催 化 剂 L H D /
L O, D 并进 行植 物 油酯 交 换 反 应 , 产 率 、 化 率 达 其 转 9 . % 以上 。李 军 等人 ¨ 制备 了 MA 85 F固体 碱 催 化
剂 ( 镁复 合 氧 化 物 负 载适 量 的 K ) 发 现 其 对 甲 铝 F ,
固体酸 催化 剂而 言 , 固体 碱催化 剂 的研究起 步较 晚 ,
但近 些年来 , 来越 多 的 研究 者 注 意 到 碱性 在 非 均 越 相催 化 中的地位 , 现 了 固体催 化 剂 的 碱性 有 着 特 发
一
AIO3 一 Zr 2 O2, 2 AIO3 一 M o , 2 O3 AIO3 一 W O3, Zr O2一 Z nO , O2一Ti , O2一 M g , O2一S Zr O2 Ti O Zr nO2 o
殊 的催 化作 用 , 因而 对 固体 碱作 为 催 化 剂 或载 体 的 研 究非 常 热 门 。本 文 将 这 方 面 的 研 究 成 果 作 一 概
述。
() 7 各种碱 金属 或碱 土金 属交换 的分 子筛 。
2 固体 碱 催 化 剂 的 研 究 现 状
近来 , 着研究 的深 入 , 内外科 研人 员正 不断 随 国
关 键 词 :固体 碱催 化 剂 ; 业应 用 ; 展 工 进
中图 分类号 : Q 2 . T 46 8
文献 标识码 :A
文 章 编号 : 6215 (07 0 -1-5 17 -90 20 )3030
Zn , 2 O AIO3, O3,L 2 ,Ce Y2 a O3 O2,Th O2,Ti ,Zr O2 O2, S nO2, 2 , Oo Na O K2
维普资讯
第 6卷 第 3期
20 0 7年 9月
广 东 轻 工 职 业 技 术 学 院 学 报
J OURN AL OF GUA NGD ONG NDU S I TRY TECHNI CAL COLLEGE
VO . 16
NO. 3
Se 20 7 p. 0