ORACLE性能优化之SQL优化-优化器

合集下载

Oracle SQL语句优化技术分析

Oracle SQL语句优化技术分析
4 结 论
O a e S L 句的性 能问题 常常是 由于 rl Q 语 c 在索引设计和查询设计方面存在各种缺陷引起 的。 Q 优化的实质就是在结果正确的前提下 , SL 充份利用索引 , 减少表扫描的 I / O次数 , 尽量避 免表搜索的发生 。 其实 S L Q 的性能优 化是一个 复杂的过程 ,以上这些只是在应用层次 的一种 体现 , 深入研究还会涉及数据库层 的资源配置 、 网络层的流量控制 以及操作系统层 的总体设计 如 等等方面 , 已经超 出本文所要讨论 的范 围, 这些 S EC EL T FROM US ER LOG WHER 因此不在本文赘述 了。 E 总之 Oal S L语句 的 r e Q c USE N R AME ei ( L C U E _ A 不断总结 , 才 xs t S E T S R N ME 优化需要我们在生产 中不断学习 , E FROM T F W HE TY C D =05 ' S AF E R CI 能更为得心应手 的应用到工作中去。 O E ' 1 4 3 O N操作符 . N TI 2 此操作是 强列不推荐使用 的 , 因为它不能
的 ,因为索引是不索引空值的。使用 I N L SU 或 I O U ,r l会停止使用 索引而执 SN TN L Oa e c 行 全表扫描。 以考虑在设计表时 , 引列设 可 对索 置为 N T N L 。这样就可以用其他操作来取 O U L 代 判断 N L 的操作。 UL
_
b .同一功能 同一性能 不同写法 S QL的影 响。 如一个 S L在 A程序员写的为 slc S Q eetU— e a ,s d f m s fB程序员写 的为 s—  ̄nme e r t u o a e le s r n meu e i f m zj s ( e t u e a . s r d r h .a 带表所有 o st f 者的前缀 )c程序员写的为 Sl tu rn n, e c s_s e e e z u ser i f m Z J . A F ( 写表名 )D程序 d r HS T F 大 o S 员 写 的 为 Slc srnme sri f m e et e_a , e_d r u u o z SS A F 中间多 了空格 )以上 四个 S L在 Ⅲ . F( T Q OAL R C E分析整理之后产生的结果及执行的时

oracle之使用OracleDeveloper对SQL进行简单调优(二)

oracle之使用OracleDeveloper对SQL进行简单调优(二)

oracle 之使⽤OracleDeveloper 对SQL 进⾏简单调优(⼆)使⽤Oracle Developer 对SQL 进⾏简单进⾏简单调优调优Oracle Developer 是Oracle 提供的免费数据库连接⼯具,⾏内数据中⼼⽣产操作间默认使⽤该⼯具执⾏SQL ,如遇到现场需要对⽣产SQL 进⾏优化查询的需要熟悉Oracle Developer 的基本使⽤,本⽂结合Oracle Developer ⼯具展⽰如何查看SQL ,如果进⾏基本优化。

⼀、 Oracle Developer 和 Oracle 命令1. Oracle DeveloperSQL 解释Oracle Developer ⼯具⾥⾯的“解释”功能只针对当前的sql 进⾏了⼀个预估的资源消耗以及执⾏路径,参考数据是系统⾥存在的表统计信息。

结果显⽰与实际执⾏可能存在差异,且表的详细信息,在其它功能下显⽰更为详细。

SQL 优化指导Oracle Developer ⼯具⾥⾯的sql 优化指导功能,对要优化分析的sql 进⾏了真实的执⾏,该功能展⽰的结果,包含了部分解释功能的结果,也就是根据表⾥⾯的统计信息预估的执⾏计划;它⼀般还包含优化建议;另外还展⽰了该sql 的实际执⾏计划和并⾏执⾏时的sql 性能结果。

SQL 跟踪Oracle Developer ⼯具⾥⾯的sql 跟踪功能,对要优化分析的sql 进⾏了实际的执⾏,详细的展⽰了执⾏过程中对 索引 CPU 缓存IO 和块的改变情况,也列出了执⾏过程中涉及的数据量和资源消耗;此功能包含了sql 解释中的表统计信息。

2. Oracle 命令autotraceOracle 命令 autotrace 是分析sql 的真实执⾏计划,查看sql 执⾏效率的⼀个⽐较简单⼜⽅便的⼯具。

它实际上是对sql 实际执⾏过程信息的⼀个收集和信息统计。

set autotrace on 开启autotrace ,后⾯执⾏sql 语句会⾃动显⽰sql 执⾏结果和跟踪信息。

ORACLE数据库性能优化

ORACLE数据库性能优化

(三)(三)优化 I/O 操作 I/O 优化被安排在内存优化之后,通过内存的优化,可以是 I/O 冲突减少,在此情况下, 可以通过一些调整以使 I/O 性能进一步提高。 对于新系统,应自顶向下分析 I/O 需求,确定所需要的资源。而对于已存在的系统应采 用自底向上的方法: 1.1.了解系统的磁盘数量。 2.2.了解 ORACLE 使用的磁盘数量。 3.3.了解应用系统的 I/O 类型。 4.4.了解 I/O 操作是针对文件系统还是原始设备。 5.5.了解对象在磁盘上的分布。 可以通过如下方法检查 I/O 问题: 检查系统 I/O 的使用:可以使用操作系统提供的工具来监视整个系统对磁盘 文件的访问,可以将大量访问磁盘的应用与 ORACLE 的相关文件分别存放。在 UNIX 系统中可以通过 sar –d 来获得有关数据。在 WINDOWS NT 中 可 通 过 性 能监视器查看。 检查 ORACLE 的 I/O 的使用:对于 ORACLE ,可以通过下列视图来获得相 关的信息: File Type Where to Find Statistics Database Files V$FILESTAT Log Files V$SYSSTAT, V$SYSTEM_EVENT, V$SESSION_EVENT Archive Files V$SYSTEM_EVENT, V$SESSION_EVENT Control Files V$SYSTEM_EVENT, V$SESSION_EVENT 可以通过如下的方法来解决 I/O 问题: 减少磁盘竞争: 磁盘竞争:当多个进程同时访问同一个磁盘时就会产生磁盘竞争。要减 少高负荷磁盘的访问,可以将高访问量的文件移到低负荷的磁盘上。 分离 Redo 日志文件和数据文件:ORACLE 总是经常的访问 Redo 日志 文件和数据文件,将二者放在一起,可能会增加磁盘冲突。 条带化表数据:条带化,就是将一个大表的数据分布到不同磁盘的不同 数据文件中,这样也可以减少磁盘冲突。 分离表和索引:这并不是必须的,由于索引和表的读取是串行的,也可 以做到将表和索引放在一起而不发生磁盘冲突。 磁盘条带化:就是将一个大表的数据分布到不同磁盘的不同数据文件中,条 带化允许不同的进程同时访问一个表的不同部分。 这尤其对随机访问一个表的多行 很有帮助。条带化可以是磁盘的 I/O 负载平衡。有两种条带化方法。 手动方法:利用表空间以及分区表的方式。

oracle sql 优化技巧

oracle sql 优化技巧

oracle sql 优化技巧(实用版3篇)目录(篇1)1.Oracle SQL 简介2.优化技巧2.1 减少访问数据库次数2.2 选择最有效率的表名顺序2.3 避免使用 SELECT2.4 利用 DECODE 函数2.5 设置 ARRAYSIZE 参数2.6 使用 TRUNCATE 替代 DELETE2.7 多使用 COMMIT 命令2.8 合理使用索引正文(篇1)Oracle SQL 是一款广泛应用于各类大、中、小微机环境的高效、可靠的关系数据库管理系统。

为了提高 Oracle SQL 的性能,本文将为您介绍一些优化技巧。

首先,减少访问数据库的次数是最基本的优化方法。

Oracle 在内部执行了许多工作,如解析 SQL 语句、估算索引的利用率、读数据块等,这些都会大量耗费 Oracle 数据库的运行。

因此,尽量减少访问数据库的次数,可以有效提高系统性能。

其次,选择最有效率的表名顺序也可以明显提升 Oracle 的性能。

Oracle 解析器是按照从右到左的顺序处理 FROM 子句中的表名,因此,合理安排表名顺序,可以减少解析时间,提高查询效率。

在执行 SELECT 子句时,应尽量避免使用,因为 Oracle 在解析的过程中,会将依次转换成列名,这是通过查询数据字典完成的,耗费时间较长。

DECODE 函数也是一个很好的优化工具,它可以避免重复扫描相同记录,或者重复连接相同的表,提高查询效率。

在 SQLPlus 和 SQLForms 以及 ProC 中,可以重新设置 ARRAYSIZE 参数。

该参数可以明显增加每次数据库访问时的检索数据量,从而提高系统性能。

建议将该参数设置为 200。

当需要删除数据时,尽量使用 TRUNCATE 语句替代 DELETE 语句。

执行 TRUNCATE 命令时,回滚段不会存放任何可被恢复的信息,所有数据不能被恢复。

因此,TRUNCATE 命令执行时间短,且资源消耗少。

在使用 Oracle 时,尽量多使用 COMMIT 命令。

Oracle培训之:sql优化--

Oracle培训之:sql优化--

13
在SQLPLUS 配置AUTOTRACE
AUTOTRACE 参数
SET AUTOTRACE OFF SET AUTOTRACE ON EXPLAIN SET AUTOTRACE ON STATISTICS SET AUTOTRACE ON SET AUTOTRACE TRACEONLY


不能获得AUTOTRACE报告. 这是默认的. 仅仅显示优化器执行计划的AUTOTRACE 报告 仅仅显示SQL语句执行的统计结果的 AUTOTRACE报告 包括上面两项内容的AUTOTRACE报告 与SET AUTOTRACE ON类似,所有的统计 和数据都在,但不可以打印
23
第五章:SQL重编译问题
SQL共享原理 SQL共享的三个条件 PROC程序的SQL共享 PROC程序中以下类型的语句不需进行变量 绑定 • PROC程序的CLIENT参数 • 存储过程的SQL共享 • SQL共享的数据库参数的利弊
24
• • • •
SQL共享原理
• ORACLE将执行过的SQL语句存放在内存 的共享池(shared buffer pool)中,可以被所 有的数据库用户共享 • 当你执行一个SQL语句(有时被称为一个游 标)时,如果它和之前的执行过的语句完全相 同, ORACLE就能很快获得已经被解析的语 句以及最好的 执行路径. 这个功能大大地提 高了SQL的执行性能并节省了内存的使用
查找原因的步骤(四)
• 是否为表和相关的索引搜集足够的统计数 据。对数据经常有增、删、改的表最好定 期对表和索引进行分析,可用SQL语句 “analyze table xxxx compute statistics for all indexes;”。ORACLE掌握了充分反映实 际的统计数据,才有可能做出正确的选择 • 索引列的选择性不高 (字段值重复率高)

优化器模式optimizer_mode

优化器模式optimizer_mode

优化器模式optimizer_modeoracle的optimizer_mode参数说明:Syntax OPTIMIZER_MODE ={ first_rows_[1 | 10 | 100 | 1000] | first_rows | all_rows }Default value all_rows在oracle中,sql语句优化分成RBO(Rule-Based Optimization)基于规则的优化和CBO(Cost-Based Optimization)基于代价的优化。

在较早的oracle的版本中,oracle是采取基于规则的优化,根据oracle指定的规则优先顺序,对于指定的表进⾏执⾏计划的选择。

⽐如在规则中,索引的优先级⼤于全表扫描,那在查询某张拥有所有的表的时候,那就⼀定是使⽤索引。

在后来,oracle发现这样的做法并不科学,规则是死的,数据是活的,并不是说在所有的情况下使⽤规则都是可⾏的。

于是oracle开始推出了基于代价的优化,收集对象的统计信息并分析得出最优的执⾏计划。

从oracle9i开始,oracle就强烈建议使⽤CBO,这点从oracle10g和oracle11g的⽂档中关于优化参数optimizer_mode完全不提与RBO有关的⼏个选项就可以看出。

(有⼈说CBO考虑的代价主要是cpu和内存,这点不太赞同,在sql执⾏中,我们最需要考虑的⼀定是和io有关的部分,所以考虑的⽅向应该是逻辑读。

在下⾯的⼀个测试例⼦中可以看出RBO和CBO的⼀些区别)optimizer_mode决定了oracle使⽤RBO还是CBO,可选值如下:Choose:这是RBO和CBO“中间”的⼀种模式,具体是这样:1.当所包含的所有对象有统计信息时,那就是⽤CBO的优化⽅式。

2.当所包含的部分对象有统计信息时,也使⽤CBO的⽅式,并且对剩下的对象的统计信息进⾏“猜测”。

3.如果包含所有对象都没有统计信息时,使⽤RBO的⽅式。

SQL优化工具及使用技巧介绍

SQL优化工具及使用技巧介绍

SQL优化工具及使用技巧介绍SQL(Structured Query Language)是一种用于管理和操作关系型数据库的编程语言。

它可以让我们通过向数据库服务器发送命令来实现数据的增删改查等操作。

然而,随着业务的发展和数据量的增长,SQL查询的性能可能会受到影响。

为了提高SQL查询的效率,出现了许多SQL优化工具。

本文将介绍一些常见的SQL优化工具及其使用技巧。

一、数据库性能优化工具1. Explain PlanExplain Plan是Oracle数据库提供的一种SQL优化工具,它可以帮助分析和优化SQL语句的执行计划。

通过使用Explain Plan命令,我们可以查看SQL查询的执行计划,了解SQL语句是如何被执行的,从而找到性能瓶颈并进行优化。

2. SQL Server ProfilerSQL Server Profiler是微软SQL Server数据库管理系统的一种性能监视工具。

它可以捕获和分析SQL Server数据库中的各种事件和耗时操作,如查询语句和存储过程的执行情况等。

通过使用SQL Server Profiler,我们可以找到数据库的性能瓶颈,并进行相应的优化。

3. MySQL Performance SchemaMySQL Performance Schema是MySQL数据库提供的一种性能监视工具。

它可以捕获和分析MySQL数据库中的各种事件和操作,如查询语句的执行情况、锁的状态等。

通过使用MySQL Performance Schema,我们可以深入了解数据库的性能问题,并对其进行优化。

二、SQL优化技巧1. 使用索引索引是提高SQL查询性能的重要手段之一。

在数据库中创建合适的索引可以加快查询操作的速度。

通常,我们可以根据查询条件中经常使用的字段来创建索引。

同时,还应注意索引的维护和更新,避免过多或过少的索引对性能产生负面影响。

2. 避免全表扫描全表扫描是指对整个表进行扫描,如果表中数据量较大,查询性能会受到较大影响。

oracle_sql_optimize.doc

oracle_sql_optimize.doc

Oracle sql 性能优化调整1. 选用适合的ORACLE优化器ORACLE的优化器共有3种:a. RULE (基于规则)b. COST (基于成本)c. CHOOSE (选择性)设置缺省的优化器,可以通过对init.ora文件中OPTIMIZER_MODE参数的各种声明,如RULE,COST,CHOOSE,ALL_ROWS,FIRST_ROWS . 你当然也在SQL句级或是会话(session)级对其进行覆盖.为了使用基于成本的优化器(CBO, Cost-Based Optimizer) , 你必须经常运行analyze 命令,以增加数据库中的对象统计信息(object statistics)的准确性.如果数据库的优化器模式设置为选择性(CHOOSE),那么实际的优化器模式将和是否运行过analyze命令有关. 如果table已经被analyze过, 优化器模式将自动成为CBO , 反之,数据库将采用RULE形式的优化器.在缺省情况下,ORACLE采用CHOOSE优化器, 为了避免那些不必要的全表扫描(full table scan) , 你必须尽量避免使用CHOOSE优化器,而直接采用基于规则或者基于成本的优化器.2.访问Table的方式ORACLE 采用两种访问表中记录的方式:a.全表扫描全表扫描就是顺序地访问表中每条记录. ORACLE采用一次读入多个数据块(database block)的方式优化全表扫描.b.通过ROWID访问表你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.3.共享SQL语句为了不重复解析相同的SQL语句,在第一次解析之后, ORACLE将SQL语句存放在内存中.这块位于系统全局区域SGA(system global area)的共享池(shared buffer pool)中的内存可以被所有的数据库用户共享.因此,当你执行一个SQL语句(有时被称为一个游标)时,如果它和之前的执行过的语句完全相同, ORACLE就能很快获得已经被解析的语句以及最好的执行路径. ORACLE的这个功能大大地提高了SQL的执行性能并节省了内存的使用.可惜的是ORACLE只对简单的表提供高速缓冲(cache buffering) ,这个功能并不适用于多表连接查询.数据库管理员必须在init.ora中为这个区域设置合适的参数,当这个内存区域越大,就可以保留更多的语句,当然被共享的可能性也就越大了.当你向ORACLE 提交一个SQL语句,ORACLE会首先在这块内存中查找相同的语句.这里需要注明的是,ORACLE对两者采取的是一种严格匹配,要达成共享,SQL语句必须完全相同(包括空格,换行等).共享的语句必须满足三个条件:A.字符级的比较:当前被执行的语句和共享池中的语句必须完全相同.例如:SELECT * FROM EMP;和下列每一个都不同SELECT * from EMP;Select * From Emp;SELECT * FROM EMP;B.两个语句所指的对象必须完全相同:例如:用户对象名如何访问Jack sal_limit private synonymWork_city public synonymPlant_detail public synonymJill sal_limit private synonymWork_city public synonymPlant_detail table owner考虑一下下列SQL语句能否在这两个用户之间共享.C.两个SQL语句中必须使用相同的名字的绑定变量(bind variables)例如:第一组的两个SQL语句是相同的(可以共享),而第二组中的两个语句是不同的(即使在运行时,赋于不同的绑定变量相同的值)a.select pin , name from people where pin = :blk1.pin;select pin , name from people where pin = :blk1.pin;b.select pin , name from people where pin = :blk1.ot_ind;select pin , name from people where pin = :blk1.ov_ind;4. 选择最有效率的表名顺序(只在基于规则的优化器中有效)ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,因此FROM子句中写在最后的表(基础表driving table)将被最先处理.在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表.当ORACLE处理多个表时, 会运用排序及合并的方式连接它们.首先,扫描第一个表(FROM子句中最后的那个表)并对记录进行派序,然后扫描第二个表(FROM子句中最后第二个表),最后将所有从第二个表中检索出的记录与第一个表中合适记录进行合并.例如: 表TAB1 16,384 条记录表TAB2 1 条记录选择TAB2作为基础表(最好的方法)select count(*) from tab1,tab2 执行时间0.96秒选择TAB2作为基础表(不佳的方法)select count(*) from tab2,tab1 执行时间26.09秒如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.例如: EMP表描述了LOCATION表和CATEGORY表的交集.SELECT *FROM LOCATION L ,CATEGORY C,EMP EWHERE E.EMP_NO BETWEEN 1000 AND 2000AND E.CAT_NO = C.CAT_NOAND E.LOCN = L.LOCN将比下列SQL更有效率SELECT *FROM EMP E ,LOCATION L ,CATEGORY CWHERE E.CAT_NO = C.CA T_NOAND E.LOCN = L.LOCNAND E.EMP_NO BETWEEN 1000 AND 20005.WHERE子句中的连接顺序.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.例如:(低效,执行时间156.3秒)SELECT …FROM EMP EWHERE SAL > 50000AND JOB = ‘MANAGER’AND 25 < (SELECT COUNT(*) FROM EMPWHERE MGR=E.EMPNO);(高效,执行时间10.6秒)SELECT …FROM EMP EWHERE 25 < (SELECT COUNT(*) FROM EMPWHERE MGR=E.EMPNO)AND SAL > 50000AND JOB = ‘MANAGER’;6.SELECT子句中避免使用‘ * ‘当你想在SELECT子句中列出所有的COLUMN时,使用动态SQL列引用‘*’ 是一个方便的方法.不幸的是,这是一个非常低效的方法. 实际上,ORACLE在解析的过程中, 会将’*’ 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间.7.减少访问数据库的次数当执行每条SQL语句时, ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量, 读数据块等等. 由此可见, 减少访问数据库的次数, 就能实际上减少ORACLE的工作量.例如,以下有三种方法可以检索出雇员号等于0342或0291的职员.方法1 (最低效)SELECT EMP_NAME , SALARY , GRADEFROM EMPWHERE EMP_NO = 342;SELECT EMP_NAME , SALARY , GRADEFROM EMPWHERE EMP_NO = 291;方法2 (次低效)DECLARECURSOR C1 (E_NO NUMBER) ISSELECT EMP_NAME,SALARY,GRADEFROM EMPWHERE EMP_NO = E_NO;BEGINOPEN C1(342);SELECT C1 INTO …,…,…;FETCH C1 INTO …,..,.. ;OPEN C1(291);FETCH C1 INTO …,..,.. ;CLOSE C1;END;方法3 (高效)SELECT A.EMP_NAME , A.SALARY , A.GRADE,B.EMP_NAME , B.SALARY , B.GRADEFROM EMP A,EMP BWHERE A.EMP_NO = 342AND B.EMP_NO = 291;注意:在SQL*Plus , SQL*Forms和Pro*C中重新设置ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量,建议值为200.8.使用DECODE函数来减少处理时间使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表.例如:SELECT COUNT(*),SUM(SAL)FROM EMPWHERE DEPT_NO = 0020AND ENAME LIKE‘SMITH%’;SELECT COUNT(*),SUM(SAL)FROM EMPWHERE DEPT_NO = 0030AND ENAME LIKE‘SMITH%’;你可以用DECODE函数高效地得到相同结果SELECT COUNT(DECODE(DEPT_NO,0020,’X’,NULL)) D0020_COUNT,COUNT(DECODE(DEPT_NO,0030,’X’,NULL)) D0030_COUNT,SUM(DECODE(DEPT_NO,0020,SAL,NULL)) D0020_SAL,SUM(DECODE(DEPT_NO,0030,SAL,NULL)) D0030_SALFROM EMP WHERE ENAME LIKE ‘SMITH%’;类似的,DECODE函数也可以运用于GROUP BY 和ORDER BY子句中.9.整合简单,无关联的数据库访问如果你有几个简单的数据库查询语句,你可以把它们整合到一个查询中(即使它们之间没有关系)例如:SELECT NAMEFROM EMPWHERE EMP_NO = 1234;SELECT NAMEFROM DPTWHERE DPT_NO = 10 ;SELECT NAMEFROM CATWHERE CAT_TYPE = ‘RD’;上面的3个查询可以被合并成一个:SELECT , , FROM CAT C , DPT D , EMP E,DUAL XWHERE NVL(‘X’,X.DUMMY) = NVL(‘X’,E.ROWID(+))AND NVL(‘X’,X.DUMMY) = NVL(‘X’,D.ROWID(+))AND NVL(‘X’,X.DUMMY) = NVL(‘X’,C.ROWID(+))AND E.EMP_NO(+) = 1234AND D.DEPT_NO(+) = 10AND C.CAT_TYPE(+) = ‘RD’;(译者按: 虽然采取这种方法,效率得到提高,但是程序的可读性大大降低,所以读者还是要权衡之间的利弊)10.删除重复记录最高效的删除重复记录方法( 因为使用了ROWID)DELETE FROM EMP EWHERE E.ROWID > (SELECT MIN(X.ROWID)FROM EMP XWHERE X.EMP_NO = E.EMP_NO);11.用TRUNCATE替代DELETE当删除表中的记录时,在通常情况下, 回滚段(rollback segments ) 用来存放可以被恢复的信息. 如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况)而当运用TRUNCATE时, 回滚段不再存放任何可被恢复的信息.当命令运行后,数据不能被恢复.因此很少的资源被调用,执行时间也会很短.(译者按: TRUNCATE只在删除全表适用,TRUNCATE是DDL不是DML)12.尽量多使用COMMIT只要有可能,在程序中尽量多使用COMMIT, 这样程序的性能得到提高,需求也会因为COMMIT所释放的资源而减少:COMMIT所释放的资源:a.回滚段上用于恢复数据的信息.b.被程序语句获得的锁c.redo log buffer 中的空间d.ORACLE为管理上述3种资源中的内部花费(译者按: 在使用COMMIT时必须要注意到事务的完整性,现实中效率和事务完整性往往是鱼和熊掌不可得兼)13.计算记录条数和一般的观点相反, count(*) 比count(1)稍快, 当然如果可以通过索引检索,对索引列的计数仍旧是最快的. 例如COUNT(EMPNO)(译者按: 在CSDN论坛中,曾经对此有过相当热烈的讨论, 作者的观点并不十分准确,通过实际的测试,上述三种方法并没有显著的性能差别)14.用Where子句替换HA VING子句避免使用HA VING子句, HA VING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销.例如:低效:SELECT REGION,A VG(LOG_SIZE)FROM LOCATIONGROUP BY REGIONHA VING REGION REGION != ‘SYDNEY’AND REGION != ‘PERTH’高效SELECT REGION,A VG(LOG_SIZE)FROM LOCATIONW HERE REGION REGION != ‘SYDNEY’AND REGION != ‘PERTH’GROUP BY REGION(译者按: HAVING 中的条件一般用于对一些集合函数的比较,如COUNT() 等等. 除此而外,一般的条件应该写在WHERE子句中)15.减少对表的查询在含有子查询的SQL语句中,要特别注意减少对表的查询.例如:低效SELECT TAB_NAMEFROM TABLESWHERE TAB_NAME = ( SELECT TAB_NAMEFROM TAB_COLUMNSWHERE VERSION = 604)AND DB_VER= ( SELECT DB_VERFROM TAB_COLUMNSWHERE VERSION = 604)高效SELECT TAB_NAMEFROM TABLESWHERE (TAB_NAME,DB_VER)= ( SELECT TAB_NAME,DB_VER)FROM TAB_COLUMNSWHERE VERSION = 604)Update 多个Column 例子:低效:UPDA TE EMPSET EMP_CAT = (SELECT MAX(CATEGORY) FROM EMP_CATEGORIES), SAL_RANGE = (SELECT MAX(SAL_RANGE) FROM EMP_CA TEGORIES) WHERE EMP_DEPT = 0020;高效:UPDA TE EMPSET (EMP_CA T, SAL_RANGE)= (SELECT MAX(CATEGORY) , MAX(SAL_RANGE)FROM EMP_CATEGORIES)WHERE EMP_DEPT = 0020;16.通过内部函数提高SQL效率.SELECT H.EMPNO,E.ENAME,H.HIST_TYPE,T.TYPE_DESC,COUNT(*)FROM HISTORY_TYPE T,EMP E,EMP_HISTORY HWHERE H.EMPNO = E.EMPNOAND H.HIST_TYPE = T.HIST_TYPEGROUP BY H.EMPNO,E.ENAME,H.HIST_TYPE,T.TYPE_DESC;通过调用下面的函数可以提高效率.FUNCTION LOOKUP_HIST_TYPE(TYP IN NUMBER) RETURN V ARCHAR2 ASTDESC V ARCHAR2(30);CURSOR C1 ISSELECT TYPE_DESCFROM HISTORY_TYPEWHERE HIST_TYPE = TYP;BEGINOPEN C1;FETCH C1 INTO TDESC;CLOSE C1;RETURN (NVL(TDESC,’?’));END;FUNCTION LOOKUP_EMP(EMP IN NUMBER) RETURN V ARCHAR2ASENAME V ARCHAR2(30);CURSOR C1 ISSELECT ENAMEFROM EMPWHERE EMPNO=EMP;BEGINOPEN C1;FETCH C1 INTO ENAME;CLOSE C1;RETURN (NVL(ENAME,’?’));END;SELECT H.EMPNO,LOOKUP_EMP(H.EMPNO),H.HIST_TYPE,LOOKUP_HIST_TYPE(H.HIST_TYPE),COUNT(*)FROM EMP_HISTORY HGROUP BY H.EMPNO , H.HIST_TYPE;(译者按: 经常在论坛中看到如’能不能用一个SQL写出….’ 的贴子, 殊不知复杂的SQL 往往牺牲了执行效率. 能够掌握上面的运用函数解决问题的方法在实际工作中是非常有意义的)17.使用表的别名(Alias)当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误.(译者注: Column歧义指的是由于SQL中不同的表具有相同的Column名,当SQL语句中出现这个Column时,SQL解析器无法判断这个Column的归属)18.用EXISTS替代IN在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS)通常将提高查询的效率.低效:SELECT *FROM EMP (基础表)WHERE EMPNO > 0AND DEPTNO IN (SELECT DEPTNOFROM DEPTWHERE LOC = ‘MELB’)高效:SELECT *FROM EMP (基础表)WHERE EMPNO > 0AND EXISTS (SELECT *FROM DEPTWHERE DEPT.DEPTNO = EMP.DEPTNOAND LOC = ‘MELB’)(译者按: 相对来说,用NOT EXISTS替换NOT IN 将更显著地提高效率,下一节中将指出) 19.用NOT EXISTS替代NOT IN在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的(因为它对子查询中的表执行了一个全表遍历). 为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS.例如:SELECT …FROM EMPWHERE DEPT_NO NOT IN (SELECT DEPT_NOFROM DEPTWHERE DEPT_CA T=’A’);为了提高效率.改写为:(方法一: 高效)SELECT ….FROM EMP A,DEPT BWHERE A.DEPT_NO = B.DEPT(+)AND B.DEPT_NO IS NULLAND B.DEPT_CAT(+) = ‘A’(方法二: 最高效)SELECT ….FROM EMP EWHERE NOT EXISTS(SELECT ‘X’FROM DEPT DWHERE D.DEPT_NO = E.DEPT_NOAND DEPT_CAT = ‘A’);20.用表连接替换EXISTS通常来说, 采用表连接的方式比EXISTS更有效率SELECT ENAMEFROM EMP EWHERE EXISTS (SELECT ‘X’FROM DEPTWHERE DEPT_NO = E.DEPT_NOAND DEPT_CAT = ‘A’);(更高效)SELECT ENAMEFROM DEPT D,EMP EWHERE E.DEPT_NO = D.DEPT_NOAND DEPT_CAT = ‘A’ ;(译者按: 在RBO的情况下,前者的执行路径包括FILTER,后者使用NESTED LOOP) 21.用EXISTS替换DISTINCT ????????????????当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT. 一般可以考虑用EXIST替换例如:低效:SELECT DISTINCT DEPT_NO,DEPT_NAMEFROM DEPT D,EMP EWHERE D.DEPT_NO = E.DEPT_NO高效:SELECT DEPT_NO,DEPT_NAMEFROM DEPT DWHERE EXISTS ( SELECT ‘X’FROM EMP EWHERE E.DEPT_NO = D.DEPT_NO);EXISTS 使查询更为迅速,因为RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果.22.识别’低效执行’的SQL语句用下列SQL工具找出低效SQL:SELECT EXECUTIONS , DISK_READS, BUFFER_GETS,ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio,ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run,SQL_TEXTFROM V$SQLAREAWHERE EXECUTIONS>0AND BUFFER_GETS > 0AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8ORDER BY 4 DESC;(译者按: 虽然目前各种关于SQL优化的图形化工具层出不穷,但是写出自己的SQL工具来解决问题始终是一个最好的方法)23.使用TKPROF 工具来查询SQL性能状态SQL trace 工具收集正在执行的SQL的性能状态数据并记录到一个跟踪文件中. 这个跟踪文件提供了许多有用的信息,例如解析次数.执行次数,CPU使用时间等.这些数据将可以用来优化你的系统.设置SQL TRACE在会话级别: 有效ALTER SESSION SET SQL_TRACE TRUE设置SQL TRACE 在整个数据库有效仿, 你必须将SQL_TRACE参数在init.ora中设为TRUE, USER_DUMP_DEST参数说明了生成跟踪文件的目录(译者按: 这一节中,作者并没有提到TKPROF的用法, 对SQL TRACE的用法也不够准确, 设置SQL TRACE首先要在init.ora中设定TIMED_STATISTICS, 这样才能得到那些重要的时间状态. 生成的trace文件是不可读的,所以要用TKPROF工具对其进行转换,TKPROF 有许多执行参数. 大家可以参考ORACLE手册来了解具体的配置. )24.用EXPLAIN PLAN 分析SQL语句EXPLAIN PLAN 是一个很好的分析SQL语句的工具,它甚至可以在不执行SQL的情况下分析语句. 通过分析,我们就可以知道ORACLE是怎么样连接表,使用什么方式扫描表(索引扫描或全表扫描)以及使用到的索引名称.你需要按照从里到外,从上到下的次序解读分析的结果. EXPLAIN PLAN分析的结果是用缩进的格式排列的, 最内部的操作将被最先解读, 如果两个操作处于同一层中,带有最小操作号的将被首先执行.NESTED LOOP是少数不按照上述规则处理的操作, 正确的执行路径是检查对NESTED LOOP提供数据的操作,其中操作号最小的将被最先处理.译者按:通过实践, 感到还是用SQLPLUS中的SET TRACE 功能比较方便.举例:SQL> list1 SELECT *2 FROM dept, emp3* WHERE emp.deptno = dept.deptnoSQL> set autotrace traceonly /*traceonly 可以不显示执行结果*/ SQL> /14 rows selected.Execution Plan----------------------------------------------------------0 SELECT STATEMENT Optimizer=CHOOSE1 0 NESTED LOOPS2 1 TABLE ACCESS (FULL) OF 'EMP'3 1 TABLE ACCESS (BY INDEX ROWID) OF 'DEPT'4 3 INDEX (UNIQUE SCAN) OF 'PK_DEPT' (UNIQUE)Statistics----------------------------------------------------------0 recursive calls2 db block gets30 consistent gets0 physical reads0 redo size2598 bytes sent via SQL*Net to client503 bytes received via SQL*Net from client2 SQL*Net roundtrips to/from client0 sorts (memory)0 sorts (disk)14 rows processed通过以上分析,可以得出实际的执行步骤是:1.TABLE ACCESS (FULL) OF 'EMP'2.INDEX (UNIQUE SCAN) OF 'PK_DEPT' (UNIQUE)3.TABLE ACCESS (BY INDEX ROWID) OF 'DEPT'4.NESTED LOOPS (JOINING 1 AND 3)注: 目前许多第三方的工具如TOAD和ORACLE本身提供的工具如OMS的SQL Analyze 都提供了极其方便的EXPLAIN PLAN工具.也许喜欢图形化界面的朋友们可以选用它们. 25.用索引提高效率索引是表的一个概念部分,用来提高检索数据的效率. 实际上,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Update语句的最佳路径时, ORACLE优化器将使用索引. 同样在联结多个表时使用索引也可以提高效率. 另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证.除了那些LONG或LONG RAW数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效. 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率.虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价. 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出4 , 5 次的磁盘I/O . 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢.译者按:定期的重构索引是有必要的.ALTER INDEX <INDEXNAME> REBUILD <TABLESPACENAME>26.索引的操作ORACLE对索引有两种访问模式.索引唯一扫描 ( INDEX UNIQUE SCAN)大多数情况下, 优化器通过WHERE子句访问INDEX.例如:表LODGING有两个索引 : 建立在LODGING列上的唯一性索引LODGING_PK 和建立在MANAGER列上的非唯一性索引LODGING$MANAGER.SELECT *FROM LODGINGWHERE LODGING = ‘ROSE HILL’;在内部 , 上述SQL将被分成两步执行, 首先 , LODGING_PK 索引将通过索引唯一扫描的方式被访问 , 获得相对应的ROWID, 通过ROWID访问表的方式执行下一步检索.如果被检索返回的列包括在INDEX列中,ORACLE将不执行第二步的处理(通过ROWID访问表). 因为检索数据保存在索引中, 单单访问索引就可以完全满足查询结果.下面SQL只需要INDEX UNIQUE SCAN 操作.SELECT LODGINGFROM LODGINGWHERE LODGING = ‘ROSE HILL’;索引范围查询(INDEX RANGE SCAN)适用于两种情况:1.基于一个范围的检索2.基于非唯一性索引的检索例1:SELECT LODGINGFROM LODGINGWHERE LODGING LIKE ‘M%’;WHERE子句条件包括一系列值, ORACLE将通过索引范围查询的方式查询LODGING_PK . 由于索引范围查询将返回一组值, 它的效率就要比索引唯一扫描低一些.例2:SELECT LODGINGFROM LODGINGWHERE MANAGER = ‘BILL GATES’;这个SQL的执行分两步, LODGING$MANAGER的索引范围查询(得到所有符合条件记录的ROWID) 和下一步同过ROWID访问表得到LODGING列的值. 由于LODGING$MANAGER是一个非唯一性的索引,数据库不能对它执行索引唯一扫描.由于SQL返回LODGING列,而它并不存在于LODGING$MANAGER索引中, 所以在索引范围查询后会执行一个通过ROWID访问表的操作.WHERE子句中, 如果索引列所对应的值的第一个字符由通配符(WILDCARD)开始, 索引将不被采用.SELECT LODGINGFROM LODGINGWHERE MANAGER LIKE ‘%HANMAN’;在这种情况下,ORACLE将使用全表扫描.27.基础表的选择基础表(Driving Table)是指被最先访问的表(通常以全表扫描的方式被访问). 根据优化器的不同, SQL语句中基础表的选择是不一样的.如果你使用的是CBO (COST BASED OPTIMIZER),优化器会检查SQL语句中的每个表的物理大小,索引的状态,然后选用花费最低的执行路径.如果你用RBO (RULE BASED OPTIMIZER) , 并且所有的连接条件都有索引对应, 在这种情况下, 基础表就是FROM 子句中列在最后的那个表.举例:SELECT , B.MANAGERFROM WORKER A,LODGING BWHERE A.LODGING = B.LODING;由于LODGING表的LODING列上有一个索引, 而且WORKER表中没有相比较的索引, WORKER表将被作为查询中的基础表.28.多个平等的索引当SQL语句的执行路径可以使用分布在多个表上的多个索引时, ORACLE会同时使用多个索引并在运行时对它们的记录进行合并, 检索出仅对全部索引有效的记录.在ORACLE选择执行路径时,唯一性索引的等级高于非唯一性索引. 然而这个规则只有当WHERE子句中索引列和常量比较才有效.如果索引列和其他表的索引类相比较. 这种子句在优化器中的等级是非常低的.如果不同表中两个想同等级的索引将被引用, FROM子句中表的顺序将决定哪个会被率先使用. FROM子句中最后的表的索引将有最高的优先级.如果相同表中两个想同等级的索引将被引用, WHERE子句中最先被引用的索引将有最高的优先级.举例:DEPTNO上有一个非唯一性索引,EMP_CAT也有一个非唯一性索引.SELECT ENAME,FROM EMPWHERE DEPT_NO = 20AND EMP_CAT = ‘A’;这里,DEPTNO索引将被最先检索,然后同EMP_CAT索引检索出的记录进行合并. 执行路径如下:TABLE ACCESS BY ROWID ON EMPAND-EQUALINDEX RANGE SCAN ON DEPT_IDXINDEX RANGE SCAN ON CAT_IDX29.等式比较和范围比较当WHERE子句中有索引列, ORACLE不能合并它们,ORACLE将用范围比较.举例:DEPTNO上有一个非唯一性索引,EMP_CAT也有一个非唯一性索引.SELECT ENAMEFROM EMPWHERE DEPTNO > 20AND EMP_CAT = ‘A’;这里只有EMP_CAT索引被用到,然后所有的记录将逐条与DEPTNO条件进行比较. 执行路径如下:TABLE ACCESS BY ROWID ON EMPINDEX RANGE SCAN ON CAT_IDX30.不明确的索引等级当ORACLE无法判断索引的等级高低差别,优化器将只使用一个索引,它就是在WHERE子句中被列在最前面的.举例:DEPTNO上有一个非唯一性索引,EMP_CAT也有一个非唯一性索引.SELECT ENAMEFROM EMPWHERE DEPTNO > 20AND EMP_CAT > ‘A’;这里, ORACLE只用到了DEPT_NO索引. 执行路径如下:TABLE ACCESS BY ROWID ON EMPINDEX RANGE SCAN ON DEPT_IDX译者按:我们来试一下以下这种情况:SQL> select index_name, uniqueness from user_indexes wheretable_name = 'EMP';INDEX_NAME UNIQUENES------------------------------ ---------EMPNO UNIQUEEMPTYPE NONUNIQUESQL> select * from emp where empno >= 2 and emp_type = 'A' ;no rows selectedExecution Plan----------------------------------------------------------0 SELECT STATEMENT Optimizer=CHOOSE1 0 TABLE ACCESS (BY INDEX ROWID) OF 'EMP'2 1 INDEX (RANGE SCAN) OF 'EMPTYPE' (NON-UNIQUE)虽然EMPNO是唯一性索引,但是由于它所做的是范围比较, 等级要比非唯一性索引的等式比较低!31.强制索引失效如果两个或以上索引具有相同的等级,你可以强制命令ORACLE优化器使用其中的一个(通过它,检索出的记录数量少) .举例:SELECT ENAMEFROM EMPWHERE EMPNO = 7935AND DEPTNO + 0 = 10 /*DEPTNO上的索引将失效*/AND EMP_TYPE || ‘’ = ‘A’ /*EMP_TYPE上的索引将失效*/这是一种相当直接的提高查询效率的办法. 但是你必须谨慎考虑这种策略,一般来说,只有在你希望单独优化几个SQL时才能采用它.这里有一个例子关于何时采用这种策略,假设在EMP表的EMP_TYPE列上有一个非唯一性的索引而EMP_CLASS上没有索引.SELECT ENAMEFROM EMPWHERE EMP_TYPE = ‘A’AND EMP_CLASS = ‘X’;优化器会注意到EMP_TYPE上的索引并使用它. 这是目前唯一的选择. 如果,一段时间以后, 另一个非唯一性建立在EMP_CLASS上,优化器必须对两个索引进行选择,在通常情况下,优化器将使用两个索引并在他们的结果集合上执行排序及合并. 然而,如果其中一个索引(EMP_TYPE)接近于唯一性而另一个索引(EMP_CLASS)上有几千个重复的值. 排序及合并就会成为一种不必要的负担. 在这种情况下,你希望使优化器屏蔽掉EMP_CLASS索引.用下面的方案就可以解决问题.SELECT ENAMEFROM EMPWHERE EMP_TYPE = ‘A’AND EMP_CLASS||’’= ‘X’;32.避免在索引列上使用计算.WHERE子句中,如果索引列是函数的一部分.优化器将不使用索引而使用全表扫描.举例:低效:SELECT …FROM DEPTWHERE SAL * 12 > 25000;高效:SELECT …FROM DEPTWHERE SAL > 25000/12;译者按:这是一个非常实用的规则,请务必牢记33.自动选择索引如果表中有两个以上(包括两个)索引,其中有一个唯一性索引,而其他是非唯一性.在这种情况下,ORACLE将使用唯一性索引而完全忽略非唯一性索引.举例:SELECT ENAMEFROM EMPWHERE EMPNO = 2326AND DEPTNO = 20 ;这里,只有EMPNO上的索引是唯一性的,所以EMPNO索引将用来检索记录.TABLE ACCESS BY ROWID ON EMPINDEX UNIQUE SCAN ON EMP_NO_IDX34.避免在索引列上使用NOT通常,我们要避免在索引列上使用NOT, NOT会产生在和在索引列上使用函数相同的影响. 当ORACLE”遇到”NOT,他就会停止使用索引转而执行全表扫描.举例:低效: (这里,不使用索引)SELECT …FROM DEPTWHERE DEPT_CODE NOT = 0;高效: (这里,使用了索引)SELECT …FROM DEPTWHERE DEPT_CODE > 0;需要注意的是,在某些时候, ORACLE优化器会自动将NOT转化成相对应的关系操作符.NOT > to <=NOT >= to <NOT < to >=NOT <= to >译者按:在这个例子中,作者犯了一些错误. 例子中的低效率SQL是不能被执行的. 我做了一些测试:SQL> select * from emp where NOT empno > 1;no rows selectedExecution Plan----------------------------------------------------------0 SELECT STATEMENT Optimizer=CHOOSE1 0 TABLE ACCESS (BY INDEX ROWID) OF 'EMP'2 1 INDEX (RANGE SCAN) OF 'EMPNO' (UNIQUE)SQL> select * from emp where empno <= 1;no rows selectedExecution Plan----------------------------------------------------------0 SELECT STATEMENT Optimizer=CHOOSE1 0 TABLE ACCESS (BY INDEX ROWID) OF 'EMP'2 1 INDEX (RANGE SCAN) OF 'EMPNO' (UNIQUE)两者的效率完全一样,也许这符合作者关于” 在某些时候, ORACLE优化器会自动将NOT转化成相对应的关系操作符” 的观点.35.用>=替代>如果DEPTNO上有一个索引,高效:SELECT *FROM EMPWHERE DEPTNO >=4低效:SELECT *FROM EMPWHERE DEPTNO >3两者的区别在于,前者DBMS将直接跳到第一个DEPT等于4的记录而后者将首先定位到DEPTNO=3的记录并且向前扫描到第一个DEPT大于3的记录. 36.用UNION替换OR (适用于索引列)通常情况下, 用UNION替换WHERE子句中的OR将会起到较好的效果. 对索引列使用OR将造成全表扫描. 注意, 以上规则只针对多个索引列有效. 如果有column没有被索引, 查询效率可能会因为你没有选择OR而降低.在下面的例子中, LOC_ID 和REGION上都建有索引.高效:SELECT LOC_ID , LOC_DESC , REGIONFROM LOCATIONWHERE LOC_ID = 10UNIONSELECT LOC_ID , LOC_DESC , REGIONFROM LOCATIONWHERE REGION = “MELBOURNE”低效:SELECT LOC_ID , LOC_DESC , REGIONFROM LOCATIONWHERE LOC_ID = 10 O R REGION = “MELBOURNE”如果你坚持要用OR, 那就需要返回记录最少的索引列写在最前面.注意:WHERE KEY1 = 10 (返回最少记录)OR KEY2 = 20 (返回最多记录)ORACLE 内部将以上转换为WHERE KEY1 = 10 AND((NOT KEY1 = 10) AND KEY2 = 20)37.用IN来替换OR下面的查询可以被更有效率的语句替换:低效:SELECT….FROM LOCATIONWHERE LOC_ID = 10OR LOC_ID = 20OR LOC_ID = 30高效SELECT…FROM LOCATIONWHERE LOC_IN IN (10,20,30);译者按:这是一条简单易记的规则,但是实际的执行效果还须检验,在ORACLE8i下,两者的执行路径似乎是相同的.38.避免在索引列上使用IS NULL和IS NOT NULL避免在索引中使用任何可以为空的列,ORACLE将无法使用该索引.对于单列索引,如果列包含空值,索引中将不存在此记录. 对于复合索引,如果每个列都为空,索引中同样不存在此记录. 如果至少有一个列不为空,则记录存在于索引中.举例:如果唯一性索引建立在表的A列和B列上, 并且表中存在一条记录的A,B 值为(123,null) , ORACLE将不接受下一条具有相同A,B值(123,null)的记录(插入). 然而如果所有的索引列都为空,ORACLE将认为整个键值为空而空不等于空. 因此你可以插入1000条具有相同键值的记录,当然它们都是空!因为空值不存在于索引列中,所以WHERE子句中对索引列进行空值比较将使ORACLE停用该索引.举例:低效: (索引失效)SELECT …FROM DEPARTMENTWHERE DEPT_CODE IS NOT NULL;高效: (索引有效)SELECT …FROM DEPARTMENTWHERE DEPT_CODE >=0;39.总是使用索引的第一个列如果索引是建立在多个列上, 只有在它的第一个列(leading column)被where子句引用时,优化器才会选择使用该索引.译者按:这也是一条简单而重要的规则. 见以下实例.SQL> create table multiindexusage ( inda number , indb number , descr varchar2(10));Table created.SQL> create index multindex on multiindexusage(inda,indb);Index created.SQL> set autotrace traceonlySQL> select * from multiindexusage where inda = 1;Execution Plan----------------------------------------------------------0 SELECT STATEMENT Optimizer=CHOOSE1 0 TABLE ACCESS (BY INDEX ROWID) OF 'MULTIINDEXUSAGE'2 1 INDEX (RANGE SCAN) OF 'MULTINDEX' (NON-UNIQUE)SQL> select * from multiindexusage where indb = 1;Execution Plan----------------------------------------------------------0 SELECT STATEMENT Optimizer=CHOOSE1 0 TABLE ACCESS (FULL) OF 'MULTIINDEXUSAGE'很明显, 当仅引用索引的第二个列时,优化器使用了全表扫描而忽略了索引。

sql tuning advisor 使用方法和详细介绍

sql tuning advisor 使用方法和详细介绍

SQL Tuning Advisor是Oracle数据库自带的一个SQL优化工具,它可以帮助我们诊断、分析和优化SQL语句的性能问题。

以下是使用SQL Tuning Advisor的主要步骤:
1. 建立tunning task
首先,您需要创建一个tuning task以开始分析过程。

在Oracle中,可以使用`CREATE TABLE`和`GRANT`等命令来完成此任务。

例如,您可以通过创建测试表以及索引来开始任务,或者通过授予特定用户(如`SYSDBA`)的权限来启动任务。

2. 执行task
一旦建立了tuning task,就可以开始执行它了。

执行的过程可能需要一些时间,具体取决于您数据库的大小和复杂性。

3. 显示tunning 结果
当任务完成后,SQL Tuning Advisor会显示关于您的SQL语句性能的分析结果。

这些结果会指出可能的性能问题,并给出相应的解决建议。

4. 根据建议来运行相应的调优方法
最后一步是根据SQL Tuning Advisor给出的建议来运行相应的调优方法。

这些调优方法可能包括修改SQL语句的结构,添加或删除索引,或者对数据库进行其他配置更改等。

总的来说,SQL Tuning Advisor是一个强大的工具,可以帮助数据库管理员优化他们的SQL语句性能。

但是,它只是诊断和优化性能问题的一种工具,并不能解决所有的性能问题。

因此,在使用SQL Tuning Advisor的同时,还需要其他的技术和经验来维护和优化数据库的性
能。

常见Oracle数据库优化策略与方法

常见Oracle数据库优化策略与方法

常见Oracle数据库优化策略与方法
Oracle数据库优化是提高数据库性能的关键步骤,可以采取多种策略。

以下是一些常见的Oracle数据库优化策略:
1.硬件优化:这是最基本的优化方式。

通过升级硬件,比如增加RAM、使用
更快的磁盘、使用更强大的CPU等,可以极大地提升Oracle数据库的性能。

2.网络优化:通过优化网络连接,减少网络延迟,可以提高远程查询的效率。

3.查询优化:对SQL查询进行优化,使其更快地执行。

这包括使用更有效的
查询计划,减少全表扫描,以及使用索引等。

4.表分区:对大表进行分区可以提高查询效率。

分区可以将一个大表分成多
个小表,每个小表可以单独存储和查询。

5.数据库参数优化:调整Oracle数据库的参数设置,使其适应工作负载,可
以提高性能。

例如,调整内存分配,可以提升缓存性能。

6.数据库设计优化:例如,规范化可以减少数据冗余,而反规范化则可以提
升查询性能。

7.索引优化:创建和维护索引是提高查询性能的重要手段。

但过多的索引可
能会降低写操作的性能,因此需要权衡。

8.并行处理:对于大型查询和批量操作,可以使用并行处理来提高性能。

9.日志文件优化:适当调整日志文件的配置,可以提高恢复速度和性能。

10.监控和调优:使用Oracle提供的工具和技术监控数据库性能,定期进行性
能检查和调优。

请注意,这些策略并非一成不变,需要根据实际情况进行调整。

在进行优化时,务必先备份数据和配置,以防万一。

浅谈Oracle数据库SQL性能优化

浅谈Oracle数据库SQL性能优化

浅谈Oracle数据库SQL性能优化摘要:随着计算机信息网络技术的不断发展,数据库系统取得很大突破。

面临网络化时代的进步,人们对网络信息的需求的也变得逐渐走向多元化。

网络信息数据库存取技术逐渐被广泛运用,数据库系统规模也越来越大。

目前Oracle 就是被广泛应用的一种数据库,其信息存储量能满足人们日益增长的需求,但为了能够保证其能够流畅稳定安全地运行,应当对其进行一定的优化措施。

关键词:Oracle数据库;SQL优化随着数据库技术功能逐步增加,应用范围逐渐扩展,效果也是日渐明显。

随着网络信息吞吐量的逐步增加,数据库系统在对数据进行处理时算法变得十分繁琐。

数据库系统如果长时间的超负荷工作就会变得反应迟钝影响效率,甚至可能导致死锁。

由于天天都将会有大量的SQL语句访问Oracl数据库系统,系统需要很多时间来处理这些访问,而SQL语句直接影响到Oracl数据库系统性能,所以运用对SQL语句优化的方法来提升ORACLE数据库的性能显得十分必要。

1、对SQL进行优化的必要性数据库系统作为数据管理的主要组成部分主要作用是存储供相关人员查阅大量信息,实现网络资源共享。

查询操作在数据库系统的各种操作中居于首位,直接关系到数据库系统的运行状态。

假如数据查询操作量过大,会给系统带来很大的负担,系统反应速度变慢,严重者可能就会引起系统瘫痪。

因此,为了保证数据库系统的高效正常运行,必须对SQL语句进行优化[1]。

图1.1SQL语句优化2、SQL优化的目标往往由于SQL的结构设计的问题,很可能使得正常运行的一个数据库系统出现性能问题。

所以必须对SQL语句进行必要的调整,达到有效提升数据库系统性能的目的。

对SQL结构的优化本质就是简化繁琐的数据结构,常规方法一般就是对SQL语法进行一些调整,基本方法是把程序中繁琐的SQL语句结构简化,保持服务器的搜索数据能力处于最佳运行状态,有效降低程序中表扫描的时间,促使所以功能得以充分发挥,尽量使服务器的处理器时间和输入输出时间保持平衡。

Oracle优化器(Optimizer)

Oracle优化器(Optimizer)

Oracle优化器(Optimizer)是Oracle在执行SQL之前分析语句的工具。

Oracle的优化器有两种优化方式:基于规则的优化方式:Rule-Based Optimization(RBO)优化器在分析SQL语句时,所遵循的是Oracle内部预定的一些规则。

比如我们常见的,当一个where子句中的一列有索引时去走索引。

基于成本或者统计信息的优化方式(Cost-Based Optimization:CBO)CBO是在ORACLE7 引入,但到ORACLE8i 中才成熟。

ORACLE 已经声明在ORACLE9i之后的版本中,RBO将不再支持。

它是看语句的代价(Cost),这里的代价主要指Cpu和内存。

CPU Costing的计算方式现在默认为CPU+I/O两者之和.可通过DBMS_XPLAN.DISPLAY_CURSOR观察更为详细的执行计划。

优化器在判断是否用这种方式时,主要参照的是表及索引的统计信息。

统计信息给出表的大小、有少行、每行的长度等信息。

这些统计信息起初在库内是没有的,是做analyze后才出现的,很多的时侯过期统计信息会令优化器做出一个错误的执行计划,因些应及时更新这些信息。

按理,CBO应该自动收集,实际却不然,有时候在CBO情况下,还必须定期对大表进行分析。

Oracle优化器的优化模式:1) CHOOSE仅在9i及之前版本中被支持,10g已经废除。

8i及9i中为默认值。

这个值表示SQL语句既可以使用RBO优化器也可以使用CBO优化器,而决定该SQL到底使用哪个优化器的唯一因素是,所访问的对象是否存在统计信息。

如果所访问的全部对象都存在统计信息,则使用CBO 优化器优化SQL;如果只有部分对象存在统计信息,也仍然使用CBO优化器优化SQL,优化器会为不存在统计信息对象依据一些内在信息(如分配给该对象的数据块)来生成统计信息,只是这样生成的统计信息可能不准确,而导致产生不理想的执行计划;如果全部对象都无统计信息,则使用RBO来优化该SQL 语句。

oracle性能优化149页PPT

oracle性能优化149页PPT

合理运用技术的重要性
二.性能优化分析基本工具的使用
工欲善其事,必先利其器
SQL量化分析和优化工具:
EXPLAIN
SQL*TRACE TKPROF
4种基本的诊断分析工具
AUTO*TRACE
AWR
ADDM
SQL*PROFILING
SQL ACCESS ADVISOR
SQL TUNING ADVISOR
ASH
SQL语句到底是怎么执行的
最经典的执行计划分析工具---EXPLAIN 可以快速的了解语句的执行过程。 目前几乎所有的开发工具(PLSQL developer、toad
等)都有图形化界面,可以直接的分析语句的执行 计划。但如银行类的客户不允许使用工具。
如何配套使用SQL*TRACE和 TKPROF
一. Oracle数据库性能优化方法论
WHY WHO WHAT HOW WHEN
--Why tunes? --Who tunes? --What to tune? --How to tune? --When to tune?
为什么(why)要优化
--系统慢了? --其实慢只是表象 --距离找到慢的原因可能路还很长…
索引未被使用的原因
1.不要轻易的在字段前加函数 2.尽量不要将字段嵌入表达式中 3.避免字符转换 4.索引列的选择性不高 5.索引列值是否可为空(NULL) 6.检查被索引的列或组合索引的首列是否出现在
PL/SQL语句的WHERE子句中 7.优化器的选择
复合索引
1. 前缀性(Prefixing) 复合索引的前缀性是指只有当复合索引的第一个字 段出现在SQL语句的谓词条件中时,该索引才会被用 到。 2. 可选性(Selectivity) Oracle建议复合索引应按字段可选性(即值的多少) 的高低进行排列,这是因为,字段值越多,可选性 越强,定位的记录就越少,查询效率就越高。

第09章Oracle的性能优化

第09章Oracle的性能优化

9.2 SQL语句的优化
9.2.1 SQL语句的优化规则 9.2.2 SQL语句优化的具体方法
9.2.1 SQL语句的优化规则
(1)去掉不必要的大表、全表扫描。不必要的大表、全表 扫描会造成不必要的输入输出,而且还会拖垮整个数据库;
(2)检查优化索引的使用 这对于提高查询速度来说非常重 要;
(3)检查子查询,考虑SQL子查询是否可以用简单连接的 方式进行重新书写;
系统的服务器,可以使用sar –u命令查看CPU的使用率;NT 操作系统的服务器,可以使用NT的性能管理器来查看CPU 的使用率。
出现CPU资源不足的情况是很多的:SQL语句的重解析、 低效率的SQL语句、锁冲突都会引起CPU资源不足。
2.查看SQL语句的解析情况 (1)数据库管理员可以执行下述语句来查看SQL语句的解析 情况:
9.3 Oracle运行环境的优化
9.3.1 内存结构的调整 9.3.2 物理I/O的调整 9.3.3 CPU的优化调整 9.3.4 网络配置的优化 9.3.5 Oracle碎片整理 9.3.6 Oracle系统参数的调整
9.3.1 内存结构的调整
内存参数的调整主要是指Oracle数据库的系统全局区 (SGA)的调整。SGA主要由三部分构成:共享池、数 据缓冲区、日志缓冲区。
2.数据缓冲区 数据库管理员可以通过下述语句,来查看数据库数据缓冲区
的使用情况。
SELECT name, FROM v$sysstat WHERE name IN ('db block gets','consistent gets','physical reads');
根据查询出来的结果可以计算出数据缓冲区的使用命中率:

oracle_sql_optimize

oracle_sql_optimize

Oracle sql 性能优化调整1. 选用适合的ORACLE优化器ORACLE的优化器共有3种:a. RULE (基于规则)b. COST (基于成本)c. CHOOSE (选择性)设置缺省的优化器,可以通过对init.ora文件中OPTIMIZER_MODE参数的各种声明,如RULE,COST,CHOOSE,ALL_ROWS,FIRST_ROWS . 你当然也在SQL句级或是会话(session)级对其进行覆盖.为了使用基于成本的优化器(CBO, Cost-Based Optimizer) , 你必须经常运行analyze 命令,以增加数据库中的对象统计信息(object statistics)的准确性.如果数据库的优化器模式设置为选择性(CHOOSE),那么实际的优化器模式将和是否运行过analyze命令有关. 如果table已经被analyze过, 优化器模式将自动成为CBO , 反之,数据库将采用RULE形式的优化器.在缺省情况下,ORACLE采用CHOOSE优化器, 为了避免那些不必要的全表扫描(full table scan) , 你必须尽量避免使用CHOOSE优化器,而直接采用基于规则或者基于成本的优化器.2.访问Table的方式ORACLE 采用两种访问表中记录的方式:a.全表扫描全表扫描就是顺序地访问表中每条记录. ORACLE采用一次读入多个数据块(database block)的方式优化全表扫描.b.通过ROWID访问表你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.3.共享SQL语句为了不重复解析相同的SQL语句,在第一次解析之后, ORACLE将SQL语句存放在内存中.这块位于系统全局区域SGA(system global area)的共享池(shared buffer pool)中的内存可以被所有的数据库用户共享.因此,当你执行一个SQL语句(有时被称为一个游标)时,如果它和之前的执行过的语句完全相同, ORACLE就能很快获得已经被解析的语句以及最好的执行路径. ORACLE的这个功能大大地提高了SQL的执行性能并节省了内存的使用.可惜的是ORACLE只对简单的表提供高速缓冲(cache buffering) ,这个功能并不适用于多表连接查询.数据库管理员必须在init.ora中为这个区域设置合适的参数,当这个内存区域越大,就可以保留更多的语句,当然被共享的可能性也就越大了.当你向ORACLE 提交一个SQL语句,ORACLE会首先在这块内存中查找相同的语句.这里需要注明的是,ORACLE对两者采取的是一种严格匹配,要达成共享,SQL语句必须完全相同(包括空格,换行等).共享的语句必须满足三个条件:A.字符级的比较:当前被执行的语句和共享池中的语句必须完全相同.例如:SELECT * FROM EMP;和下列每一个都不同SELECT * from EMP;Select * From Emp;SELECT * FROM EMP;B.两个语句所指的对象必须完全相同:例如:用户对象名如何访问Jack sal_limit private synonymWork_city public synonymPlant_detail public synonymJill sal_limit private synonymWork_city public synonymPlant_detail table owner考虑一下下列SQL语句能否在这两个用户之间共享.C.两个SQL语句中必须使用相同的名字的绑定变量(bind variables)例如:第一组的两个SQL语句是相同的(可以共享),而第二组中的两个语句是不同的(即使在运行时,赋于不同的绑定变量相同的值)a.select pin , name from people where pin = :blk1.pin;select pin , name from people where pin = :blk1.pin;b.select pin , name from people where pin = :blk1.ot_ind;select pin , name from people where pin = :blk1.ov_ind;4. 选择最有效率的表名顺序(只在基于规则的优化器中有效)ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,因此FROM子句中写在最后的表(基础表driving table)将被最先处理.在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表.当ORACLE处理多个表时, 会运用排序及合并的方式连接它们.首先,扫描第一个表(FROM子句中最后的那个表)并对记录进行派序,然后扫描第二个表(FROM子句中最后第二个表),最后将所有从第二个表中检索出的记录与第一个表中合适记录进行合并.例如: 表TAB1 16,384 条记录表TAB2 1 条记录选择TAB2作为基础表(最好的方法)select count(*) from tab1,tab2 执行时间0.96秒选择TAB2作为基础表(不佳的方法)select count(*) from tab2,tab1 执行时间26.09秒如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.例如: EMP表描述了LOCATION表和CATEGORY表的交集.SELECT *FROM LOCATION L ,CATEGORY C,EMP EWHERE E.EMP_NO BETWEEN 1000 AND 2000AND E.CAT_NO = C.CAT_NOAND E.LOCN = L.LOCN将比下列SQL更有效率SELECT *FROM EMP E ,LOCATION L ,CATEGORY CWHERE E.CAT_NO = C.CA T_NOAND E.LOCN = L.LOCNAND E.EMP_NO BETWEEN 1000 AND 20005.WHERE子句中的连接顺序.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.例如:(低效,执行时间156.3秒)SELECT …FROM EMP EWHERE SAL > 50000AND JOB = ‘MANAGER’AND 25 < (SELECT COUNT(*) FROM EMPWHERE MGR=E.EMPNO);(高效,执行时间10.6秒)SELECT …FROM EMP EWHERE 25 < (SELECT COUNT(*) FROM EMPWHERE MGR=E.EMPNO)AND SAL > 50000AND JOB = ‘MANAGER’;6.SELECT子句中避免使用‘ * ‘当你想在SELECT子句中列出所有的COLUMN时,使用动态SQL列引用‘*’ 是一个方便的方法.不幸的是,这是一个非常低效的方法. 实际上,ORACLE在解析的过程中, 会将’*’ 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间.7.减少访问数据库的次数当执行每条SQL语句时, ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量, 读数据块等等. 由此可见, 减少访问数据库的次数, 就能实际上减少ORACLE的工作量.例如,以下有三种方法可以检索出雇员号等于0342或0291的职员.方法1 (最低效)SELECT EMP_NAME , SALARY , GRADEFROM EMPWHERE EMP_NO = 342;SELECT EMP_NAME , SALARY , GRADEFROM EMPWHERE EMP_NO = 291;方法2 (次低效)DECLARECURSOR C1 (E_NO NUMBER) ISSELECT EMP_NAME,SALARY,GRADEFROM EMPWHERE EMP_NO = E_NO;BEGINOPEN C1(342);SELECT C1 INTO …,…,…;FETCH C1 INTO …,..,.. ;OPEN C1(291);FETCH C1 INTO …,..,.. ;CLOSE C1;END;方法3 (高效)SELECT A.EMP_NAME , A.SALARY , A.GRADE,B.EMP_NAME , B.SALARY , B.GRADEFROM EMP A,EMP BWHERE A.EMP_NO = 342AND B.EMP_NO = 291;注意:在SQL*Plus , SQL*Forms和Pro*C中重新设置ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量,建议值为200.8.使用DECODE函数来减少处理时间使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表.例如:SELECT COUNT(*),SUM(SAL)FROM EMPWHERE DEPT_NO = 0020AND ENAME LIKE‘SMITH%’;SELECT COUNT(*),SUM(SAL)FROM EMPWHERE DEPT_NO = 0030AND ENAME LIKE‘SMITH%’;你可以用DECODE函数高效地得到相同结果SELECT COUNT(DECODE(DEPT_NO,0020,’X’,NULL)) D0020_COUNT,COUNT(DECODE(DEPT_NO,0030,’X’,NULL)) D0030_COUNT,SUM(DECODE(DEPT_NO,0020,SAL,NULL)) D0020_SAL,SUM(DECODE(DEPT_NO,0030,SAL,NULL)) D0030_SALFROM EMP WHERE ENAME LIKE ‘SMITH%’;类似的,DECODE函数也可以运用于GROUP BY 和ORDER BY子句中.9.整合简单,无关联的数据库访问如果你有几个简单的数据库查询语句,你可以把它们整合到一个查询中(即使它们之间没有关系)例如:SELECT NAMEFROM EMPWHERE EMP_NO = 1234;SELECT NAMEFROM DPTWHERE DPT_NO = 10 ;SELECT NAMEFROM CATWHERE CAT_TYPE = ‘RD’;上面的3个查询可以被合并成一个:SELECT , , FROM CAT C , DPT D , EMP E,DUAL XWHERE NVL(‘X’,X.DUMMY) = NVL(‘X’,E.ROWID(+))AND NVL(‘X’,X.DUMMY) = NVL(‘X’,D.ROWID(+))AND NVL(‘X’,X.DUMMY) = NVL(‘X’,C.ROWID(+))AND E.EMP_NO(+) = 1234AND D.DEPT_NO(+) = 10AND C.CAT_TYPE(+) = ‘RD’;(译者按: 虽然采取这种方法,效率得到提高,但是程序的可读性大大降低,所以读者还是要权衡之间的利弊)10.删除重复记录最高效的删除重复记录方法( 因为使用了ROWID)DELETE FROM EMP EWHERE E.ROWID > (SELECT MIN(X.ROWID)FROM EMP XWHERE X.EMP_NO = E.EMP_NO);11.用TRUNCATE替代DELETE当删除表中的记录时,在通常情况下, 回滚段(rollback segments ) 用来存放可以被恢复的信息. 如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况)而当运用TRUNCATE时, 回滚段不再存放任何可被恢复的信息.当命令运行后,数据不能被恢复.因此很少的资源被调用,执行时间也会很短.(译者按: TRUNCATE只在删除全表适用,TRUNCATE是DDL不是DML)12.尽量多使用COMMIT只要有可能,在程序中尽量多使用COMMIT, 这样程序的性能得到提高,需求也会因为COMMIT所释放的资源而减少:COMMIT所释放的资源:a.回滚段上用于恢复数据的信息.b.被程序语句获得的锁c.redo log buffer 中的空间d.ORACLE为管理上述3种资源中的内部花费(译者按: 在使用COMMIT时必须要注意到事务的完整性,现实中效率和事务完整性往往是鱼和熊掌不可得兼)13.计算记录条数和一般的观点相反, count(*) 比count(1)稍快, 当然如果可以通过索引检索,对索引列的计数仍旧是最快的. 例如COUNT(EMPNO)(译者按: 在CSDN论坛中,曾经对此有过相当热烈的讨论, 作者的观点并不十分准确,通过实际的测试,上述三种方法并没有显著的性能差别)14.用Where子句替换HA VING子句避免使用HA VING子句, HA VING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销.例如:低效:SELECT REGION,A VG(LOG_SIZE)FROM LOCATIONGROUP BY REGIONHA VING REGION REGION != ‘SYDNEY’AND REGION != ‘PERTH’高效SELECT REGION,A VG(LOG_SIZE)FROM LOCATIONW HERE REGION REGION != ‘SYDNEY’AND REGION != ‘PERTH’GROUP BY REGION(译者按: HAVING 中的条件一般用于对一些集合函数的比较,如COUNT() 等等. 除此而外,一般的条件应该写在WHERE子句中)15.减少对表的查询在含有子查询的SQL语句中,要特别注意减少对表的查询.例如:低效SELECT TAB_NAMEFROM TABLESWHERE TAB_NAME = ( SELECT TAB_NAMEFROM TAB_COLUMNSWHERE VERSION = 604)AND DB_VER= ( SELECT DB_VERFROM TAB_COLUMNSWHERE VERSION = 604)高效SELECT TAB_NAMEFROM TABLESWHERE (TAB_NAME,DB_VER)= ( SELECT TAB_NAME,DB_VER)FROM TAB_COLUMNSWHERE VERSION = 604)Update 多个Column 例子:低效:UPDA TE EMPSET EMP_CAT = (SELECT MAX(CATEGORY) FROM EMP_CATEGORIES), SAL_RANGE = (SELECT MAX(SAL_RANGE) FROM EMP_CA TEGORIES) WHERE EMP_DEPT = 0020;高效:UPDA TE EMPSET (EMP_CA T, SAL_RANGE)= (SELECT MAX(CATEGORY) , MAX(SAL_RANGE)FROM EMP_CATEGORIES)WHERE EMP_DEPT = 0020;16.通过内部函数提高SQL效率.SELECT H.EMPNO,E.ENAME,H.HIST_TYPE,T.TYPE_DESC,COUNT(*)FROM HISTORY_TYPE T,EMP E,EMP_HISTORY HWHERE H.EMPNO = E.EMPNOAND H.HIST_TYPE = T.HIST_TYPEGROUP BY H.EMPNO,E.ENAME,H.HIST_TYPE,T.TYPE_DESC;通过调用下面的函数可以提高效率.FUNCTION LOOKUP_HIST_TYPE(TYP IN NUMBER) RETURN V ARCHAR2 ASTDESC V ARCHAR2(30);CURSOR C1 ISSELECT TYPE_DESCFROM HISTORY_TYPEWHERE HIST_TYPE = TYP;BEGINOPEN C1;FETCH C1 INTO TDESC;CLOSE C1;RETURN (NVL(TDESC,’?’));END;FUNCTION LOOKUP_EMP(EMP IN NUMBER) RETURN V ARCHAR2ASENAME V ARCHAR2(30);CURSOR C1 ISSELECT ENAMEFROM EMPWHERE EMPNO=EMP;BEGINOPEN C1;FETCH C1 INTO ENAME;CLOSE C1;RETURN (NVL(ENAME,’?’));END;SELECT H.EMPNO,LOOKUP_EMP(H.EMPNO),H.HIST_TYPE,LOOKUP_HIST_TYPE(H.HIST_TYPE),COUNT(*)FROM EMP_HISTORY HGROUP BY H.EMPNO , H.HIST_TYPE;(译者按: 经常在论坛中看到如’能不能用一个SQL写出….’ 的贴子, 殊不知复杂的SQL 往往牺牲了执行效率. 能够掌握上面的运用函数解决问题的方法在实际工作中是非常有意义的)17.使用表的别名(Alias)当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误.(译者注: Column歧义指的是由于SQL中不同的表具有相同的Column名,当SQL语句中出现这个Column时,SQL解析器无法判断这个Column的归属)18.用EXISTS替代IN在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS)通常将提高查询的效率.低效:SELECT *FROM EMP (基础表)WHERE EMPNO > 0AND DEPTNO IN (SELECT DEPTNOFROM DEPTWHERE LOC = ‘MELB’)高效:SELECT *FROM EMP (基础表)WHERE EMPNO > 0AND EXISTS (SELECT *FROM DEPTWHERE DEPT.DEPTNO = EMP.DEPTNOAND LOC = ‘MELB’)(译者按: 相对来说,用NOT EXISTS替换NOT IN 将更显著地提高效率,下一节中将指出) 19.用NOT EXISTS替代NOT IN在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的(因为它对子查询中的表执行了一个全表遍历). 为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS.例如:SELECT …FROM EMPWHERE DEPT_NO NOT IN (SELECT DEPT_NOFROM DEPTWHERE DEPT_CA T=’A’);为了提高效率.改写为:(方法一: 高效)SELECT ….FROM EMP A,DEPT BWHERE A.DEPT_NO = B.DEPT(+)AND B.DEPT_NO IS NULLAND B.DEPT_CAT(+) = ‘A’(方法二: 最高效)SELECT ….FROM EMP EWHERE NOT EXISTS(SELECT ‘X’FROM DEPT DWHERE D.DEPT_NO = E.DEPT_NOAND DEPT_CAT = ‘A’);20.用表连接替换EXISTS通常来说, 采用表连接的方式比EXISTS更有效率SELECT ENAMEFROM EMP EWHERE EXISTS (SELECT ‘X’FROM DEPTWHERE DEPT_NO = E.DEPT_NOAND DEPT_CAT = ‘A’);(更高效)SELECT ENAMEFROM DEPT D,EMP EWHERE E.DEPT_NO = D.DEPT_NOAND DEPT_CAT = ‘A’ ;(译者按: 在RBO的情况下,前者的执行路径包括FILTER,后者使用NESTED LOOP) 21.用EXISTS替换DISTINCT ????????????????当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT. 一般可以考虑用EXIST替换例如:低效:SELECT DISTINCT DEPT_NO,DEPT_NAMEFROM DEPT D,EMP EWHERE D.DEPT_NO = E.DEPT_NO高效:SELECT DEPT_NO,DEPT_NAMEFROM DEPT DWHERE EXISTS ( SELECT ‘X’FROM EMP EWHERE E.DEPT_NO = D.DEPT_NO);EXISTS 使查询更为迅速,因为RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果.22.识别’低效执行’的SQL语句用下列SQL工具找出低效SQL:SELECT EXECUTIONS , DISK_READS, BUFFER_GETS,ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio,ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run,SQL_TEXTFROM V$SQLAREAWHERE EXECUTIONS>0AND BUFFER_GETS > 0AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8ORDER BY 4 DESC;(译者按: 虽然目前各种关于SQL优化的图形化工具层出不穷,但是写出自己的SQL工具来解决问题始终是一个最好的方法)23.使用TKPROF 工具来查询SQL性能状态SQL trace 工具收集正在执行的SQL的性能状态数据并记录到一个跟踪文件中. 这个跟踪文件提供了许多有用的信息,例如解析次数.执行次数,CPU使用时间等.这些数据将可以用来优化你的系统.设置SQL TRACE在会话级别: 有效ALTER SESSION SET SQL_TRACE TRUE设置SQL TRACE 在整个数据库有效仿, 你必须将SQL_TRACE参数在init.ora中设为TRUE, USER_DUMP_DEST参数说明了生成跟踪文件的目录(译者按: 这一节中,作者并没有提到TKPROF的用法, 对SQL TRACE的用法也不够准确, 设置SQL TRACE首先要在init.ora中设定TIMED_STATISTICS, 这样才能得到那些重要的时间状态. 生成的trace文件是不可读的,所以要用TKPROF工具对其进行转换,TKPROF 有许多执行参数. 大家可以参考ORACLE手册来了解具体的配置. )24.用EXPLAIN PLAN 分析SQL语句EXPLAIN PLAN 是一个很好的分析SQL语句的工具,它甚至可以在不执行SQL的情况下分析语句. 通过分析,我们就可以知道ORACLE是怎么样连接表,使用什么方式扫描表(索引扫描或全表扫描)以及使用到的索引名称.你需要按照从里到外,从上到下的次序解读分析的结果. EXPLAIN PLAN分析的结果是用缩进的格式排列的, 最内部的操作将被最先解读, 如果两个操作处于同一层中,带有最小操作号的将被首先执行.NESTED LOOP是少数不按照上述规则处理的操作, 正确的执行路径是检查对NESTED LOOP提供数据的操作,其中操作号最小的将被最先处理.译者按:通过实践, 感到还是用SQLPLUS中的SET TRACE 功能比较方便.举例:SQL> list1 SELECT *2 FROM dept, emp3* WHERE emp.deptno = dept.deptnoSQL> set autotrace traceonly /*traceonly 可以不显示执行结果*/ SQL> /14 rows selected.Execution Plan----------------------------------------------------------0 SELECT STATEMENT Optimizer=CHOOSE1 0 NESTED LOOPS2 1 TABLE ACCESS (FULL) OF 'EMP'3 1 TABLE ACCESS (BY INDEX ROWID) OF 'DEPT'4 3 INDEX (UNIQUE SCAN) OF 'PK_DEPT' (UNIQUE)Statistics----------------------------------------------------------0 recursive calls2 db block gets30 consistent gets0 physical reads0 redo size2598 bytes sent via SQL*Net to client503 bytes received via SQL*Net from client2 SQL*Net roundtrips to/from client0 sorts (memory)0 sorts (disk)14 rows processed通过以上分析,可以得出实际的执行步骤是:1.TABLE ACCESS (FULL) OF 'EMP'2.INDEX (UNIQUE SCAN) OF 'PK_DEPT' (UNIQUE)3.TABLE ACCESS (BY INDEX ROWID) OF 'DEPT'4.NESTED LOOPS (JOINING 1 AND 3)注: 目前许多第三方的工具如TOAD和ORACLE本身提供的工具如OMS的SQL Analyze 都提供了极其方便的EXPLAIN PLAN工具.也许喜欢图形化界面的朋友们可以选用它们. 25.用索引提高效率索引是表的一个概念部分,用来提高检索数据的效率. 实际上,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Update语句的最佳路径时, ORACLE优化器将使用索引. 同样在联结多个表时使用索引也可以提高效率. 另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证.除了那些LONG或LONG RAW数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效. 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率.虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价. 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出4 , 5 次的磁盘I/O . 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢.译者按:定期的重构索引是有必要的.ALTER INDEX <INDEXNAME> REBUILD <TABLESPACENAME>26.索引的操作ORACLE对索引有两种访问模式.索引唯一扫描 ( INDEX UNIQUE SCAN)大多数情况下, 优化器通过WHERE子句访问INDEX.例如:表LODGING有两个索引 : 建立在LODGING列上的唯一性索引LODGING_PK 和建立在MANAGER列上的非唯一性索引LODGING$MANAGER.SELECT *FROM LODGINGWHERE LODGING = ‘ROSE HILL’;在内部 , 上述SQL将被分成两步执行, 首先 , LODGING_PK 索引将通过索引唯一扫描的方式被访问 , 获得相对应的ROWID, 通过ROWID访问表的方式执行下一步检索.如果被检索返回的列包括在INDEX列中,ORACLE将不执行第二步的处理(通过ROWID访问表). 因为检索数据保存在索引中, 单单访问索引就可以完全满足查询结果.下面SQL只需要INDEX UNIQUE SCAN 操作.SELECT LODGINGFROM LODGINGWHERE LODGING = ‘ROSE HILL’;索引范围查询(INDEX RANGE SCAN)适用于两种情况:1.基于一个范围的检索2.基于非唯一性索引的检索例1:SELECT LODGINGFROM LODGINGWHERE LODGING LIKE ‘M%’;WHERE子句条件包括一系列值, ORACLE将通过索引范围查询的方式查询LODGING_PK . 由于索引范围查询将返回一组值, 它的效率就要比索引唯一扫描低一些.例2:SELECT LODGINGFROM LODGINGWHERE MANAGER = ‘BILL GATES’;这个SQL的执行分两步, LODGING$MANAGER的索引范围查询(得到所有符合条件记录的ROWID) 和下一步同过ROWID访问表得到LODGING列的值. 由于LODGING$MANAGER是一个非唯一性的索引,数据库不能对它执行索引唯一扫描.由于SQL返回LODGING列,而它并不存在于LODGING$MANAGER索引中, 所以在索引范围查询后会执行一个通过ROWID访问表的操作.WHERE子句中, 如果索引列所对应的值的第一个字符由通配符(WILDCARD)开始, 索引将不被采用.SELECT LODGINGFROM LODGINGWHERE MANAGER LIKE ‘%HANMAN’;在这种情况下,ORACLE将使用全表扫描.27.基础表的选择基础表(Driving Table)是指被最先访问的表(通常以全表扫描的方式被访问). 根据优化器的不同, SQL语句中基础表的选择是不一样的.如果你使用的是CBO (COST BASED OPTIMIZER),优化器会检查SQL语句中的每个表的物理大小,索引的状态,然后选用花费最低的执行路径.如果你用RBO (RULE BASED OPTIMIZER) , 并且所有的连接条件都有索引对应, 在这种情况下, 基础表就是FROM 子句中列在最后的那个表.举例:SELECT , B.MANAGERFROM WORKER A,LODGING BWHERE A.LODGING = B.LODING;由于LODGING表的LODING列上有一个索引, 而且WORKER表中没有相比较的索引, WORKER表将被作为查询中的基础表.28.多个平等的索引当SQL语句的执行路径可以使用分布在多个表上的多个索引时, ORACLE会同时使用多个索引并在运行时对它们的记录进行合并, 检索出仅对全部索引有效的记录.在ORACLE选择执行路径时,唯一性索引的等级高于非唯一性索引. 然而这个规则只有当WHERE子句中索引列和常量比较才有效.如果索引列和其他表的索引类相比较. 这种子句在优化器中的等级是非常低的.如果不同表中两个想同等级的索引将被引用, FROM子句中表的顺序将决定哪个会被率先使用. FROM子句中最后的表的索引将有最高的优先级.如果相同表中两个想同等级的索引将被引用, WHERE子句中最先被引用的索引将有最高的优先级.举例:DEPTNO上有一个非唯一性索引,EMP_CAT也有一个非唯一性索引.SELECT ENAME,FROM EMPWHERE DEPT_NO = 20AND EMP_CAT = ‘A’;这里,DEPTNO索引将被最先检索,然后同EMP_CAT索引检索出的记录进行合并. 执行路径如下:TABLE ACCESS BY ROWID ON EMPAND-EQUALINDEX RANGE SCAN ON DEPT_IDXINDEX RANGE SCAN ON CAT_IDX29.等式比较和范围比较当WHERE子句中有索引列, ORACLE不能合并它们,ORACLE将用范围比较.举例:DEPTNO上有一个非唯一性索引,EMP_CAT也有一个非唯一性索引.SELECT ENAMEFROM EMPWHERE DEPTNO > 20AND EMP_CAT = ‘A’;这里只有EMP_CAT索引被用到,然后所有的记录将逐条与DEPTNO条件进行比较. 执行路径如下:TABLE ACCESS BY ROWID ON EMPINDEX RANGE SCAN ON CAT_IDX30.不明确的索引等级当ORACLE无法判断索引的等级高低差别,优化器将只使用一个索引,它就是在WHERE子句中被列在最前面的.举例:DEPTNO上有一个非唯一性索引,EMP_CAT也有一个非唯一性索引.SELECT ENAMEFROM EMPWHERE DEPTNO > 20AND EMP_CAT > ‘A’;这里, ORACLE只用到了DEPT_NO索引. 执行路径如下:TABLE ACCESS BY ROWID ON EMPINDEX RANGE SCAN ON DEPT_IDX译者按:我们来试一下以下这种情况:SQL> select index_name, uniqueness from user_indexes wheretable_name = 'EMP';INDEX_NAME UNIQUENES------------------------------ ---------EMPNO UNIQUEEMPTYPE NONUNIQUESQL> select * from emp where empno >= 2 and emp_type = 'A' ;no rows selectedExecution Plan----------------------------------------------------------0 SELECT STATEMENT Optimizer=CHOOSE1 0 TABLE ACCESS (BY INDEX ROWID) OF 'EMP'2 1 INDEX (RANGE SCAN) OF 'EMPTYPE' (NON-UNIQUE)虽然EMPNO是唯一性索引,但是由于它所做的是范围比较, 等级要比非唯一性索引的等式比较低!31.强制索引失效如果两个或以上索引具有相同的等级,你可以强制命令ORACLE优化器使用其中的一个(通过它,检索出的记录数量少) .举例:SELECT ENAMEFROM EMPWHERE EMPNO = 7935AND DEPTNO + 0 = 10 /*DEPTNO上的索引将失效*/AND EMP_TYPE || ‘’ = ‘A’ /*EMP_TYPE上的索引将失效*/这是一种相当直接的提高查询效率的办法. 但是你必须谨慎考虑这种策略,一般来说,只有在你希望单独优化几个SQL时才能采用它.这里有一个例子关于何时采用这种策略,假设在EMP表的EMP_TYPE列上有一个非唯一性的索引而EMP_CLASS上没有索引.SELECT ENAMEFROM EMPWHERE EMP_TYPE = ‘A’AND EMP_CLASS = ‘X’;优化器会注意到EMP_TYPE上的索引并使用它. 这是目前唯一的选择. 如果,一段时间以后, 另一个非唯一性建立在EMP_CLASS上,优化器必须对两个索引进行选择,在通常情况下,优化器将使用两个索引并在他们的结果集合上执行排序及合并. 然而,如果其中一个索引(EMP_TYPE)接近于唯一性而另一个索引(EMP_CLASS)上有几千个重复的值. 排序及合并就会成为一种不必要的负担. 在这种情况下,你希望使优化器屏蔽掉EMP_CLASS索引.用下面的方案就可以解决问题.SELECT ENAMEFROM EMPWHERE EMP_TYPE = ‘A’AND EMP_CLASS||’’= ‘X’;32.避免在索引列上使用计算.WHERE子句中,如果索引列是函数的一部分.优化器将不使用索引而使用全表扫描.举例:低效:SELECT …FROM DEPTWHERE SAL * 12 > 25000;高效:SELECT …FROM DEPTWHERE SAL > 25000/12;译者按:这是一个非常实用的规则,请务必牢记33.自动选择索引如果表中有两个以上(包括两个)索引,其中有一个唯一性索引,而其他是非唯一性.在这种情况下,ORACLE将使用唯一性索引而完全忽略非唯一性索引.举例:SELECT ENAMEFROM EMPWHERE EMPNO = 2326AND DEPTNO = 20 ;这里,只有EMPNO上的索引是唯一性的,所以EMPNO索引将用来检索记录.TABLE ACCESS BY ROWID ON EMPINDEX UNIQUE SCAN ON EMP_NO_IDX34.避免在索引列上使用NOT通常,我们要避免在索引列上使用NOT, NOT会产生在和在索引列上使用函数相同的影响. 当ORACLE”遇到”NOT,他就会停止使用索引转而执行全表扫描.举例:低效: (这里,不使用索引)SELECT …FROM DEPTWHERE DEPT_CODE NOT = 0;高效: (这里,使用了索引)SELECT …FROM DEPTWHERE DEPT_CODE > 0;需要注意的是,在某些时候, ORACLE优化器会自动将NOT转化成相对应的关系操作符.NOT > to <=NOT >= to <NOT < to >=NOT <= to >译者按:在这个例子中,作者犯了一些错误. 例子中的低效率SQL是不能被执行的. 我做了一些测试:SQL> select * from emp where NOT empno > 1;no rows selectedExecution Plan----------------------------------------------------------0 SELECT STATEMENT Optimizer=CHOOSE1 0 TABLE ACCESS (BY INDEX ROWID) OF 'EMP'2 1 INDEX (RANGE SCAN) OF 'EMPNO' (UNIQUE)SQL> select * from emp where empno <= 1;no rows selectedExecution Plan----------------------------------------------------------0 SELECT STATEMENT Optimizer=CHOOSE1 0 TABLE ACCESS (BY INDEX ROWID) OF 'EMP'2 1 INDEX (RANGE SCAN) OF 'EMPNO' (UNIQUE)两者的效率完全一样,也许这符合作者关于” 在某些时候, ORACLE优化器会自动将NOT转化成相对应的关系操作符” 的观点.35.用>=替代>如果DEPTNO上有一个索引,高效:SELECT *FROM EMPWHERE DEPTNO >=4低效:SELECT *FROM EMPWHERE DEPTNO >3两者的区别在于,前者DBMS将直接跳到第一个DEPT等于4的记录而后者将首先定位到DEPTNO=3的记录并且向前扫描到第一个DEPT大于3的记录. 36.用UNION替换OR (适用于索引列)通常情况下, 用UNION替换WHERE子句中的OR将会起到较好的效果. 对索引列使用OR将造成全表扫描. 注意, 以上规则只针对多个索引列有效. 如果有column没有被索引, 查询效率可能会因为你没有选择OR而降低.在下面的例子中, LOC_ID 和REGION上都建有索引.高效:SELECT LOC_ID , LOC_DESC , REGIONFROM LOCATIONWHERE LOC_ID = 10UNIONSELECT LOC_ID , LOC_DESC , REGIONFROM LOCATIONWHERE REGION = “MELBOURNE”低效:SELECT LOC_ID , LOC_DESC , REGIONFROM LOCATIONWHERE LOC_ID = 10 O R REGION = “MELBOURNE”如果你坚持要用OR, 那就需要返回记录最少的索引列写在最前面.注意:WHERE KEY1 = 10 (返回最少记录)OR KEY2 = 20 (返回最多记录)ORACLE 内部将以上转换为WHERE KEY1 = 10 AND((NOT KEY1 = 10) AND KEY2 = 20)37.用IN来替换OR下面的查询可以被更有效率的语句替换:低效:SELECT….FROM LOCATIONWHERE LOC_ID = 10OR LOC_ID = 20OR LOC_ID = 30高效SELECT…FROM LOCATIONWHERE LOC_IN IN (10,20,30);译者按:这是一条简单易记的规则,但是实际的执行效果还须检验,在ORACLE8i下,两者的执行路径似乎是相同的.38.避免在索引列上使用IS NULL和IS NOT NULL避免在索引中使用任何可以为空的列,ORACLE将无法使用该索引.对于单列索引,如果列包含空值,索引中将不存在此记录. 对于复合索引,如果每个列都为空,索引中同样不存在此记录. 如果至少有一个列不为空,则记录存在于索引中.举例:如果唯一性索引建立在表的A列和B列上, 并且表中存在一条记录的A,B 值为(123,null) , ORACLE将不接受下一条具有相同A,B值(123,null)的记录(插入). 然而如果所有的索引列都为空,ORACLE将认为整个键值为空而空不等于空. 因此你可以插入1000条具有相同键值的记录,当然它们都是空!因为空值不存在于索引列中,所以WHERE子句中对索引列进行空值比较将使ORACLE停用该索引.举例:低效: (索引失效)SELECT …FROM DEPARTMENTWHERE DEPT_CODE IS NOT NULL;高效: (索引有效)SELECT …FROM DEPARTMENTWHERE DEPT_CODE >=0;39.总是使用索引的第一个列如果索引是建立在多个列上, 只有在它的第一个列(leading column)被where子句引用时,优化器才会选择使用该索引.译者按:这也是一条简单而重要的规则. 见以下实例.SQL> create table multiindexusage ( inda number , indb number , descr varchar2(10));Table created.SQL> create index multindex on multiindexusage(inda,indb);Index created.SQL> set autotrace traceonlySQL> select * from multiindexusage where inda = 1;Execution Plan----------------------------------------------------------0 SELECT STATEMENT Optimizer=CHOOSE1 0 TABLE ACCESS (BY INDEX ROWID) OF 'MULTIINDEXUSAGE'2 1 INDEX (RANGE SCAN) OF 'MULTINDEX' (NON-UNIQUE)SQL> select * from multiindexusage where indb = 1;Execution Plan----------------------------------------------------------0 SELECT STATEMENT Optimizer=CHOOSE1 0 TABLE ACCESS (FULL) OF 'MULTIINDEXUSAGE'很明显, 当仅引用索引的第二个列时,优化器使用了全表扫描而忽略了索引。

ORACLE常用SQL优化hint语句

ORACLE常用SQL优化hint语句

ORACLE常⽤SQL优化hint语句在SQL语句优化过程中,我们经常会⽤到hint,现总结⼀下在SQL优化过程中常见Oracle HINT的⽤法: 1. /*+ALL_ROWS*/ 表明对语句块选择基于开销的优化⽅法,并获得最佳吞吐量,使资源消耗最⼩化. 例如: SELECT /*+ALL+_ROWS*/ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO=’SCOTT’; 2. /*+FIRST_ROWS*/ 表明对语句块选择基于开销的优化⽅法,并获得最佳响应时间,使资源消耗最⼩化. 例如: SELECT /*+FIRST_ROWS*/ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO=’SCOTT’; 3. /*+CHOOSE*/ 表明如果数据字典中有访问表的统计信息,将基于开销的优化⽅法,并获得最佳的吞吐量; 表明如果数据字典中没有访问表的统计信息,将基于规则开销的优化⽅法; 例如: SELECT /*+CHOOSE*/ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO=’SCOTT’; 4. /*+RULE*/ 表明对语句块选择基于规则的优化⽅法. 例如: SELECT /*+ RULE */ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO=’SCOTT’; 5. /*+FULL(TABLE)*/ 表明对表选择全局扫描的⽅法. 例如: SELECT /*+FULL(A)*/ EMP_NO,EMP_NAM FROM BSEMPMS A WHERE EMP_NO=’SCOTT’; 6. /*+ROWID(TABLE)*/ 提⽰明确表明对指定表根据ROWID进⾏访问. 例如: SELECT /*+ROWID(BSEMPMS)*/ * FROM BSEMPMS WHERE ROWID>=’AAAAAAAAAAAAAA’ AND EMP_NO=’SCOTT’; 7. /*+CLUSTER(TABLE)*/ 提⽰明确表明对指定表选择簇扫描的访问⽅法,它只对簇对象有效. 例如: SELECT /*+CLUSTER */ BSEMPMS.EMP_NO,DPT_NO FROM BSEMPMS,BSDPTMS WHERE DPT_NO=’TEC304′ AND BSEMPMS.DPT_NO=BSDPTMS.DPT_NO; 8. /*+INDEX(TABLE INDEX_NAME)*/ 表明对表选择索引的扫描⽅法. 例如: SELECT /*+INDEX(BSEMPMS SEX_INDEX) USE SEX_INDEX BECAUSE THERE ARE FEWMALE BSEMPMS */ FROM BSEMPMS WHERE SEX=’M'; 9. /*+INDEX_ASC(TABLE INDEX_NAME)*/ 表明对表选择索引升序的扫描⽅法. 例如: SELECT /*+INDEX_ASC(BSEMPMS PK_BSEMPMS) */ FROM BSEMPMS WHERE DPT_NO=’SCOTT’; 10. /*+INDEX_COMBINE*/ 为指定表选择位图访问路经,如果INDEX_COMBINE中没有提供作为参数的索引,将选择出位图索引的布尔组合⽅式. 例如: SELECT /*+INDEX_COMBINE(BSEMPMS SAL_BMI HIREDATE_BMI)*/ * FROM BSEMPMS WHERE SAL<5000000 AND HIREDATE 11. /*+INDEX_JOIN(TABLE INDEX_NAME)*/ 提⽰明确命令优化器使⽤索引作为访问路径. 例如: SELECT /*+INDEX_JOIN(BSEMPMS SAL_HMI HIREDATE_BMI)*/ SAL,HIREDATE FROM BSEMPMS WHERE SAL<60000; 12. /*+INDEX_DESC(TABLE INDEX_NAME)*/ 表明对表选择索引降序的扫描⽅法. 例如: SELECT /*+INDEX_DESC(BSEMPMS PK_BSEMPMS) */ FROM BSEMPMS WHERE DPT_NO='SCOTT'; 13. /*+INDEX_FFS(TABLE INDEX_NAME)*/ 对指定的表执⾏快速全索引扫描,⽽不是全表扫描的办法. 例如: SELECT /*+INDEX_FFS(BSEMPMS IN_EMPNAM)*/ * FROM BSEMPMS WHERE DPT_NO='TEC305'; 14. /*+ADD_EQUAL TABLE INDEX_NAM1,INDEX_NAM2,...*/ 提⽰明确进⾏执⾏规划的选择,将⼏个单列索引的扫描合起来. 例如: SELECT /*+INDEX_FFS(BSEMPMS IN_DPTNO,IN_EMPNO,IN_SEX)*/ * FROM BSEMPMS WHERE EMP_NO='SCOTT' AND DPT_NO='TDC306'; 15. /*+USE_CONCAT*/ 对查询中的WHERE后⾯的OR条件进⾏转换为UNION ALL的组合查询. 例如: SELECT /*+USE_CONCAT*/ * FROM BSEMPMS WHERE DPT_NO='TDC506' AND SEX='M'; 16. /*+NO_EXPAND*/ 对于WHERE后⾯的OR 或者IN-LIST的查询语句,NO_EXPAND将阻⽌其基于优化器对其进⾏扩展. 例如: SELECT /*+NO_EXPAND*/ * FROM BSEMPMS WHERE DPT_NO='TDC506' AND SEX='M'; 17. /*+NOWRITE*/ 禁⽌对查询块的查询重写操作. 18. /*+REWRITE*/ 可以将视图作为参数. 能够对视图的各个查询进⾏相应的合并. 例如: SELECT /*+MERGE(V) */ A.EMP_NO,A.EMP_NAM,B.DPT_NO FROM BSEMPMS A (SELET DPT_NO ,AVG(SAL) AS AVG_SAL FROM BSEMPMS B GROUP BY DPT_NO) V WHERE A.DPT_NO=V.DPT_NO AND A.SAL>V.AVG_SAL; 20. /*+NO_MERGE(TABLE)*/ 对于有可合并的视图不再合并. 例如: SELECT /*+NO_MERGE(V) */ A.EMP_NO,A.EMP_NAM,B.DPT_NO FROM BSEMPMS A (SELECT DPT_NO,AVG(SAL) AS AVG_SAL FROM BSEMPMS B GROUP BY DPT_NO) V WHERE A.DPT_NO=V.DPT_NO AND A.SAL>V.AVG_SAL; 21. /*+ORDERED*/ 根据表出现在FROM中的顺序,ORDERED使ORACLE依此顺序对其连接. 例如: SELECT /*+ORDERED*/ A.COL1,B.COL2,C.COL3 FROM TABLE1 A,TABLE2 B,TABLE3 C WHERE A.COL1=B.COL1 ANDB.COL1=C.COL1; 22. /*+USE_NL(TABLE)*/ 将指定表与嵌套的连接的⾏源进⾏连接,并把指定表作为内部表. 例如: SELECT /*+ORDERED USE_NL(BSEMPMS)*/ BSDPTMS.DPT_NO,BSEMPMS.EMP_NO,BSEMPMS.EMP_NAM FROM BSEMPMS,BSDPTMS WHERE BSEMPMS.DPT_NO=BSDPTMS.DPT_NO; 23. /*+USE_MERGE(TABLE)*/ 将指定的表与其他⾏源通过合并排序连接⽅式连接起来. 例如: SELECT /*+USE_MERGE(BSEMPMS,BSDPTMS)*/ * FROM BSEMPMS,BSDPTMS WHEREBSEMPMS.DPT_NO=BSDPTMS.DPT_NO; 24. /*+USE_HASH(TABLE)*/ 将指定的表与其他⾏源通过哈希连接⽅式连接起来. 例如: SELECT /*+USE_HASH(BSEMPMS,BSDPTMS)*/ * FROM BSEMPMS,BSDPTMS WHEREBSEMPMS.DPT_NO=BSDPTMS.DPT_NO; 25. /*+DRIVING_SITE(TABLE)*/ 强制与ORACLE所选择的位置不同的表进⾏查询执⾏. 例如: SELECT /*+DRIVING_SITE(DEPT)*/ * FROM BSEMPMS,DEPT@BSDPTMS WHERE BSEMPMS.DPT_NO=DEPT.DPT_NO; 26. /*+LEADING(TABLE)*/ 将指定的表作为连接次序中的⾸表. 27. /*+CACHE(TABLE)*/ 当进⾏全表扫描时,CACHE提⽰能够将表的检索块放置在缓冲区缓存中最近最少列表LRU的最近使⽤端 例如: SELECT /*+FULL(BSEMPMS) CAHE(BSEMPMS) */ EMP_NAM FROM BSEMPMS; 当进⾏全表扫描时,CACHE提⽰能够将表的检索块放置在缓冲区缓存中最近最少列表LRU的最近使⽤端 例如: SELECT /*+FULL(BSEMPMS) NOCAHE(BSEMPMS) */ EMP_NAM FROM BSEMPMS; 29. /*+APPEND*/ 直接插⼊到表的最后,可以提⾼速度. insert /*+append*/ into test1 select * from test4 ; 30. /*+NOAPPEND*/ 通过在插⼊语句⽣存期内停⽌并⾏模式来启动常规插⼊. insert /*+noappend*/ into test1 select * from test4 ;----------------------------------------------------------------------------Optimization Approaches Access MethodsALL_ROWS AND_EQUALCHOOSE CLUSTERFIRST RULES FULLRULE HASHParallel Execution HASH_AJAPPEND*ORDERED HASH_SJ ***STAR**INDEXSTAR_TRANSFORMATION*INDEX_ASCJoin Operations INDEX_COMBINE*DRIVING_SITE*INDEX_DESCUSE_HASH**INDEX_FFS*USE_MERGE MERGE_AJ**USE_NL MERGE_SJ***Additional Hints ROW_IDCACHE USE_CONCATNOCACHE NO_EXPAND***PUSH_SUBQ REWRITE***MERGE***NOREWRITE***NO_MERGE*Join OrdersPUSH_JOIN_PRED***NO_PUSH_JOIN_PRED***NOAPPEND*ORDERED PREDICATES***NOPARALLELPARALLELPARALLEL_INDEX*NO_PARALLEL_INDEX*** 提⽰(hint)从Oracle7中引⼊,⽬的是弥补基于成本优化器的缺陷。

Oracle数据库SQL语句优化初探

Oracle数据库SQL语句优化初探

Oracle数据库SQL语句优化初探摘要数学库的应用越来越多,数据查询使用较频繁,同时查询也加重了数据库的负荷,本文阐述sql查询的内部原理、oracle优化器及访问方式,通过对oracle数据库sql语句的优化提高数据库性能。

关键词 oracle;sql;优化中图分类号tp392 文献标识码a 文章编号1674-6708(2010)31-0213-02随着网络信息技术的不断发展,数据库技术应用越来越广泛。

数据库的调优工作涉及内容很广,从系统的规划、库表的设计、sql语句的编写、物理设备和网络设备的性能、内存和存储空间的分配等等都影响着系统的性能,通过优化,我们可以大大的提高系统运行效率和存储空间的利用率,达到用有限的资源实现一个高效的应用系统,因此,科学地构造数据库结构,合理使用查询语句及查询方法,是成功开发和应用数据库系统的重要环。

本文将阐述sql查询的内部原理、oracle优化器及访问方式、oracle数据库sql优化原则。

1 sql查询内部原理查询在处理过程中分为4个阶段:将查询转换为内部格式阶段、将内部格式转换为规范格式阶段、为执行选择低层过程阶段、生成并选择最低的查询计划阶段。

如图:1.1阶段1:将查询转换为内部格式阶段这一阶段主要是进行语法分析,将原查询转换为数据库内部格式,以便于机器处理,不符合语法规范的报错返回,为sql优化过程铺平道路。

1.2阶段2:将内部格式转换为规范格式在这一阶段,数据库优化器将执行一系列“保证能够优化”的优化过程,是不会去考虑实际数据的值和数据库的存取路径;优化器将查询的内部表示转换为等价的规范格式。

比如说将“a=b替换为b=a或者是p and q 替换为q and p”,这样做的目的是消除语句表面上的差异,以便能够找到一种在某些方面比原查询更为高效的表示方法。

比如说能够将表达式(a join b)where restriction on a 转为等价高效的表达式(a where restriction on a)join b。

Oracle之SQL语句性能优化(34条优化方法)

Oracle之SQL语句性能优化(34条优化方法)

Oracle之SQL语句性能优化(34条优化⽅法)好多同学对sql的优化好像是知道的甚少,最近总结了以下34条仅供参考。

(1)选择最有效率的表名顺序(只在基于规则的优化器中有效):ORACLE的解析器按照从右到左的顺序处理FROM⼦句中的表名,FROM⼦句中写在最后的表(基础表 driving table)将被最先处理,在FROM⼦句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。

如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引⽤的表.(2) WHERE⼦句中的连接顺序.:ORACLE采⽤⾃下⽽上的顺序解析WHERE⼦句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最⼤数量记录的条件必须写在WHERE⼦句的末尾.(3)SELECT⼦句中避免使⽤ ‘ * ‘:ORACLE在解析的过程中, 会将'*' 依次转换成所有的列名, 这个⼯作是通过查询数据字典完成的, 这意味着将耗费更多的时间(4)减少访问数据库的次数:ORACLE在内部执⾏了许多⼯作: 解析SQL语句, 估算索引的利⽤率, 绑定变量 , 读数据块等;(5)在SQL*Plus , SQL*Forms和Pro*C中重新设置ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量 ,建议值为200(6)使⽤DECODE函数来减少处理时间:使⽤DECODE函数可以避免重复扫描相同记录或重复连接相同的表.(7)整合简单,⽆关联的数据库访问:如果你有⼏个简单的数据库查询语句,你可以把它们整合到⼀个查询中(即使它们之间没有关系)(8)删除重复记录:最⾼效的删除重复记录⽅法 ( 因为使⽤了ROWID)例⼦:DELETE FROM EMP E WHERE E.ROWID > (SELECT MIN(X.ROWID)FROM EMP X WHERE X.EMP_NO = E.EMP_NO);(9)⽤TRUNCATE替代DELETE:当删除表中的记录时,在通常情况下, 回滚段(rollback segments ) ⽤来存放可以被恢复的信息. 如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执⾏删除命令之前的状况) ⽽当运⽤TRUNCATE时, 回滚段不再存放任何可被恢复的信息.当命令运⾏后,数据不能被恢复.因此很少的资源被调⽤,执⾏时间也会很短. (译者按: TRUNCATE只在删除全表适⽤,TRUNCATE是DDL不是DML)(10)尽量多使⽤COMMIT:只要有可能,在程序中尽量多使⽤COMMIT, 这样程序的性能得到提⾼,需求也会因为COMMIT所释放的资源⽽减少:COMMIT所释放的资源:a. 回滚段上⽤于恢复数据的信息.b. 被程序语句获得的锁c. redo log buffer 中的空间d. ORACLE为管理上述3种资源中的内部花费(11)⽤Where⼦句替换HAVING⼦句:避免使⽤HAVING⼦句, HAVING 只会在检索出所有记录之后才对结果集进⾏过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE⼦句限制记录的数⽬,那就能减少这⽅⾯的开销. (⾮oracle中)on、where、having这三个都可以加条件的⼦句中,on是最先执⾏,where次之,having最后,因为on是先把不符合条件的记录过滤后才进⾏统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,where也应该⽐having快点的,因为它过滤数据后才进⾏sum,在两个表联接时才⽤on的,所以在⼀个表的时候,就剩下where跟having⽐较了。

Oracle优化器二十六个参数

Oracle优化器二十六个参数

Oracle优化器二十六个参数Oracle还是比较常用的,于是我研究了一下Oracle优化器,在这里拿出来和大家分享一下,希望对大家有用。

影响系统性能类可变参数(1)CHECKPOINT_PROCESS该参数根据是否要求检查点而设置成TRUE或者FALSE。

当所有缓冲区的信息写到磁盘时,检查点进程(CHPT)建立一个静态的点。

在归档日志文件中做一个记号表示有一个检查点发生。

检查点发生在归档日志转换的时候或当达到log_checkpoint_interval定义的块数的时候。

当设置此参数为TRUE时,后台进程CHPT便可工作。

在检查点期间内,若日志写进程(LGWR)的性能减低,则可用CHPT进程加以改善。

(2)DB_BLOCK_CHECKPOINT_BATCH该参数的值设置得较大时,可加速检查点的完成。

当指定的值比参数DB_BLOCK_CHECKPOINT_BATCH大时,其效果和指定最大值相同。

(3)DB_BLOCK_BUFFERS该参数是在SGA中可作缓冲用的数据库块数。

该参数决定SGA的大小,对数据库性能具有决定性因素。

若取较大的值,则可减少I/O次数,但要求内存空间较大。

每个缓冲区的大小由参数DB_BLOCK_SIZE决定。

(4)DB_BLOCK_SIZE该参数表示Oracle数据库块的大小,以字节为单位,典型值为2048或4096。

该值一旦设定则不能改变。

它影响表及索引的FREELISTS参数的最大值。

(5)DB_FILES该参数为数据库运行时可打开的数据文件最大数目。

(6)DB_FILE_MULTIBLOCK_READ_COUNT该参数表示在顺序扫描时一次I/O操作可读的最大块数,该最大块数取决于操作系统,其值在4至16或者32是比较好。

(7)D1SCRETE_TRANSACTION_ENABLED该参数实现一个更简单、更快的回滚机制,以改进某些事务类型的性能。

当设置为TRUE时,可改善某些类型的事务性能。

ORACLE执行计划和SQL调优

ORACLE执行计划和SQL调优
ORACLE 执行计划和SQL调优
内容安排
第一部分:背景知识 第二部分:SQL调优 第三部分:工具介绍
第一部分 背景知识
执行计划的相关概念
Rowid的概念
rowid是一个伪列,既然是伪列,那么这个列 就不是用户定义,而是系统自己给加上的。对 每个表都有一个rowid的伪列,但是表中并不 物理存储ROWID列的值。不过你可以像使用其 它列那样使用它,但是不能删除改列,也不能 对该列的值进行修改、插入。一旦一行数据插 入数据库,则rowid在该行的生命周期内是唯 一的,即即使该行产生行迁移,行的rowid也 不会改变。
可选择性(selectivity)
比较一下列中唯一键的数量和表中的行 数,就可以判断该列的可选择性。如果 该列的”唯一键的数量/表中的行数”的 比值越接近1,则该列的可选择性越高, 该列就越适合创建索引,同样索引的可 选择性也越高。在可选择性高的列上进 行查询时,返回的数据就较少,比较适 合使用索引查询。
语句的解析时间; 优化索引的使用; 优化表连接方法; 优化子查询;
常见可能导致全表扫描的操作
使用null条件的查询:where xxx is null; 对没有索引的字段查询; 带有like条件的查询:where xxx like ‘%x’; 带有not equals条件的查询:<> , !=, not in等
在会话层使用alter session set optimizer_goal= all_rows/first_rows/choose;
在SQL中添加提示 /*+ hint */ 设置choose模式时候,将根据是否存在表或索
引的统计资料来决定选择RBO或CBO;
CBO 特性
前提条件:存在表和索引的统计资料;使用 analyze table 和 analyze index 命令从表或索 引中收集统计资料(表的记录平均长度,记录 数等);如果没有现存的统计资料,将在sql运 行时收集资料,会大大降低性能;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Oracle9i优化器介绍By DavisE-Mail:todavis@Blog:选择合适的优化器目标默认情况下,CBO 以最佳吞吐量为目标,这意味着Oracle 使用尽可能少的资源去处理被语句访问到的所有行;当然CBO 也可以用最快的响应速度来优化SQL,这意味着Oracle用尽可能少的资源去处理被语句访问到的第一行或前面少数行,当然这种情况对于整个语句来说可能消耗更多的资源。

优化器产生的执行计划会因―优化器目标‖的不同而不同。

如果以最佳吞吐量为目标,结果更倾向于使用全表扫描而不是索引扫描,或者使用排序合并连接而不是嵌套循环连接;如果以最快的响应速度为目标,其结果则通常倾向于使用索引扫描和嵌套循环连接。

例如,假使你有一个语句既能运行于嵌套循环连接又能运行于排序合并连接,排序合并连接能够较快的返回全部查询结果,而嵌套循环能快速的返回第一行或前面少数行结果。

如果你是以提高吞吐量为优化器目标,优化器就会倾向于选择排序合并连接;如果你的优化器目标是提高响应速度,则优化器倾向于选择嵌套循环连接。

选择优化器目标要以你的应用为基础,一般规则是:1、对于批处理应用,以最佳吞吐量为优化目标为好。

例如Oracle 报表应用程序。

2、对于交互式应用,以最快响应速度为优化目标为好。

例如SQLPLUS 的查询。

影响优化器优化目标的因素主要有:1、OPTIMIZER_MODE 初始化参数。

2、数据字典中的CBO 统计数据。

3、用来改变CBO 优化目标的Hints。

OPTIMIZER_MODE初始化参数这个初始化参数用来规定实例的默认优化方法。

其值列表及说明如下:Value CHOOSEALL_ROWSDescription此为缺省值。

优化器既可以使用基于成本的优化方法(CBO),也可以使用基于规则的优化方法(RBO),其决定于是否有可用的统计信息。

1、如果在被访问的表中,至少有一个表在数据字典中有可用的统计信息存在,则优化器使用基于成本的方法。

2、如果在被访问的表中,只有部分表在数据字典中有可用的统计信息,优化器仍然会使用基于成本的方法,但是优化器必须为无统计信息的表利用一些内部信息去尝试其他的统计,比如分配给这些表的数据块的数量等,这可能会导致产生不理想的执行计划。

3、如果在被访问的表中,没有一个表在数据字典中有统计信息,则优化器使用基于规则的方法。

不论是否有统计信息存在,优化器都使用基于成本的方法,并以最佳吞1你可以在SESSION 中改变CBO 优化目标:ALTER SESSION SET OPTIMIZER_MODE。

例如:1、在初始化参数文件中加入如下语句,可以在实例级改变CBO 优化目标:OPTIMIZER_MODE=FIRST_ROWS_12、下面的语句可以改变当前SESSION 的CBO 优化目标:ALTER SESSION SET OPTIMIZER_MODE=FIRST_ROWS_1可以改变CBO优化目标的Hints使用如下Hints 可以单独为具体的SQL 指定CBO 优化目标,SQL 语句中Hints 能够覆盖OPTIMIZER_MODE 初始化参数。

● FIRST_ROWS(n),n 为任意正整数。

● FIRST_ROWS● ALL_ROWS● CHOOSE● RULE数据字典中的CBO统计信息CBO 使用的统计信息存放于数据字典中,你可以使用DBMS_STATS 包或ANALYZE语句以精确的方式或估算的方式来统计对象的物理存储特征和数据分布情况。

注意:Oracle 公司建议使用DBMS_STATS 包来代替ANALYZE 语句收集统计信息。

DBMS_STATS 包可以并行的收集统计信息,可以为分区对象收集全局统计信息,以及使用其他方式优化收集操作。

但是,收集和基于成本优化器无关的信息必须用ANALYZE 而不是DBMS_STATS,比如:● 使用VALIDATE 或LIST CHAINED ROWS 子句。

● 收集freelist 块的信息。

CBO如何对SQL做最快响应的优化OPTIMIZER_MODE 被设置成FIRST_ROWS_n、FIRST_ROWSS,或者SQL 语句中使用了FIRST_ROWS(n)、FIRST_ROWS 提示,CBO 都会对SQL 做最快响应的优化。

这非常适用于联机用户,像通过Oracle Forms 或Web 访问的用户。

联机用户的特点是只对前面少数行感兴趣,很少看整个查询的结果,特别是在查询结果巨大的情况下。

对于这样的用户,优化SQL 使前面少数行尽可能快速的返回是有意义的,即使产生整个查询结果的时间并不理想。

CBO 在做这种优化时,会产生一个处理第一行或前面少数行消耗成本最低的执行计划。

CBO 有两种用来产生最快响应速度的方法,一个是旧方法一个是新方法。

旧的方法就是用FIRST_ROWS 提示或初始化参数,这种方法CBO 会使用成本和规则混合的方式来产生一个计划。

Oracle 保留这种方法是为了向后兼容。

新方法FIRST_ROWS_n 或FIRST_ROWS(n)提示,是完全基于成本的。

如果n 值较小,CBO 倾向于产生一个包含嵌套循环连接和索引查询的执行计划;如果n 值较大,则CBO 倾向于产生一个包含散列连接和全表扫描的执行计划。

理解基于成本的优化器CBO 根据可用的访问路径和表、索引等对象的统计信息来确定当前SQL 的哪个执行计划是最高效的或成本最低的;同时CBO 也会考虑Hints 的建议。

CBO 执行下列步骤:1、优化器根据可用的访问路径和Hints 为SQL 语句产生一组潜在的执行计划。

2、优化器根据数据字典的统计信息评估每个计划的成本。

成本就是一个评估值,它与SQL 语句按照某个计划执行所消耗的计算机资源是成正比的。

优化器基于对计算机资源(I/O、CPU、内存)的评估,计算访问路径和连接顺序的成本。

3、优化器对比执行计划的成本,从而选择一个成本最低的执行计划。

CBO 包含下列组件:● 查询变换器(Query Transformer)● 评估器(Estimator)● 计划生成器(Plan Generator)如下图所示:(基于成本的优化器组件)查询变换器被解析器解析过的查询语句进入查询变换器,表现出来的是一组查询块(query block),这些查询块之间是相互关联的或者是嵌套的,查询的形式决定这些查询块相互之间如何被关联。

查询变换器的主要目的就是决定改变查询的形式是否有利于产生一个好的执行计划。

查询变换器使用四种不同的查询变换技术:● 视图合并(View Merging)● 谓词推进(Predicate Pushing)● 非嵌套子查询(Subquery Unnesting)● 物化视图的查询重写(Query Rewrite with Materialized Views)最终应用于查询的也可以是以上四种变换技术的任意组合。

视图合并查询中的每个视图都会被解析器扩展到一个独立的查询块中,这个查询块本质上是用来描述视图定义的,是视图的结果。

优化器的一个任务就是去分析这个独立视图查询块(view query block)并产生一个视图子计划(subplan),然后优化器在产生整个查询执行计划的同时使用视图子计划来处理剩余的查询部分。

由于视图是被独立在整个查询之外被优化的,因此这种技术常常会导致一个不良执行计划的产生。

查询变换器通过将视图查询块合并到查询块中从而消除这种不良执行计划。

绝大多数类型的视图是可以被合并的。

在一个视图被合并后,它原有的视图查询块被包含到查询块中,也就是说视图查询块不存在了,因此也不再需要产生一个子计划。

谓词推进对于那些不能合并的视图,查询变换器能够将相关的谓词从查询块中推进到视图查询块中。

由于被推进的谓词能够用来访问索引或者用于过滤,这个技术通常可以改进那些不能被合并的视图子计划。

非嵌套的子查询和视图一样,子查询也是用一个独立的查询块来代表的。

子查询是被嵌套在主查询或其他子查询之中的,计划产生器在找到一个成本最低的执行计划之前被迫要试验所有可能的计划。

由嵌套子查询产生的限制可以在转换为非嵌套的子查询和连接之后消除,经由查询转换器过滤之后绝大多数的子查询都会被转换为非嵌套的,然后这些非嵌套的子查询产生独立的子计划,这些子计划按照一种高效的方式进行排列,从而提高了整个查询计划的执行速度。

物化视图的查询重写物化视图就是把一个查询的结果事先固化存储在一个表里,当发现和物化视图一致的查询语句就将相应的项用物化视图来重写。

由于绝大多数的查询结果都事先计算好了,因此这种技术可以极大的提高查询速度。

查询转换器负责查找和用户查询相关的所有物化视图,用其中的一个或多个来重写查询。

利用物化视图来重写查询也是基于成本的,如果不使用物化视图的成本更低一些,则不会去使用物化视图。

评估器评估器会产生下列三个度量值:● 选择性(Selectivity)● 基数(Cardinality)● 成本(Cost)这些值是相互关联的,一个值由其他值导出,评估器的最终目标是评估计划的总体成本。

如果有统计信息可用,评估器使用统计信息来计算这些值,统计信息可以提高其精确度。

选择性这里的第一个度量值——选择性,表示所选择的行与行集的比值。

所谓行集可以是表、视图,或者是一个连接或GROUP BY 操作的中间结果。

选择性与查询中的谓词有关,比如last_name=‘Smith‘,或者一个联合谓词last_name=‘Smith‘ and job_type=‘Clerk‘。

一个谓词充当着一个过滤器的角色,在行集中过滤了一定量的行,谓词的选择性是一个比值,它表示一个行集经过谓词的过滤后剩下的行占原有行集的比例。

其值在0.0 和1.0 之间,0.0 表示在行集中没有行被选择;1.0 表示行集中的所有行都被选择了。

如果没有可用的统计信息,评估器为选择性赋予一个内部的缺省值,这个内部缺省值随着谓词的不同而不同。

例如:等式谓词(last_name=‘Smith‘)的内部缺省值低于范围谓词(last_name>‘Smith‘),评估器会假定等式谓词返回的行数小于范围谓词。

当存在可用的统计信息,评估器将使用统计信息来估算选择性。

例如:对于一个等式谓词(last_name=‘Smith‘ ),选择性的值是distinct last_name 的倒数即:(1/count(distinct(last_name)where last_name=‘Smith‘ / count(last_name)where last_name is not null。

可见在数据倾斜的字段上应用直方图能够帮助CBO 进行准确的选择性评估。

基数基数就是行集中行的数量。

相关文档
最新文档