二次根式化简的方法技巧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式化简的方法技巧
对于某些二次根式,若按照常规一般方法,如分母有理化,则解题过程势必烦琐,为此,本文几种特殊方法,供参考
1.活用公式2a= | a | =
由| a-b| = | b-a| , 故当a≤b时,b≥a,
∴b-a ≥0,∴| a-b| = | b-a| = b-a (其中,b-a≥0)
这样,可以避免出现公式中a≤0时,在化去绝对值时漏写负号“-”的错误.
解:∵1< a <2 , ∴a >1, 2 >a
∴ a -1 >0 , 2-a>0 ,
∴原式= | a -1| + | 2-a|
= ( a -1 ) + ( 2-a ) = 1.
2. 逆用公式2a= a (a≥0)
例2. 设A = 6+2,B =3+5,则A、B中数值较小的是____;
解:由2a= a (a≥0) 可得
A = = ,
B = = =
∴A<B;
3. 因式分解:
例4. 化简:
解:原式=
=
= = 3-1.
4.构造方程
例5. +
解:设=x, = y ,
则得:
注意到x>y>0 ,
可得:x + y =6,即原式=6,
5. 先平方再开方:
例6. 化简:+ (1≤a≤2)
解:设原式=x.
则x2= (a + 2) + 2+ ( a -2) = 2a + 2
∵1≤a≤2 , ∴x2 = 2a + 2(2-a) = 4,
∴x = 2 , 即原式= 2.
6.整体代入
例7. 已知:x = , 求x 5 + 2x 4 -17 x 3-x 2 +18x-17的值解:变换条件,整体代入
由x = , 得x =17,
∴x 2 + 2x = 16 .
∴x5 + 2x4 -17 x3-x2 +18x-17
=x 3(x2 +2 x )-17 x3-x 2 + 18x -17
= 16x3-17x3-x2 +18x-17
=-x3-x2 +18x-17
=-x(x2 + 2x) + x2 + 18x-17
= -16x + x2 +18x-17
= x2+ 2x-17
= 16-17 = -1.
例7. 已知:x = , 求的值;
解:局部化简,整体代入
1+ x 2 = 1 + ( )2 = ,
∴= ,
7. 用“2)1
a-a
(
() 2= 1”代换例8. 化简
解:原式=
=
= =
3+ 2 8. 添项配方
例9. 化简
解:原式=
=
=
= 2+3-5
9. 倒数方法
例10. 化简:;
解:设原式= a ,
则=
=
=
= +
= +
= +
=
∴原式=
=