结构方程模型及其应用_侯杰泰共105页
结构方程模型简介及应用
模型建模的类型
纯粹验证型:拒绝or接受 模型发展型:根据数据和理论修改 选择模型:选择一个好的
模型建构:模型选择(以验证性因素分析为例)
多个一阶模型:理论和探索性因素分析结果 直交or斜交:因素间是否存在相关 一阶or二阶:因素间的相关大小
t14
1
t171
内在取向内在取向t19
1 1 1
t14e141 t17e171 t19e191
低识别模型
正好识别模型
过度识别模型
第三步:收集数据
样本数: a:理想的样本量与题项数比例为5-20倍 b:样本越多越好,但是越多卡方值越大, 模型被拒绝的可能性更大。 c: 200-500之间
缺失数据:在spss里补好
第四步:模型拟合—参数估计方法
极大似然法(maximum likelihood):大样本,正态分布、观测变 量是连续变量
1
e3
X3
1
e4
X4 1
1
e5
X5
智力
1
e6
X6
1
e7
X7 1
1
e8
X8
自信
1
e9
X9
1
学业表现
1
Y1
e10
1
Y2
e11
1
Y3
e12
1
课外活动
1
Y4
e13
1
Y5
e14
1
Y6
e15
1
服务热诚
1
Y7
e16
1
Y8
e17
1
Y9
e18
回归
测量 方程
外生潜变量
结构 方程
内生潜变量
结构方程模型原理及其应用
一、结构方程模型简介
结构方程模型由一种因素模型和一种结构方程式模型组 成,将心理测量学和经济计量学有效的结合起来。
一个包括一组自变量和一组或更多因变量的计量模型。
模型由两部分组成:测量模型(即验证性因素分析模型, Confirmatory Factor Analysis , CFA)和结构模型 (又称潜变量的因果关系模型,Causal Model )。测量 模型主要是用于表示观测变量和潜变量之间的关系;而 结构方程模型主要是用于来表示潜变量之间的关系。 其相应的统计分析软件:SPSS/AMOS与LISREL的应用,特 别是AMOS的操作与应用。
?1 ?2 ?3
情商
ξ1
? 21
? 21 外部潜在变量
? 11
智商
ξ2
?4 ?5 ?6
?12
η ? Βη ? Γξ ? ζ
?10 ?11 ?12
η2 ζ2 人际
关系
? 21 内部潜在变量
η1
ζ1 学业
成绩
?7 ?8 ?9
x4
x5
x6
y1
y2
y3
δ4 δ5 δ6
ε1 ε2 ε3
测量模型(验证性因素分析模型,如社会经济指
一、结构方程模型简介
结构方程模型是基于变量的协方差矩阵来分析变量之间关系的 一种统计方法,是路径分析和因素分析的有机结合。
对于那些不能准确、直接测量的潜变量( latent variable , 如家庭的社会经济地位、学业成就等),可以用一些外显指标 ( observed variable ,如学生父母的教育程度和父母职业及 收入作为家庭社会经济地位的指标,以学生的语文、数学英语 三科成绩作为学业成就的指标 )去间接测量。结构方程模型 可以同时处理潜变量及指标。
结构方程模型在实证分析中的应用课件
结构方程模型在实证分析中的应用
为什么使用SEM?
结构方程模型最为显著的两个特点是:
(1)评价多维的和相互关联的关系; (2)能够发现这些关系中没有察觉到的概念关系,而且能够
在评价的过程中解释测量误差。
联系信息技术吸纳能力: • SEM能够反映模型中要素之间的相互影响; • 吸纳能力概念作为一个重要的模型要素,难以直接度量,
绝对拟合度
简约拟合度
增值拟合度
指 标 χ2 2 df GFI RMR RMSEA PNFI PGFI NFl
TFI
CFI
评价 标准 不显著
<2 >0.9 <0.08
<0.06
>0.5 >0.5 >0.95 >0.95 >0.95
结构方程模型在实证分析中的应用
指标说明
• χ2卡方拟合指数 检验选定的模型协方差矩阵与观察数据协方差矩阵相匹配的假设。原假 设是模型协方差阵等于样本协方差阵。如果模型拟合的好,卡方值应该不显著。在这种 情况下,数据拟合不好的模型被拒绝。
测量模型 结构模型
Λx—外生观测变量与外生潜变量直接的关系,是外生观测变量在外生 潜变量上的因子载荷矩阵; Λy—内生观测变量与内生潜变量之间的关系,是内生观测变量在内生 潜变量上的因子载荷矩阵; В—路径系数,表示内生潜变量间的关系; Г—路径系数,表示外生潜变量对内生潜变量的影响; ζ—结构方程的残差项,反映了”在方程中未能被解释的部分。
结构方程模型在实证分析中的应用
整体模型拟合度
• 整体模型拟合度是用来评价模型与数据的拟合程度。 • 主要包括:
(1)绝对拟合度,用来确定模型可以预测协方差阵和相关矩阵的程度; (2)简约拟合度,用来评价模型的简约程度; (3)增值拟合度,理论模型与虚无模型的比较。
结构方程模型的原理与应用
结构方程模型的原理与应用嘿,朋友们!今天咱来聊聊结构方程模型,这玩意儿可有意思啦!你看啊,结构方程模型就像是一个超级复杂但又超级厉害的拼图游戏。
我们都玩过拼图吧,要把那些小块块拼成一幅完整的画面。
结构方程模型也是一样,它要把各种看似杂乱无章的因素、变量啊,给整合起来,让我们能看清它们之间的关系。
比如说,我们想知道学习时间、学习方法和学习成绩之间到底是怎么回事儿。
结构方程模型就能帮我们搞清楚,到底是学习时间长成绩就好呢,还是学习方法对了更重要。
这就好像我们在黑暗中摸索,结构方程模型就是那盏明灯,一下子让我们看清了路。
它的应用那可广泛了去了。
在心理学领域,能帮我们理解人的心理特质和行为之间的联系;在社会学里,能探究社会现象背后的各种因素。
这不就跟我们找东西一样嘛,东翻翻西找找,最后终于找到了我们想要的答案。
而且哦,它还特别灵活。
不像有些方法那么死板,它可以根据我们的具体问题和需求来调整。
就像一件百搭的衣服,啥场合都能穿得合适。
咱再想想,要是没有结构方程模型,那我们得多迷茫啊!就像在大海里没有指南针,不知道该往哪儿走。
有了它,我们就有了方向,能更准确地做出判断和决策。
你说这结构方程模型是不是很神奇?它就像是一个智慧的小精灵,在我们研究的道路上给我们指引。
我们可以通过它发现很多以前没注意到的关系和规律,这多让人兴奋啊!所以啊,大家可别小瞧了这个结构方程模型,它真的能给我们带来很多惊喜呢!它能帮我们把复杂的问题简单化,让我们能更轻松地理解和解决。
这不就是我们一直追求的嘛,用简单的方法解决复杂的问题。
总之,结构方程模型就是我们探索知识海洋的有力工具,让我们能在茫茫的数据中找到属于我们的宝藏!大家一定要好好利用它呀!。
结构方程模型及其在医学中的应用
结构方程模型及其在医学中的应用作者:曲波郭海强任继萍孙高张阳于晓松【关键词】结构方程模型结构方程模型(Structural Equation Modeling, SEM)也称协方程结构模型(covariance Structure Models, CSM)或线性结构模型(Linear Stuctural Relations Models), LISREL模型是自20世纪六、七十年代才开始出现的新兴的统计分析手段,被称为近年来统计学三大进展之一[1]。
结构方程模型是一种建立、估计和检验因果关系模型的方法,模型中既包含有可观测的显在变量(observed variable),也可能包含无法直接观测的潜在变量(latent variable)。
从数理角度看,结构方程模型综合了通径分析和证实性因子分析(confirmatory factor analysis, CFA),是一种杂合体[2]。
目前结构方程模型已在心理、行为、教育和社会科学等学科领域里得到广泛的应用,但在医学领域的应用还不多,随着社会和行为科学研究问题复杂性的增加,以及统计软件的进一步发展,结构方程模型在医学领域将会逐步得到重视及应用。
1基本原理结构方程模型包括测量模型(Measurement Model)与结构模型(Structural Equation Model)[3]。
测量模型部分求出观察指标与潜变量之间的关系;结构模型部分求出潜在变量与潜在变量之间的关系。
在结构方程模型中,对于所研究的问题,无法直接测量的现象记为潜变量(Latent Variable)或称隐变量;可直接测量的变量记为观测变量(Manifest Variable)或显变量。
11测量模型(Measurement Model)一般由两个方程式组成,分别规定了内生的潜在向量η和内生的显在向量Y之间,以及外生的潜在变量ξ和外生的显在向量X间的关系,分别用方程表示为:Y=ΛYη+ω(1)X=ΛXξ+δ(2)其中,Y为q×1阶内生观测变量向量,X为p×1阶外生观测变量向量;η是n×1阶内生潜变量(即潜在的因变量)向量,ξ是m×1阶外生潜变量(即潜在的自变量)向量;ΛY为q×n阶矩阵,是内生观测变量Y在内生潜变量η上的因子载荷矩阵;ΛX为p×m阶矩阵,是外生观测变量X在外生潜变量ξ上的因子载何矩阵;δ为p×1阶测量误差向量,ε为q×1阶测量误差向量,δ、ε表示不能由潜变量解释的部分。
路径分析、结构方程模型及应用讲义
四个外生变量耐用性、操作的简单性、通话效果和价格既对忠 诚度有直接作用,同时通过感知价值对忠诚度具有间接作用。
路径分析的优势在于:它可以容纳多环节的因果结构,通过路径图把这些因果关
系很清楚地表示出来,据此进行更深层次的分析,如比较各种因素之间的相对重
要程度,计算变量与变量之间的直接与间接影响
2021/8/7
8
例:某种消费性电子产品(如手机)路径分析:
四个变量耐用性、操作的简单性、通话效果和价格两两相关,决
2021/8/7
中间变量的中间作
用有理论依据吗?
中间作用统计显著
吗?
11
检验中间变量间接作用是否统计显著(Barron, R.M. & Kenny D.(1986) Agarwal ,S.& Teas,R.K.(1997) ): • 第一步:用中间变量(感知价值)对外生变量耐用性、操作的简单性、通话效果和 价格四个变量进行回归; • 第二步:用内生变量(忠诚度)对第一步中的四个变量进行回归; • 第三步:用忠诚度对第一步中的四个变量以及中间变量感知价值进行回归。
2021/8/7
18
三、路径模型的整体检
验
• 路径模型中方程的个数和内生变量的个数相等,不妨设有m个内生变
量,则对于这m个方程,设其回归后的决定系数分别是
每个 R2 (1)
,
R2 (2)
,,
R2 (m)
R2 都代表相应内生变量的方差中由回归方程所解释的比例,1- R2 则
侯杰泰结构方程模型
The output: Principal Components Analysis Eigenvalues and Eigenvectors
PC_1 PC_2 PC_3 PC_4 PC_5 PC_6 ------- -------- ------- ------- ------ ------Eigenvalue 2.56 1.66 1.63 0.69 0.59 0.56 % Variance 28.42 18.49 18.15 7.65 6.50 6.18 Cum% Var 28.42 46.91 65.06 72.71 79.21 85.39
• It is also possible that we have no “theory” in mind to test, i.e., we have the following research questions:
– How many cluster of subjects are there? How do these 9 subjects relate to each of these clusters (factors)?
模型 df
2
NNFI
CFI
(no. of estimated parameters) 需要估计的参数个数
______________________________________________________________________________________________
M1 24 40 .973 .982 21 = 9 Load + 9 Uniq + 3 Corr
______________________________________________________________________________________________
第十九章结构方程模型
第十九章结构方程模型第十九章结构方程模型本章导读:本章主要介绍结构方程模型的基本概念,结构方程的数学方程表达式,最后以一个案例的形式完整的把结构方程模型的操作过程展现在读者面前了。
19.1 结构方程简介在社会生活中我们经常会遇到需要处理多变量的问题,或者遇到的一些变量无法直接观测,这时需要用其他变量反映,这些变量被称为是潜在变量。
怎样处理这些变量呢?线性结构方程模型的方法就应运而生了,这种方法是20世纪70年代最重要的成果之一,也是多元变量进行处理的一种最为重要的方法,随着该方法的提出,专门的应用软件也随之而诞生,LISREL和AMOS是专门针对此种方法诞生的处理线性结构方程的软件。
限于篇幅,此章只用AMOS进行讲解,主要原因在于其操作方便,界面友好,同时容易入门。
我们知道变量之间的相互作用关系是普遍存在的事实,而多元回归分析方法分析只是重视解释变量对被解释变量的独立作用,这就使得多元回归分析方法在解释客观现象时存在非常大的局限性。
因为它很难清楚的解释变量之间的相互作用关系。
进一步,如果模型越复杂,那么自变量就会越来越多,变量之间的关联程度也会越来越明显,变量之间的间接效应就变得不容忽视,而多元回归分析方法恰恰就忽视这些变量之间的间接效应,因此存在很大的缺陷。
为了弥补这一缺陷,结构方程模型就很好的解决了这一问题。
虽然结构方程模型有许多优点,但是结构方程也有自身的不足,其应用起来也十分有限。
现在结构方程主要应用到管理学领域,比如市场营销和人力资源的研究比较多,其次是教育学和心理学,再次是社会学研究,偶尔可见经济学领域的竞争力评价,以及金融学领域的人为行为的寿险研究。
下面进一步说明结构方程模型的优点和缺陷。
结构方程模型的优点主要有:(1)结构方程模型假设潜在的统计分析是明确的和可以检验的,调查者能全部控制和进一步地分析理解。
(2)绘图接口软件创造性地推进和使快速调式模型变得容易(这个特性取决于所选的SEM软件)。
结构模型资料
1.结构方程模式结构方程模式是在已有的因果理论基础上,用与之相应的线性方程系统表该因果理论的一种统计分析技术.目的在于探索事物间因果关系并将这种关系用因果模式、路径图等表述(Kline,R.B1998)。
一般,结构方程模式由测量和潜在变量两部分组成:测量部分求出观察指标与潜在变量之间的关系;潜在变量部分求出潜在变量与潜在变量之间关系。
因此,结构方程模式分为测量模式与潜在结构模式(侯杰泰,1994)。
测量模式的方程:X、Y分别是外源和内源指标;η、ε分别是内源和外源变量,δ、e分别是X、Y的测量误差;Λx是X指标与外源潜在变量ζ的关系;Λy是Y指标与内源潜在变量η的关系。
结构模式的方程:η=βη+Γε+ζη是内源潜在变量,ε是外源潜在变量间关系,ζ是内源潜在变量间关系,Γ是外源潜在变量对内源潜在变量影响,是模式内未能解释的部分。
2.结构方程模式的建构(1)模式构想出发点是为观察变量问候设的基本因果关系建立具体的模式。
这就需要清晰地说明变量间的因果联系,即通过路径图的方式,对变量间假定的因果联系予以描述。
但同时我们应该认识到.模式的建立必须以正确的理论为基础,如果某一路径缺乏理论依据,则它无法正确解释变量间的因果联系。
(2)模式限定可以用代表因果理论的线性方程系统表示理论上的模式。
在从概念理论到统计模式的过渡.可形成假设。
一假设是:线性模式可完全代表观察数据余假设分为:有关观察指标与潜在变量关系的假设;有关潜在变量或观察指标因果关系的方向及属性的假设。
(3)模式识别的判定模式形成的重要阶段是判定模式能否被识别。
要能识别某个模式,就需要说明线性方程的各个系统参数。
这些系统参数可根据观察分数的方差和协方差矩阵所提供的信息进行估计。
模式识别的必要但非充分条件是模式的参数个数不多于观察的方差和协方差数目(Duncan,1975;Everitt,1984)。
(4)模式拟合把统计模式与观察数据相拟合。
根据研究者的需要,可选用适当的拟合指标以考察模式与数据的拟合程度。
结构方程模型
结构方程模型1优点(一)同时处理多个因变量结构方程分析可同时考虑并处理多个因变量。
在回归分析或路径分析中,就算统计结果的图表中展示多个因变量,其实在计算回归系数或路径系数时,仍是对每个因变量逐一计算。
所以图表看似对多个因变量同时考虑,但在计算对某一个因变量的影响或关系时,都忽略了其他因变量的存在及其影响。
(二)容许自变量和因变量含测量误差态度、行为等变量,往往含有误差,也不能简单地用单一指标测量。
结构方程分析容许自变量和因变量均含测量误差。
变量也可用多个指标测量。
用传统方法计算的潜变量间相关系数,与用结构方程分析计算的潜变量间相关系数,可能相差很大。
(三)同时估计因子结构和因子关系假设要了解潜变量之间的相关,每个潜变量者用多个指标或题目测量,一个常用的做法是对每个潜变量先用因子分析计算潜变量(即因子)与题目的关系(即因子负荷),进而得到因子得分,作为潜变量的观测值,然后再计算因子得分,作为潜变量之间的相关系数。
这是两个独立的步骤。
在结构方程中,这两步同时进行,即因子与题目之间的关系和因子与因子之间的关系同时考虑。
(四)容许更大弹性的测量模型传统上,我们只容许每一题目(指标)从属于单一因子,但结构方程分析容许更加复杂的模型。
例如,我们用英语书写的数学试题,去测量学生的数学能力,则测验得分(指标)既从属于数学因子,也从属于英语因子(因为得分也反映英语能力)。
传统因子分析难以处理一个指标从属多个因子或者考虑高阶因子等有比较复杂的从属关系的模型。
(五)估计整个模型的拟合程度在传统路径分析中,我们只估计每一路径(变量间关系)的强弱。
在结构方程分析中,除了上述参数的估计外,我们还可以计算不同模型对同一个样本数据的整体拟合程度,从而判断哪一个模型更接近数据所呈现的关系。
2对比线性相关分析 :线性相关分析指出两个随机变量之间的统计联系。
两个变量地位平等,没有因变量和自变量之分。
因此相关系数不能反映单指标与总体之间的因果关系。
结构方程模型的原理与应用
结构方程模型的原理与应用1. 什么是结构方程模型(SEM)?结构方程模型(Structural Equation Modeling,简称SEM)是一种基于数学统计方法的模型,用于研究变量之间的因果关系。
SEM结合了因子分析、回归分析和路径分析等方法,适用于探究复杂的研究问题和理论模型。
2. SEM的基本原理SEM的基本原理是根据理论或研究假设构建一个具有内部和外部变量的模型,然后使用统计方法来评估模型的拟合度和变量之间的因果关系。
SEM可以用来验证研究假设、测试模型的拟合度、评估因果关系的强度和方向,并进行模型修正和改进。
3. SEM的应用领域SEM在各个学科领域都有广泛的应用,包括社会科学、教育学、心理学、管理学等。
以下是一些SEM的应用领域的列举:•社会科学研究:SEM可以用于研究社会互动、社会网络和社会心理等问题。
例如,可以通过构建SEM模型来探究亲子关系对孩子学业成绩的影响。
•教育评估:SEM可以用于评估教育干预措施的有效性,探究教育因素对学生学习成绩的影响,并提供基于理论模型的教育政策建议。
•心理学研究:SEM可以用于研究心理因素对心理健康的影响,例如家庭环境对个体幸福感的影响等。
•管理学研究:SEM可以用于研究组织变量、领导行为和员工绩效等因果关系,帮助组织优化管理策略和实现绩效提升。
4. SEM的优势•全面性:SEM可以同时探究多个变量之间的因果关系,更全面地理解问题和现象。
•可靠性:SEM通过运用多种统计方法对模型进行测试和验证,提高了结果的可靠性和稳定性。
•灵活性:SEM可以根据研究问题和数据特点进行模型构建和修正,灵活适应不同的研究需求。
•高效性:SEM能够将多个变量之间的因果关系整合到一个模型中,节省了研究时间和资源。
5. SEM的建模步骤SEM的建模步骤一般包括:1.研究目的和理论模型的确定:根据研究目的,确定需要研究的变量和它们之间的理论关系。
2.数据收集和准备:收集和整理研究所需的数据,进行数据清洗和变量处理。
结构方程模型的应用及分析策略
结构方程模型的应用及分析策略结构方程模型的应用及分析策略侯杰泰成子娟(香港中文大学教育学院东北师范大学教育学院,130024)摘要:差不多所有心理、教育、社会等概念,均难以直接准确测量,结构方程(SEM,Structural Equation Modelling)提供一个处理测量误差的方法,采用多个指标去反映潜在变量,也令估计整个模型因子间关系,较传统回归方法更为准确合理。
本文主要用一系列有关学习动机的虚拟例子,指出每个问题的主要分析策略,以展示SEM在教育及心理学可以应用的研究范畴。
文内探讨的方法包括:验证性因素、高阶因子、路径及因果分析、多时段(multiwave)设计、单形模型(Simple Model)、及多组比较等。
关键词结构方程验证性因素分析路径及因果分析高阶因子多组比较结构方程(SEM,Structural Equation Modelling)、协方差结构模型(Covariance Structure Modelling、LISREL)等类似名词已渐流行,并成为一种十分重要的数据分析技巧;在大学高等学位研究课程,它是多变量分析(multivariate analysis)的重要课题;比较重要的社会、教育、心理期刊,也早已特开专栏介绍(如:候,1994;Connell & Tanaka,1987;Joreskog & Sorbom,1982);可见SEM在统计学中所建立的声望及崇高地位是无容置疑的。
本文主要用一系列有关学习动机的虚拟例子,来指出每个问题的主要分析策略,以展示结构方程模型在教育及心理学可以应用的研究范畴。
一、结构方程:优点及拟合概念1.数学模式很多社会、心理等变项,均不能准确地及直接地量度,这包括智力、社会阶层、学习动机等,我们只好退而求其次,用一些外项指标(observable indicators),去反映这些潜伏变项。
例如:我们以学生父母教育程度、父母职业及其收入(共六个变项),作为学生家庭社经地位(潜伏变项)的指标,我们又以学生中、英、数三科成绩(外显变项),作为学业成就(潜伏变项)的指标。
结构方程模型第二讲
特别, 1)取 W = SS, : Kronecker 乘积,则WLS 估计化为GLS; 2)取 W = (qML)(qML),则WLS 估计化为ML; 一般,Browne(1982,1984)建议W取 wgh,ij = mghij –sghsij 其中wghij是4阶样本中心矩。这是一种渐近与 分布无关的估计(asymptotically distribution-free, ADF),具有许多与ML估计相同的渐近性质。
ˆ q ) N (0, ) n(q (n )
5) ML估计的最优拟合值渐近卡方分布,即
2 ˆ (n 1)F (q ML ) ( p * t )
(n )
其中p*=p(p+1)/2,t为自由参数的个数。 这个结果可以用于整个模型的检验。 H0: (q)。
证明可参看(Bollen, 1989)
2 1/ 2
其中df 是卡方的自由度。 2-df 称为离中参数(Noncentrality parameter,NCP; Steiger, 1980)。 总体差距函数(Population Discrepancy Function, PDF):
PDF max[( df ) /(n 1),0]
STRUCTURAL EQUATION MODELING
PAGE26
Conditions when you might consider using PLS
Do you work with theoretical models that involve latent constructs? Do you have multicollinearity problems with variables that tap into the same issues? Do you want to account for measurement error? Do you have non-normal data?
结构方程模型的特点及应用
结构方程模型的特点及应用一、本文概述结构方程模型(Structural Equation Modeling,SEM)是一种在社会科学、心理学、经济学、管理学等领域广泛应用的统计技术。
它融合了传统的多元回归分析、路径分析、因子分析以及协方差结构分析等统计方法,通过构建一个包含潜在变量和观察变量的复杂因果关系模型,从而实现对研究现象的深入探索和理解。
本文旨在探讨结构方程模型的主要特点以及其在各个领域的具体应用,以期为读者提供一个全面而深入的了解。
我们将对结构方程模型的基本概念和理论框架进行简要介绍,帮助读者理解其基本原理和构成要素。
然后,我们将重点分析结构方程模型的主要特点,包括其处理复杂因果关系的能力、对潜在变量的处理优势以及模型的灵活性和适用性等方面。
接下来,我们将通过具体案例,详细阐述结构方程模型在各个领域的应用情况,包括社会科学研究、心理学研究、经济学分析以及管理决策等。
我们将对结构方程模型的应用前景进行展望,并指出未来可能的研究方向和挑战。
通过本文的阅读,读者可以全面了解结构方程模型的特点和应用,掌握其在不同领域中的实际操作方法,为相关研究提供有力的理论支持和实证依据。
二、结构方程模型的理论基础结构方程模型(Structural Equation Modeling, SEM)是一种基于统计分析的研究方法,旨在探究变量之间的因果关系。
它结合了路径分析、多元回归分析以及因素分析等多种统计技术,通过构建和检验理论模型来揭示变量之间的复杂关系。
SEM的理论基础主要包括因果理论、路径分析和最大似然估计等。
因果理论是结构方程模型的核心。
它认为在社会现象中,一个变量的变化往往会引起另一个变量的变化,这种关系被称为因果关系。
在SEM中,研究者通过构建因果模型,明确变量之间的因果关系,从而更深入地理解社会现象的本质。
路径分析是SEM的重要组成部分。
它通过图形化的方式展示变量之间的直接和间接关系,帮助研究者清晰地理解变量之间的相互作用机制。
结构方程模型的理论与应用
结构方程模型的理论与应用
结构方程模型(Structural Equation Modeling, SEM)是一种统计分析方法,主要用于研究变量之间的关联关系、直接和间接效应以及模型的拟合度。
它可以同时应用于测量模型和结构模型的建立和验证,并且可以有效地处理多层次和多变量数据,因此在社会科学和其他相关领域中得到广泛应用。
一、结构方程模型的理论基础
结构方程模型的理论基础主要包括路径分析、因子分析和回归分析。
路径分析是通过画图的方式来描述变量之间的直接或间接关系,可以通过路径系数来表达变量之间的关系强度;因子分析是一种统计方法,用于确定隐变量和观测变量之间的关系,通过测量误差来估计隐变量的影响;回归分析是通过控制其他变量,来研究一个或多个自变量对因变量的影响。
二、结构方程模型的应用
1.验证测量模型
2.构建结构模型
3.比较模型
4.处理多变量数据
5.处理多层次数据
6.研究因果关系
结构方程模型的应用范围广泛,涉及社会科学、教育学、心理学、管理学等多个领域。
它不仅可以用于理论验证,还可以用于定量分析和政策
评估。
但需要注意的是,结构方程模型的建模和分析需要充分考虑理论假设和数据的特点,以及模型参数的稳定性和解释力。
因此,使用结构方程模型时需要结合具体研究问题和数据状况进行灵活应用。
结构方程模型理论的建立与应用
结构方程模型理论的建立与应用【摘要】: 结构方程模型是一种非常通用的、主要的线性统计建模技术,广泛应用于经济学、心理学、社会学、管理学等领域的研究。
文章简要介绍了结构方程模型的理论、应用及要注意的问题。
【关键词】:结构方程模型; 理论; 应用1. 结构方程模型简述1.1 结构方程模型的结构结构方程模型可分为测量方程和结构方程两部分。
测量方程描述潜变量与指标之间的关系;结构方程则反映潜变量之间的关系。
指标含有随机误差和系统误差。
前者指测量上的不准确性行为,后者反映指标同时测量潜变量以外的特性。
随机误差和系统误差统称为测量误差,但潜变量则不含这些误差。
(1) 测量模型对于指标与潜变量之间的关系,通常写成如下测量方程: x =Λxξ+δ; y =Λyη+ε,其中,x为外生标识组成的向量;y为内生标识组成的向量;ξ为外生潜变量(即它们的影响因素处于模型之外);η为内生潜变量(即由模型内变量作用所影响的变量);Λx为外生标识与外生潜变量之间的关系,称为外生标识在外生潜变量上的因子负荷矩阵;Λy为内生标识与内生潜变量之间的关系,称为内生标识在内生潜变量上的因子负荷矩阵;δ为外生标识x的误差项;ε为内生标识y的误差项。
(2) 结构模型对于潜变量之间的关系,可写成如下结构方程: η= Bη+Γξ+ζ,其中,B为内生潜变量之间的关系;Γ为外生潜变量对内生潜变量的影响;ζ为结构方程的残差项,反映了η在方程中未能被解释的部分。
图1是一个结构方程模型示例。
图中ξ1、ξ2为外生潜变量,η1、η2为内生潜变量,x1、x2为ξ1的测量指标,x3、x4为ξ2的测量指标,y1、y2为η1的测量指标,y3、y4为η2的测量指标,δ1、δ2、δ3、δ4、ε1、ε2、ε3、ε4为对应指标的测量误差,λx11、λx21、λx32、λx42、λy11、λy21、λy32、λy42为指标在对应潜变量上的因子负载,21表示外生变量ξ1、ξ2之间的相关性,γ11、γ21、γ21、γ22表示外生变量ξ1、ξ2对内生变量η1、η2的影响,β21为内生变量η1对η2的影响,ζ1、ζ2分别为内生变量η1、η2的残差。
结构方程模型 ppt课件
结构方程模型
• 模型的修正主要包括: • (1) 依据理论或有关假设 ,提出一个或数个合理的
先验模型; • (2) 检查潜变量与指标间的关系 ,建立测量方程模
型; • (3) 若模型含多个因子 ,可以循序渐进地 ,每次只检
验含两个因子的模型 ,确立测量模型部分合理后 , 最后再将所有因子合并成预设的先验模型 ,作总体 检验; • (4) 对每一模型 ,检查标准误、标准化残差、修正 指数、参数期望改变值、χ 2 及各种拟合指数 ,据此 修改模型。
x1
y1
x2
自信
x3
x4
外向
y2
y3
y4
模型举例
3、结构方程模型的结构
结构方程模型可分为:测量模型和结构模型
(1)测量模型:指标和潜变量之间的关系
x x
y y
说明:
x,y是外源(如:六项社经指标)及内生(如:中、英、数成绩)指标。 δ,ε是X,Y测量上的误差。 Λx是x指标与ξ潜伏变项的关系(如:六项社经地位指标与潜伏社经地位的关 系)。 Λy是y指标与η潜伏变项的关系(如:中、英、数成绩与学业成就间关系)。
• (式6,) 不当 能模 说型 数与 据结数可构据以拟确方合认程时模式,模说,明也型数不据能并 证不 明排 某斥 一模 理
论基础;
• (7) 用同一样本数据 ,以相同数目的待估参数和 不同的组合形式可以产生许多不同模型 ,这些等同 模型哪一个更适合于研究问题 ,应按照模式表达的 意义从专业角度来鉴别;
结构方程模型
• (3) 一个完善的通径图并不表示一定包含尽 可能多的箭头。相反 ,统计学上最感兴趣的 是 ,寻找用尽可能少的箭头去联结尽可能少 的变量 ,而这时的通径图又能对所代表的样 本拟合得好;
第五讲 结构方程模型
• 可用于SEM分析的软件: 目前比较流行的是LISREL、 AMOS 、EQS和Mplus等。
第12页
2019/11/16
SEM軟體之使用率
(Why) Should We Use SEM? Pros and Cons of Structural Equation Modeling Nachtigall, Kroehne, Funke, Steyer (2003)
传统多元统计方法:检验自变量和因变量的单一关系(多元方差分析可 以处理多个,但是关系也是单一的)
SEM:综合多种方法,验证性分析,允许测量误差的存在
②SEM与典型相关分析(多个自变量与多个因变量之间关系)
典型相关分析:两组随机变量(定性或定量)之间线性密切程度;高维 列联表各边际变量的线性关系;探索性分析
第13页
2019/11/16
操作模型
?
(形式未知)
设定关系……
结构方程模型概念图
总体数据
## #### # ## #### # ## #### # ## #### # ## #### #
S o
总体协方差 矩阵
Matrix
D pop
总体不 一致处
S
k
近似协方差 矩阵
Matrix
抽样误差
Error
样本数据 矩阵Y源自MatrixPOPULATION
SAMPLE
S
样本协方差 矩阵
Matrix
D est 估计不一致处
(被操作化为 拟合优度指数)
第14页
S^
k
拟合协方差 矩阵
Fitted Covariance
Matrix
近似模型
etc.
设定+