偏微分方程理论学习总结
偏微分方程重点知识点总结
偏微分方程重点知识点总结一、偏微分方程的基本概念1. 偏导数偏微分方程是指含有多个自变量的函数的偏导数的方程。
在一元函数中,我们只需要考虑函数关于一个自变量的变化率,而在多元函数中,我们需要考虑函数关于每一个自变量的变化率,这就是偏导数的概念。
假设有一个函数f(x, y),它对x的偏导数记作∂f/∂x,对y的偏导数记作∂f/∂y。
分别表示函数f关于x和y的变化率。
2. 偏微分方程的定义偏微分方程是一类包含多个自变量的偏导数的方程。
它通常表示物理、化学或工程问题中的一些基本规律。
偏微分方程通常可以用数学语言描述为F(x, y, u, ∂u/∂x, ∂u/∂y, ∂^2u/∂x^2, ∂^2u/∂y^2,…) = 0其中u是未知函数,x和y是自变量,F是已知函数。
二、偏微分方程的分类1. 齐次偏微分方程和非齐次偏微分方程齐次偏微分方程是指方程中不含有常数项或只含有未知函数及其偏导数项的方程,非齐次偏微分方程是指方程中含有常数项或者其他函数的项的方程。
2. 线性偏微分方程和非线性偏微分方程线性偏微分方程是指偏微分方程中未知函数及其各阶偏导数只含一次且不含未知函数的乘积的方程,非线性偏微分方程是指未知函数及其各阶偏导数含有未知函数的乘积的方程。
3. 定解问题定解问题是指在偏微分方程中,给出一些附加条件,使得可以从整个解的集合中找到符合这些条件的特定解。
定解问题通常包括边界条件和初始条件。
三、偏微分方程的解法1. 分离变量法分离变量法是对于一些特定形式的偏微分方程,可以通过假设解具有特定的形式来进行求解。
例如,对于一些可以分离变量的方程,我们可以假设解为u(x, y) = X(x)Y(y),然后将方程进行变形,从而可以将偏微分方程化简为两个常微分方程,然后对这两个常微分方程分别求解。
2. 特征线法对于二阶线性偏微分方程,可以通过引入特征线的方法进行求解。
特征线方法可以将二阶偏微分方程化为两个一阶偏微分方程,然后对这两个一阶偏微分方程进行分别求解。
偏微分方程解法工作总结
方法一:用MATLAB的PDE toolbox模块求解:1.在MATLAB的命令窗口栏输入pdetool(如图1)就进入了GUI界面(如图2)。
图1图2在Option的下拉菜单中选择Grid选项,就会出现相应的网格,如图3。
这样做的好处就是能方便图形的定位。
图33.选择所需要的图形。
在求解本题时,所求解的二维区域是矩形,因而点击第二行的矩形快捷键,并进行相应的放置。
如图4。
图44.根据边界调整坐标轴的范围及图形的大小。
坐标的调整:选择Option菜单中的Axeslimits,输入相应坐标的范围。
本题中取x的范围为[020],y的范围为[014]。
图形大小的调整:用鼠标双击所需调整的图形,在相应的窗口中输入所需的尺寸。
本例中取left=0,bottom=0,width=20,height=12。
得到图5。
图55.边界的设置。
选择Boundary下拉菜单中的Boundary Mode命令,得到图6。
图7双击相应的边界,输入相应的边界条件。
在本例中,x=20和y=12处的边界设置如图8。
x=0和y=0处的边界设置如图9。
图8图96.求解方程的输入。
选择PDE下拉菜单中的PDE Mode,并双击图形,得到图10的对话框。
由于本例中所求方程为:1)(2222=∂∂+∂∂-∂∂yTx T t T 因而选择第二种方程形式Parabolic ,其对应的方程形式为:f au u c tud=+∇⋅∇-∂∂)(对应的d=1,c=1,a=0,f=1。
如图10所示。
图9图107.初始条件的设定。
当所求微分方程涉及对时间变量t的偏微分时,就需要设置初始条件。
本例就是这种情况。
选择Solve的下拉菜单中的Parameter项,得到如图11的对话框。
其中第一栏表示计算机求解时时间变量t的范围,本例取0:300。
第二栏表示时间变量t=0时,变量u的取值,本例中设置为u(t=0)=200。
后两栏为相对及绝对强度的设置,在本例中不需要设置。
偏微分方程课程学习报告
u(x, t) 1 (x at ) (x at ) 21 2 a
1 ( t 4a 2t
x
x at
at
( ) d
u(x ,y ,z ,t )
s
at ( M )
ds )
1 4a 2t
s
at ( M
)
ut a 2u xx f(x ,t ), x ,t 0 0 0 0 u(x , ) (x ), x u(0,t ) (t ),t 0
椭圆方程的边值问题
3u 0,(x ,y ,z ) k u s ( p ), p s
ds
而对于波动方程的初边值问题主要用分 离变量法 u(x,t)=X(x)T(t)
热传导方程定解问题求解方法
• Cauchy问题主要用自相似变换法 Poisson公式
x2 1 2 e 4a t ,t 0 G(x ,t ) 2a t 0,t 0
通解热核函数
u(x ,t )
Cauchy问题
utt a 2 u xx u yy uzz 0, x ,y ,z ,t 0 u t 0 (x ,y ,z ),ut t 0 (x ,y ,z ), x ,y ,z
4
波动方程的Cauchy问题
初边值问题
u tt a 2u xx f ( x, t ), 0 x , t 0 u ( x, 0) ( x), ut ( x, 0) ( x), 0 x u (0, t ) (t ), u (l , t ) (t ), t 0 1 2
0
0
对偏微分方程的认识与收获
对偏微分方程的认识与收获
偏微分方程是关于多元函数的方程,其中包含函数的偏导数。
它在数学和物理学等领域具有广泛的应用。
对于我个人而言,学习和研究偏微分方程带给我许多认识和收获。
首先,通过学习偏微分方程,我认识到这门学科是解决现实世界中许多实际问题的强有力工具。
偏微分方程可以描述和预测自然界中的现象,例如热传导、流体流动、电磁场等等。
通过对这些方程进行求解,我们可以了解这些现象背后的物理机制,并为相关工程和科学研究提供指导。
其次,对于我个人而言,学习偏微分方程使我深入了解了数学的美妙之处。
偏微分方程是数学分析的重要分支,它涉及到许多高深的数学概念和技巧,如函数空间、变分原理、特征线等。
通过研究这些概念和技巧,我逐渐意识到数学的严密性和优雅性。
通过解析解或数值方法求解偏微分方程,我能够欣赏到数学在解决实际问题中的独特魅力。
此外,学习偏微分方程也让我意识到数学与其他学科的紧密联系。
偏微分方程广泛应用于物理学、工程学、生物学等领域,它们提供了这些学科中许多问题的数学建模和分析方法。
通过研究偏微分方程,我能够拓宽自己的学科视野,将数学与其他学科结合起来,为解决实际问题提供更全面的方法。
总之,对偏微分方程的学习和研究给予我深刻的认识和丰富的收获。
它不仅增强了我对数学的理解和欣赏,还为我提供了解决实际问题的有力工具。
无论是在学术研究中还是在实际应用中,对偏微分方程的认识和掌握都能够为我提供宝贵的支持和帮助。
大学数学易考知识点偏微分方程的基本理论和解法
大学数学易考知识点偏微分方程的基本理论和解法大学数学易考知识点:偏微分方程的基本理论和解法一、引言数学作为一门基础学科,广泛应用于各行各业。
在大学数学课程中,偏微分方程是一个重要的知识点。
本文将介绍偏微分方程的基本理论和解法,帮助大家更好地掌握这一知识点。
二、偏微分方程的基本概念1. 偏微分方程的定义偏微分方程是含有未知函数及其偏导数的方程。
它与常微分方程不同之处在于,偏微分方程中的未知函数不仅依赖于自变量,还依赖于各个自变量的偏导数。
2. 偏微分方程的分类偏微分方程根据方程中出现的未知函数的偏导数的阶数和个数,可以分为常系数偏微分方程和变系数偏微分方程;根据方程类型,可以分为椭圆型、双曲型和抛物型等不同类型的方程。
三、偏微分方程的基本理论1. 解的存在性和唯一性对于线性偏微分方程,满足一定的初值条件和边值条件时,解的存在性和唯一性可以得到保证。
这一结论对于求解实际问题具有重要的意义。
2. 偏微分方程的解的性质偏微分方程解的性质包括可微性、连续性以及一定的物理意义。
解的性质可以通过数学推导和物理分析得到。
四、偏微分方程的解法1. 常系数偏微分方程的解法常系数偏微分方程包括常系数线性偏微分方程和常系数非线性偏微分方程。
对于常系数线性偏微分方程,可以使用特征线法、分离变量法等方法求解;对于常系数非线性偏微分方程,可以使用变量分离法等方法求解。
2. 变系数偏微分方程的解法对于变系数偏微分方程,一般的解法是利用变换法将其转化为常系数偏微分方程。
常用的变换方法包括相似变量法、积分因子法等。
五、应用实例1. 热传导方程的求解热传导方程是一个典型的偏微分方程,描述了物体内部温度随时间和空间的变化规律。
采用分离变量法或者变量分离法可以求解该方程,从而得到物体内部的温度分布。
2. 波动方程的求解波动方程描述了波动现象的传播规律。
通过变量分离法或者特征线法可以求解波动方程,得到波动的传播速度和波形。
六、总结通过对偏微分方程的基本理论和解法的介绍,我们可以看到偏微分方程是数学中一个重要且广泛应用的知识点。
数学的偏微分方程基础
数学的偏微分方程基础偏微分方程(Partial Differential Equations,简称PDEs)是描述物理、工程和数学问题中变量与它们的偏导数之间关系的方程。
偏微分方程在科学研究和工程实践中具有广泛应用,涉及物理学、生物学、工程学等诸多领域。
本文将介绍偏微分方程的基础知识、分类和解法。
一、基础知识1. 偏导数在介绍偏微分方程之前,我们首先需要了解偏导数的概念。
偏导数衡量了一个函数在某一变量上的变化率,但只考虑其他变量固定。
对于函数f(x, y),其关于x的偏导数表示为∂f/∂x,关于y的偏导数表示为∂f/∂y。
2. 偏微分方程偏微分方程是包含未知函数的偏导数的方程。
通常用u表示未知函数,其中u的自变量可以是多个变量,如u(x, y) 或 u(x, y, t)。
常见的偏微分方程类型有椭圆型、双曲型和抛物型。
二、分类1. 椭圆型偏微分方程椭圆型偏微分方程中,二阶导数的符号一致。
典型的椭圆型方程是拉普拉斯方程(Laplace's Equation),它描述了平衡状态下的物理系统。
2. 双曲型偏微分方程双曲型偏微分方程中,相对于时间t的一阶和二阶导数的符号相反。
经典的双曲型方程是波动方程(Wave Equation),它描述了波的传播和反射现象。
3. 抛物型偏微分方程抛物型偏微分方程中,时间t的一阶导数与空间变量的二阶导数具有相同的符号。
常见的抛物型方程是热传导方程(Heat Equation),它描述了物质的热传导现象。
三、解法1. 分离变量法分离变量法是求解偏微分方程的一种常用方法。
该方法基于假设解可以分解为多个单独变量的乘积形式,然后通过将方程两边分离各个变量并进行积分来求解。
2. 特征线法特征线法适用于双曲型偏微分方程。
通过寻找曲线(称为特征线),使得偏微分方程在沿特征线的方向上退化为常微分方程,从而简化求解过程。
3. 变换方法变换方法将原始的偏微分方程转换为另一个更容易求解的形式。
偏微分方程理论的归纳与总结
偏微分方程理论的归纳与总结一、偏微分方程的分类:1.齐次与非齐次:一个偏微分方程中,如果所有出现的偏导数项的次数相同,且不含常数项,则称其为齐次方程;如果存在常数项,则称其为非齐次方程。
2.线性与非线性:一个偏微分方程中若只包含未知函数及其偏导数的一次项,并且未知函数的系数不依赖于未知函数自身及其偏导数,则称其为线性方程;反之,则是非线性方程。
3.定常与非定常:一个偏微分方程中,如果未知函数及其偏导数的系数不依赖于自变量,则称其为定常方程;反之,则是非定常方程。
4.高阶与低阶:一个偏微分方程中,若最高阶偏导数的阶数大于1,则称其为高阶方程;若最高阶偏导数的阶数为1,则称其为一阶方程。
二、偏微分方程的求解方法:1.分离变量法:对于一些特殊的偏微分方程,可以通过分离变量的方式将其转化为一阶常微分方程进行求解。
2.特征线法:对于一些具有特殊形式的偏微分方程,可以通过特征线法来求解。
该方法将方程中的自变量替换为新的变量,使得方程在新的变量系综下变得简单。
3.变换法:通过适当的变量代换,将原方程转化为形式简单的方程或标准的数学物理方程进行求解。
5.数值解法:对于一些复杂的偏微分方程,可以采用数值解法进行近似求解,如有限差分法、有限元法、谱方法等。
三、偏微分方程的应用:1.物理学:偏微分方程在物理学中有着广泛的应用,如热传导方程、波动方程、扩散方程等。
2.工程学:偏微分方程在工程学中也有重要应用,如电磁场方程、流体力学方程、固体力学方程等。
3. 经济学:偏微分方程在经济学中的应用主要用于建模和分析经济系统的动态变化,如Black-Scholes方程、Hamilton-Jacobi-Bellman方程等。
4. 生物学:偏微分方程在生物学中的应用主要用于描述群体的扩散、生物图像处理和生物电传导等问题,如Fisher方程、Gray-Scott方程等。
综上所述,偏微分方程理论是数学中的重要分支之一、通过对偏微分方程的分类、求解方法及其应用的归纳与总结,不仅可以帮助我们更好地理解偏微分方程的本质与特点,还能够为我们解决实际问题提供一个有效的数学工具。
高数微分方程总结(一)
高数微分方程总结(一)前言高等数学(高数)是大学数学的重要基础课程之一,微分方程则是高等数学中的一大难点。
本文将对高数微分方程进行总结,希望能够对学习高数微分方程的同学提供一些帮助和指导。
正文什么是微分方程•微分方程是描述函数变化率的方程。
•包含未知函数、函数的导数及自变量的关系。
微分方程的分类1.常微分方程:–只包含有限个未知函数及其导数的方程。
–常微分方程的阶数为未知函数导数的最高阶数。
2.偏微分方程:–包含多个未知函数及其偏导数的方程。
–偏微分方程的阶数为未知函数偏导数的最高阶数。
微分方程的解法1.可分离变量法:–将未知函数与自变量的各项分离,在两边同时积分得到解。
2.齐次方程法:–换元化为可分离变量方程。
3.一阶线性方程:–使用积分因子法进行求解。
4.变量分离法:–将微分方程转化为关于不同变量的可分离变量方程。
5.常数变易法:–猜测一个常数解,进行代入验证,得到通解。
6.特征方程法:–对常数系数线性齐次微分方程,使用特征方程法求解。
微分方程应用领域•物理学:描述物理系统的运动规律。
•工程学:分析工程问题中的变化过程。
•经济学:研究经济发展、增长和波动等问题。
•生物学:描述生物体内的各种动态过程。
结尾通过对高数微分方程的总结,我们了解了微分方程的定义、分类以及常见的解法。
微分方程在许多学科领域都有广泛的应用,对于深入研究这些学科具有重要意义。
希望本文对正在学习高数微分方程的同学们有所帮助,加油!继续常见的微分方程类型•一阶线性常微分方程•一阶非线性常微分方程•一阶高阶常微分方程•二阶常系数齐次线性微分方程•二阶常系数非齐次线性微分方程•高阶齐次线性微分方程•高阶非齐次线性微分方程•可降阶的高阶微分方程微分方程的应用示例1.挂钟摆动的微分方程:–使用二阶常系数齐次线性微分方程描述,可求得钟摆的运动规律。
2.放射性衰变的微分方程:–使用一阶非线性常微分方程描述,可得到放射性物质的衰变速率。
3.电路中的无源电报方程:–使用二阶常系数非齐次线性微分方程描述,可分析电路中电流和电压的变化。
偏微分方程理论的归纳与总结
偏微分方程理论的归纳与总结偏微分方程是数学中的一个重要分支,它研究的是含有多个未知函数的方程,其中的未知函数是关于多个自变量的函数。
偏微分方程的研究对于理解自然界中的现象和发展科学技术具有重要意义。
在过去的几个世纪里,人们通过总结和归纳,逐渐建立了偏微分方程的理论体系。
偏微分方程的研究始于19世纪,著名的数学家欧拉、拉普拉斯、傅里叶等为偏微分方程的理论奠定了基础。
他们研究了常见的偏微分方程类型,如波动方程、热传导方程、拉普拉斯方程等,并给出了一些基本的解法。
随后,泊松、高斯等学者继续发展了偏微分方程的理论和解法,为后来的研究提供了重要的参考。
随着工业、天文学、物理学等学科的快速发展,人们遇到了更加复杂和多样的问题,已有的偏微分方程理论有时不能很好地解决这些问题。
于是,数学家们开始探索新的偏微分方程类型和解法。
20世纪是偏微分方程研究的重要时期,很多杰出的数学家为此做出了巨大贡献。
他们提出了更加复杂的偏微分方程模型,研究了抽象的偏微分方程理论,发展了更加高级和深奥的解法。
总结起来,偏微分方程的理论可以归纳为以下几个方面。
首先是分类。
根据方程的形式、性质和应用领域,偏微分方程可以被划分为多个类型。
常见的类型包括椭圆型、双曲型和抛物型方程。
椭圆型方程描述静态问题,如拉普拉斯方程;双曲型方程描述波动问题,如波动方程;抛物型方程描述演化问题,如热传导方程。
每种类型的方程都有其特定的性质和解法。
其次是解法。
偏微分方程的解法可以归为分析解法和数值解法两大类。
分析解法是通过推导公式或利用已知解的性质来求得方程的解。
数值解法则是通过将偏微分方程离散化,转化为代数方程组,然后利用计算机进行求解。
数值解法的发展使得人们能够处理更加复杂和现实的问题,对于科学和工程领域的发展起到了巨大的推动作用。
再次是理论。
偏微分方程的理论研究主要包括存在性、唯一性和稳定性等方面。
针对不同的方程类型,数学家们通过选择适当的函数空间、利用分析和几何的方法,研究了方程解的存在性和唯一性。
偏微分方程周蜀林笔记
偏微分方程周蜀林笔记一、偏微分方程的基本概念。
咱得先搞清楚啥是偏微分方程。
简单来说呢,偏微分方程就是含有未知函数的偏导数的方程。
比如说,有个函数u(x,y),如果方程里出现了u对x的偏导数或者u对y的偏导数,那这就是个偏微分方程啦。
这里面有几个重要的概念得记好哦。
像方程的阶,就是看方程中出现的未知函数偏导数的最高阶数。
比如说,要是最高阶是二阶偏导数,那这就是二阶偏微分方程。
还有线性和非线性的区别。
如果方程关于未知函数及其偏导数都是一次的,那就是线性偏微分方程;要是有不是一次的情况,那就是非线性偏微分方程啦。
就好比y'' + 2y' + 3y = 0就是线性的,但是y'' + y^2 = 0就是非线性的。
二、常见的偏微分方程类型。
这里面有几种常见的类型得重点关注哈。
1. 波动方程。
波动方程一般用来描述波的传播现象,像声波、光波这些。
一维波动方程的形式通常是utt = a^2 uxx,这里的u是关于x和t的函数,utt表示u对t的二阶偏导数,uxx表示u对x的二阶偏导数,a呢是个常数,和波的传播速度有关。
比如说一根振动的弦,它的振动情况就可以用波动方程来描述。
2. 热传导方程。
热传导方程主要是用来研究热量在物体内传播的情况。
一维热传导方程常见的形式是ut = a uxx,u还是关于x和t的函数,ut是u对t的一阶偏导数,a是和物体的导热系数等有关的常数。
想象一下一根铁棒,一端加热,热量沿着铁棒传递的过程就可以用热传导方程来分析。
3. 拉普拉斯方程和泊松方程。
拉普拉斯方程一般形式是Δu = 0,这里的Δ是拉普拉斯算子,在二维情况下,Δu = uxx + uyy 。
泊松方程呢就是Δu = f(x,y),f(x,y)是一个已知函数。
这两个方程在静电场、流体力学等很多领域都有应用。
比如说在静电场中,求电势分布的时候就可能会用到它们。
三、偏微分方程的解法。
解偏微分方程可不像解普通方程那么简单哈,有好几种方法呢。
偏微分方程理论学习总结
偏微分方程理论学习总结(共16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--偏微分方程理论学习总结任荣珍院系:理学院班级:19 班学号:34偏微分方程理论学习总结偏微分方程这一门学科在我脑海中的印象不是很深,本科时学的是常微分方程,在课堂上听到老师提起过偏微分方程,因此,在研究生阶段选课时就选了这门课,以前不了解偏微分,再选了这门课之后对偏微分也算有一定的了解,接下来我想就我这学期学习了这门课做一个简单的总结。
下面就来介绍有关偏微分方程的发展简介:谈到偏微分方程,我们就会想到本科时学的常微分方程,而偏微分方程的发展没有常微分方程的发展早,所以要谈偏微分方程就先来谈一下常微分方程。
十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程解决几何与理学中的新问题,结果是在天体理学中不仅能得到并解释早已知晓的那些事实,而且得到了新的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。
而偏微分方程的研究要晚的多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支——数学物理方程的建立。
J.达朗贝尔(D’Alembert)(1717-1783)、L.欧拉(Euler)(1707-1783)、D.伯努利(Bernoulli)(1700-1782)、J.拉格朗日(Lagrange)(1736-1813)、P.拉普拉斯(Laplace) (1749-1827)、S.泊松(Poisson)(1781-1840)、J.傅里叶(Fourier)(1768-1830)等人的工作为这一学科分支奠定了基础,它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。
十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。
偏微分方程总结报告
偏微分方程总结报告一、引言偏微分方程是数学中一个重要的分支,它描述了时间和空间中变化的物理量之间的关系。
在自然科学、社会科学和工程学中,偏微分方程有着广泛的应用。
本文将对偏微分方程的基本概念、分类和常见的求解方法进行总结。
二、偏微分方程的基本概念偏微分方程是一个包含未知函数的偏导数的方程。
它通常表示为一个数学表达式,其中包含一个或多个未知函数和这些函数的偏导数。
例如,热传导方程、波动方程和拉普拉斯方程等都是偏微分方程的实例。
三、偏微分方程的分类根据不同的分类标准,偏微分方程可以分为多种类型。
常见的分类方式包括:1. 按照阶数:一阶偏微分方程、二阶偏微分方程等。
2. 按照自变量的个数:常微分方程、偏微分方程等。
3. 按照边界条件:Dirichlet边界条件、Neumann边界条件和Robin边界条件等。
4. 按照方程的形式:线性偏微分方程和非线性偏微分方程等。
四、偏微分方程的求解方法求解偏微分方程的方法有很多种,下面列举几种常见的求解方法:1. 分离变量法:将偏微分方程转化为多个常微分方程,然后求解这些常微分方程。
这种方法适用于具有周期性解的偏微分方程。
2. 有限差分法:将偏微分方程转化为差分方程,然后在离散点上求解这个差分方程。
这种方法适用于具有规则网格的偏微分方程。
3. 有限元法:将偏微分方程转化为变分问题,然后使用有限元方法求解这个变分问题。
这种方法适用于具有复杂边界条件的偏微分方程。
4. 谱方法:将偏微分方程转化为谱问题,然后使用傅里叶分析、小波分析等方法求解这个谱问题。
这种方法适用于具有快速收敛解的偏微分方程。
偏微分方程学习笔记
偏微分方程一.预备知识1.平面凸集定义:若E 是一个平面凸集,则对于E 中任意两点x ,y ,连接这两点的线段也在E 内。
即λ x + (1-λ) y ∈E ( 任意x , y ∈E ,任意0≤λ ≤ 1)2.空间凸集定义:设X 是线性空间,E 是X 中一个空间凸集,如果λ x + (1-λ) y ∈E ( 任意x , y ∈E ,任意0≤λ ≤ 1)3.设D 是E 的一个子集,为凸集,泛函 f : D → R ,称为在D 上是凸的 是指任意x ,y ∈D ,t ∈ [0,1]均有f (tx + (1-t ) y )≤t f ( x )+ (1-t ) f ( y ) 若只在x = y 时取等号,则称f 是严格凸的.4.Cauchy 不等式: 2222a b ab ≤+.(,)a b R ∈证明:由于()22202a b a b ab ≤-=+-,可得2222a b ab ≤+.5.带ε的Cauchy 不等式: 2222a b ab εε≤+.(0)ε>证明:在公式2222a b ab ≤+中,令a ,b ,则有2222a b ab εε=≤+6.Young 不等式:设0,0,1,1,a b p q >>>>且111.p q+=则有.p q a b ab p q ≤+证明: 泛函 f : x → x e ,是凸的,因此有(1)(1)tx t yx y e te t e +-≤+-从而有11ln ln ln ln ln ln 11.p q p q p qa b a ba b p qa b ab eee e p q p q++==≤+=+ 7. 带ε的Young 不等式: 设0,0,0,1,1,a b p q ε>>>>>且111.p q+=则有.qpqpqpq pab ab a b pqεεεε--≤+≤+证明:在不等式p qa b ab p q≤+中用1p a ε和1p b ε-代替,a b ,可得11.ppqpqpqpq pab ab a b a b pqεεεεεε---=⋅≤+≤+8.Holder 不等式:设1,1,p q >>且111.p q+=若(),(),p q u L v L ∈Ω∈Ω则1(),u v L ⋅∈Ω且()().p q L L uvdx uvΩΩΩ≤⋅⎰证明:设1()t x 与1()s x 是Ω中这样的可测函数11()1,()1,p qt x dx s x dx ΩΩ==⎰⎰(★)根据Young 不等式有 111111.(0,0)p q t s t s t s p q ≤+>>,111.p q+=对上述不等式两边在Ω上积分得1111p q t s t s dx dx dx p q ΩΩΩ≤+⎰⎰⎰111p q=+= 其次,若(),()p q u L v L ∈Ω∈Ω,则函数1111()()(),()(())(())pqpqu x v x t x s x u x dx v x dx ΩΩ==⎰⎰满足(★)式的条件,故有1111()()()()1(())(())pqpqu x v x t x s x dx dx u x dx v x dx ΩΩΩΩ=⋅≤⎰⎰⎰⎰即 11()()(())(())pqpqu x v x dx u x dx v x dx ΩΩΩ≤⎰⎰⎰也就是()()()()()().p q L L u x v x dx u x v x ΩΩΩ≤⎰推论:(1)若11(),()0,1,u x v x pq≥+=则有11()()(())(()).p q pqu x v x dx u x dx v x dx ΩΩΩ≤⎰⎰⎰(2)若121,,,,m p p p ≤≤∞且121111,mp p p +++= 设(),(1,2,,),kp k u L k m ∈Ω=则有211212()()().p p p m m mL L L u u u dx u u u ΩΩΩΩ≤⋅⋅⋅⎰9.Minkowski ’s 不等式:设1p ≤≤∞,且,().p u v L U ∈则有 ()()().pp p L U L U L U u v uv+≤+证明:()1()p L U ppp UUu vu v dx u vu v dx -+=+≤++⎰⎰而111()p p p UU Uu v u v dx u vu dx u vvdx ---++=+++⎰⎰⎰()()111111, 1.qpqp p pUU Uu vu dx u vdx u dxq p --⎛⎫+≤++= ⎪⎝⎭⎰⎰⎰ ()()111111, 1.qpqp p pUU Uu vvdx u vdx v dxq p--⎛⎫+≤++= ⎪⎝⎭⎰⎰⎰从而有,1pq p =-因此有 ()()11111p p pp p p pp UU Uu vu dx u vdx u dx ----⎛⎫+≤+ ⎪ ⎪⎝⎭⎰⎰⎰()()11111p p ppp p pp UU Uu vv dx u vdx v dx----⎛⎫+≤+ ⎪ ⎪⎝⎭⎰⎰⎰上面两式相加得()()()()111111p p pp pp p ppp UU UUu v u v dx u vdx u dx v dx----⎛⎫⎛⎫ ⎪++≤++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰()1111(()())p ppppppUUUu v dxu dx v dx -⎛⎫=++ ⎪ ⎪⎝⎭⎰⎰⎰=1()()()()pp p p L U L U L U u v uv -++即是: 1()()()()()pp p p p p L U L U L U L U u v u vuv-+≤++,因此()()()()().p p p p L U L U L U L U u vu v u v +≤++10.-norms p L 内插不等式:设1,s r t ≤≤≤≤∞且有()11,rstθθ-=+若()().s t u L U L U ∈则有(),r u L U ∈且有()()1().rs t L U L U L U uuuθθ-≤证明:我们计算(1)rrrU U u dx uudx θθ-=⎰⎰,因为()11,r s tθθ-=+即是()11,r rstθθ-+=利用赫尔德不等式有()()(1)(1)(1)(1)rr s t s tr rrr rrrUUU Uu dx uudx udx u dx θθθθθθθθ----⎛⎫⎛⎫=≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰两边同时1r次方得到:()()1().rs t L U L U L U uuuθθ-≤11.柯西-施瓦茨不等式:,(,).n x y x y x y R ≤∈证明:让0,ε>并注意到222202.x y x x y y εεε≤±=±+从而有下列结果221.22x y x y εε±≤+设,0xy yε=≠时取右边的最小值得到,(,).n x y x y x y R ≤∈ 12.Gronwall ’s 不等式(differential form).(i)Let ()η be a nonnegative, Absolutely continuous function on[0,],T which satisfies for a.e t theDifferential inequality(15) ()()()(),t t t t ηφηψ'≤+Where ()x φ and ()x ψ are nonnegative, summable functions on[0,].T Then(16) 0()0()(0)()tt s ds t es ds φηηψ⎰⎡⎤≤+⎢⎥⎣⎦⎰ For all 0.t T ≤≤(ii)In particular, if on[0,T]and (0)=0,ηφηη'≤then 0on[0,T].η≡ Proof. From (15) we see()000()()()()()()()()sssr dr r dr r dr d s e e s s s e s ds φφφηηφηψ---⎛⎫⎰⎰⎰'=-≤ ⎪⎝⎭For a.e 0.s T ≤≤因此对每一个0,t T ≤≤we have00()()()0()(0)()(0)().(1)ts st t r drr dr r drt e e s ds s ds e φφφηηψηψ---⎰⎰⎰≤+≤+≤⎰⎰This implies inequality(16).13.Gronwall ’s inequality ( integral form ).(i)Let ()t ζ be a nonnegative, summable function on [0,T] which satisfies for a.e. t the integral inequality (17) 120()()tt C s ds C ζζ≤+⎰ For constants 12,0.C C ≥ Then(18) 121()(1)C t t C C te ζ≤+for a.e. 0.t T ≤≤ (ii) In particular, if10()()tt C s ds ζζ≤⎰for a.e 0.t T ≤≤ then ()0..t a e ζ=Proof. Let 120():();()..[0,].tt s ds then t C C a e in T ηζηζη'==≤+⎰According to the differential form of Gronwall ’s inequality above1122()((0))C t C t t e C t C te ηη≤+=Then (17) implies11221()()(1).C t t C t C C C te ζη≤+≤+14.Poincare 不等式(也叫Friedrichs 不等式)符号说明:()(){()}122,,1,2,,n iuR H u L L i nx ∂Ω⊆Ω=∈Ω∈Ω=∂这个集合是线性的。
偏微分方程理论的归纳与总结
偏微分方程理论的归纳与总结(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--偏微分方程基本理论的归纳与总结偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象.根据数学的特征,偏微分方程主要被分为五大类,它们是:(1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法;(2)椭圆型方程,它的方法是先验估计+泛函分析手段;(3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计;(4)双曲型方程,对应于Galerkin方法;(5)一阶偏微分方程,主要工具是数学分析方法.从自然界的运动类型出发,偏微分方程可分为如下几大类:(1)稳态方程(非时间演化方程);(2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容;(3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征;(4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制.下面具体来介绍三类经典方程:三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论.关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法.关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论.具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性.椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空间中考虑,我们将在连续函数空间和平方可积函数空间中分别讨论解关于输入数据的连续依赖性问题学习偏微分方程理论以及偏微分方程分析是研究其它一切的基础.首先有必要解释一下解的适定性.简单地说,一个偏微分方程是适定性的,若它有解(存在性)解唯一(唯一性)且对输入数据的微小改变的响应也是很小的改变(连续依赖性).前两个准则是一个有意义的物理模型所要求的,第三个准则是实验观察的基础.考虑适定性时,还应记得对有实际意义的问题通常不可能求得显示解,从而可考虑逼近格式,特别是数值解在应用中就具有特别的重要性.因此,适定性问题与偏微分方程科学计算的如下中心问题有密切联系:对一个问题给定一定精度的数据,数值解计算输出有多少精度?正因为这个问题对现代定量科学的重要性,适定性成为偏微分方程理论的核心内容.因此,偏微分方程的学习应以三类线性偏微分方程的适定性问题为主要研究对象.同时,考虑到偏微分方程理论的两个特点:一是与应用、与物理的紧密联系;二是与数学其它分支的联系.以下,我们具体来说一下其两个具有应用价值的特点.针对特点一:首先,数学物理方程是自然科学和工程技术的各门分支中出现的偏微分方程,这些方程给出了所考察的物理量关于自变量(时间变量和空间变量)的偏导数的关系.例如连续介质力学、电磁学、量子力学等方面的基本方程都属于数学物理的范畴,数学物理方程侧重于模型的建立和定解问题的解题方法,而偏微分方程则侧重于其自身的数学理论,所以偏微分方程理论的研究是能够更好地将其运用于物理当中.针对特点二:偏微分方程理论与其他数学分支如泛函分析、数论、拓扑学、代数、复分析等紧密联系.偏微分方程理论广泛应用数学这些领域中的基本概念,基础思想和基本方法,并且它本身也给这些学科分支的研究问题的范围与方向以影响.鉴于此,对于应用数学而言,掌握和研究偏微分方程的目的主要应该放在以下几个方面:(1)建立模型.在经典物理中,具有普遍意义的自然定律不仅可以用实验手段获得,而且根据这些定律很容易对相应的自然现象建立数学模型.如天体力学,连续介质力学,流体动力学以及经典电磁学中的物理定律就属于这种情况.在近代物理中,情况有一些变化.咋爱量子力学与广义相对论中,一些自然规则与物理定律是隐而不见的,此时数学物理方程是依靠部分物理原则与实验数据猜测出来的.然而,到了现代数学阶段,大多数面临的问题仅依靠物理或数学的单一学科知识和直觉建立模型已变得非常困难,必须具备多学科交叉能力才行.因此,只有系统全面地掌握偏微分方程的理论与方法,才能训练出从方程解的性质反推出模型的形式的能力,这里方程解的性质是由实验数据与观测资料所提供.这种模型反推能力再结物理直觉就是现在建立数学模型的基本要求;(2)从已知的方程和模型推导出新的发现和预言.这个方面可以说是科学发展最重要的环节之一;(3)从控制自然现象的微分方程中得到问题的机理和解释;(4)最后一个方面就是从数学模型获得与实验和观测相吻合的性质和结论.虽然这类工作不能提供新的科学结果,但能使我们加深对问题的理解,体现自然美与数学美的有机结合.在总结了偏微分方程理论所研究的内容及其特点以后,我们该怎样学习基本理论呢?首先,对于每一类方程,我们要了解它的物理背景及其意义,否则,我们根本不知道它在说什么.事实上,同一个方程有许多不同的来源,这一方面是偏微分方程理论具有广泛应用的原因之一.同时对于不同的来源进行类比研究可以更好地解释物理过程的某些特性,因为某个具体物理特性在某个物理过程还没有被观察到或没有引起注意,而在另外某个物理过程已经被观察注意到了,如果这两个物理过程服从同一个偏微分方程,则在原来的物理过程中应该也具有这个特性.其次,在对数学模型研究之后,需要有意识地讲数学解带回原来的物理意义中,去理解,解释物理现象.这一方面可以验证数学模型的有效性,另一方面可以更好地理解已知的物理现象,从而更加深刻地了解其在现实中的意义.然后,要善于去思考,总结,归纳.逐步提高分析、解决实际问题的能力.至于与数学其他学科的联系,比如,求解过程中将会用到许多微积分或数学分析的概念,思想,和定理,解的表达形式也是有积分形式的或级数形式的,解空间的结构则用到许多线性代数的知识.最后,学好泛函分析也是同等重要的,因为偏微分方程解的唯一性和连续依赖性需要许多实变和泛函分析的理论和方法.所以在重视偏微分方程基本理论时(实变函数和泛函分析的许多思想方法都是来源于偏微分程理论研究),也要同样学好泛函分析.参考文献(1)王明新,偏微分方程基本理论;(2)马天,偏微分方程理论与方法;(3)王明新,数学物理方程.。
大二上学期末偏微分方程实用技能总结
大二上学期末偏微分方程实用技能总结大二上学期末,我对偏微分方程实用技能进行了总结。
在学习偏微分方程的过程中,我掌握了许多实用技能,这些技能在数学建模和工程领域都具有广泛的应用。
在本文中,我将对我所学到的偏微分方程实用技能进行总结,并分享一些学习心得体会。
首先,我学会了对偏微分方程进行分类和解决不同类型的偏微分方程。
偏微分方程广泛应用于物理学、工程、经济学等领域,在解决实际问题时,需要根据具体情况选择合适的偏微分方程进行建模。
通过学习,我能够准确地对偏微分方程进行分类,并对不同类型的方程采用相应的解法,从而更好地解决实际问题。
其次,我在学习偏微分方程的过程中,掌握了常见的求解技巧和方法。
解偏微分方程是数学建模和工程领域中的重要任务,我通过学习,积累了大量的求解经验,并掌握了常见的求解技巧和方法。
例如,分离变量法、变换变数法、特征线法等,这些方法在解决实际问题时都具有重要的作用。
此外,我通过大量的练习,提高了对偏微分方程的建模能力和解题能力。
在学习偏微分方程的过程中,我通过大量的练习,提高了对实际问题建模的能力,并学会了如何将实际问题转化为偏微分方程进行求解。
同时,我也通过练习,提高了解题的速度和准确性,能够更快地解决实际问题,并得到准确的结果。
另外,我学会了利用数值方法求解偏微分方程。
在实际问题中,很多偏微分方程无法通过解析求解,需要借助数值方法进行求解。
我通过学习,掌握了有限差分法、有限元法等数值方法,能够有效地对偏微分方程进行数值求解,从而更好地解决实际问题。
总之,通过学习偏微分方程,我掌握了许多实用技能,这些技能对我未来的学习和工作都具有重要的意义。
我将继续努力,不断提高自己的数学建模能力和解题能力,为将来的发展打下坚实的基础。
希望在未来的学习和工作中,能够充分发挥偏微分方程实用技能的作用,为社会的发展和进步做出更大的贡献。
偏微分方程知识点总结
偏微分方程知识点总结1. 什么是偏微分方程?偏微分方程是描述多个自变量和它们的偏导数之间关系的方程。
它在数学和物理学中起着重要的作用,并被广泛应用于各个领域。
2. 偏微分方程的分类偏微分方程可以分为几个主要的类型,包括:- 椭圆型方程:以拉普拉斯方程为代表,通常用于描述稳定的分布或调和情况。
- 抛物型方程:以热方程和扩散方程为代表,通常用于描述物质传导或扩散过程。
- 双曲型方程:以波动方程为代表,通常用于描述波动或振动的传播过程。
3. 常见的偏微分方程以下是几个常见的偏微分方程:- 热方程(Heat Equation):用于描述温度在空间和时间中的传导过程。
- 波动方程(Wave Equation):用于描述波动的传播过程,如声波、光波等。
- 扩散方程(Diffusion Equation):用于描述物质在空间中的扩散过程。
- 广义拉普拉斯方程(Generalized Laplace Equation):用于描述稳定的分布情况,例如电势分布。
4. 解偏微分方程的方法解偏微分方程的方法有多种,常见的方法包括:- 分离变量法:将方程中的未知函数表示为多个独立变量的乘积形式,从而将偏微分方程转化为一组常微分方程。
- 特征线法:根据偏微分方程的特征曲线,将方程转化为常微分方程,并通过求解常微分方程得到解析解。
- 有限差分法:将偏微分方程中的偏导数用差商近似表示,将区域离散化为一个个小区域,利用差分方程逐步逼近解析解。
- 有限元法:将区域划分为有限个子区域,通过对子区域进行逼近,得到整个区域的近似解。
5. 偏微分方程在实际应用中的重要性偏微分方程在各个领域中都有着广泛的应用,如:- 物理学:用于描述波动、传热、扩散等物理现象。
- 工程学:用于解决结构强度、热传导、流体力学等工程问题。
- 经济学:用于建立经济模型,描述经济增长、分配等问题。
- 生物学:用于研究生物传输、生物过程等生命科学问题。
以上是我对偏微分方程的知识点进行的简要总结,请您参考。
偏微分方程课程总结
偏微分方程课程总结一、课程概述偏微分方程是数学的一个重要分支,它描述了时间和空间中某一变量变化率的规律。
这门课程主要涵盖了偏微分方程的基本理论、解法及其应用。
通过学习,我深入理解了偏微分方程在物理、工程、经济等领域的重要作用,也掌握了一些解决实际问题的技巧。
二、课程内容1. 偏微分方程的基本概念:介绍了偏微分方程的定义、分类以及解的存在性与唯一性。
2. 求解方法:讲解了分离变量法、积分变换法、有限差分法等基本解法,并进行了实例分析。
3. 线性偏微分方程:重点讨论了线性偏微分方程的基本理论,包括解的存在性、唯一性、正则性等,以及一些常见的线性偏微分方程的解法。
4. 非线性偏微分方程:探讨了非线性偏微分方程的基本理论,如整体解、奇异解、周期解等,并介绍了一些重要的非线性偏微分方程。
5. 应用实例:结合实际问题,如热传导、波动现象、流体动力学等,进行了偏微分方程的应用分析。
三、课程收获通过这门课程,我不仅掌握了偏微分方程的基本理论,还学会了如何运用这些知识解决实际问题。
我深入理解了偏微分方程在各个领域的应用,也学会了如何将复杂的实际问题转化为数学模型。
此外,我还提高了自己的数学思维能力,学会了如何分析问题、解决问题。
四、课程不足虽然这门课程让我收获颇丰,但也有一些不足之处。
首先,课程内容较为抽象,对于初学者来说可能有一定的难度。
其次,课程中涉及的数学知识点较多,需要有一定的数学基础才能更好地理解。
最后,课程的应用实例部分可以更加丰富,以便更好地展示偏微分方程的实际应用价值。
五、总结与展望总体来说,这门偏微分方程课程非常值得学习。
通过学习,我不仅掌握了偏微分方程的基本理论和方法,还学会了如何运用这些知识解决实际问题。
在未来的学习和工作中,我将继续深入学习偏微分方程的相关知识,不断提高自己的数学素养和解决实际问题的能力。
同时,我也希望能够将所学的知识应用到实际工作中,为解决实际问题做出贡献。
偏微分方程基本理论
偏微分方程基本理论
,关于微分方程的
偏微分方程(Partial Differential Equation,简称PDE)是一种重要的数学工具,用来解决多元函数的微分方程。
它与常微分方程的区别在于:偏微分方程涉及多变量函数,而常微分方程则只涉及单变量函数。
偏微分方程不仅仅是一个数学问题,而是解决实际问题及复杂程序的有力工具。
大部分这类方程都出现在物理学中,例如描述物理系统改变时的行为方程,比如电动势、电磁场、压力、气流和热传导等等。
偏微分方程经常被用于描述物体的运动方程,解决表面在某一条件下的变形问题,也可以用来描述物质的流动和分散的问题。
偏微分方程的基本理论是:求解多变量函数的微分方程,要把它分解成一些单变量函数的微分方程,通过特定的某个角度去看待这个多变量函数系统,再采用特定的分解技术把这个多变量系统分解成一组单变量函数系统。
再根据每个变量函数的独立变化特征,每个变量函数的求解简化成对应的单变量函数的微分方程。
使用偏微分方程解决问题的过程是:首先,根据物理原理,得出系统的偏微分方程式;其次,根据偏微分方程的类型,采用不同的解法解出解析解;最后,应力数值计算法,应用计算机技
术,将偏微分方程转换为相应的数值问题,然后采用特定的数值计算方法,求解导数及各种函数值,最终得出解析解或近似解。
偏微分方程是一种数学模型,它用来描述物理系统的变化的行为,它的应用范围非常广泛,在解决现实科学问题时有着重要的作用。
它不仅用于物理模型,而且在生物、经济、化学、声学等生物模型中也有着应用。
使用偏微分方程可以帮助人们对现实世界的行为建立一种模型,并且通过这种模型中的关系,帮助人们更好的理解和解决问题。
偏微分方程理论学习-中国科学技术大学
2T 2T 2T k2 T ,
x 2 y 2 z 2
x
其中k是一个参数,其值依赖于物体的质料。傅里叶当时解决的是如下特殊的热 传导问题:设所考虑的物体为两端保持在温度 0 度、表面绝热且无热流通过的柱 轴。在此情形下求解上述热传导方程,因为柱轴只涉及一维空间,所以这个问题 也就是求解偏微分方程
sin
nx l
.
为了满足初始条件,必须有
f
(x)
n 1
bn
sin
nx l
.
这就促使傅里叶不得不考虑任给一个函数,能否将它表示成三角级数的问题。傅 里叶得出的结论是:每个函数都可以表示成
f (x) bn sin nx,0 x .
n 1
这样,每个 bn 可由上式乘以 sin nx(n 1,2,...),再从0到 积分而得到。他还指出 这个程序可以应用于表达式
( , ) 的不同部分有不同解析式的函数,不论这些表示式相互是否连续地接合
着。特别是,一个傅里叶级数是在一整段区间上表示一个函数的,而一个泰勒级数 仅在函数的解析点附近表示该函数。
事实上,傅里叶的主要思想早在 1807年他提交巴黎科学院的一篇关于 热传导的论文中就出现了,但是这篇论文在拉格朗日等人评审后遭到拒绝。1811 年,他又提交了经过修改的论文,以争取科学院为热传导问题所设立的高额奖金。 这次他虽然获了奖,但仍因受到缺乏严格性的批评而未能将论文发表在当时科学 院的《报告》里。1824 年,傅里叶成为科学院的秘书,这回他终于能够把他 1811 年的论文原封不动地发表在《报告》里,而这已经是在他的名著《热的解析理论》 出版两年以后的事情了。
给出过任何完全的证明,它也没有说出一个函数可以展开为三角级数必须满足的
条件。然而傅里叶本人对此充满信心,因为他的信念有几何上的根据。傅里叶的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏微分方程理论学习总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII偏微分方程理论学习总结任荣珍院系:理学院班级:19 班学号:2014081034偏微分方程理论学习总结偏微分方程这一门学科在我脑海中的印象不是很深,本科时学的是常微分方程,在课堂上听到老师提起过偏微分方程,因此,在研究生阶段选课时就选了这门课,以前不了解偏微分,再选了这门课之后对偏微分也算有一定的了解,接下来我想就我这学期学习了这门课做一个简单的总结。
下面就来介绍有关偏微分方程的发展简介:谈到偏微分方程,我们就会想到本科时学的常微分方程,而偏微分方程的发展没有常微分方程的发展早,所以要谈偏微分方程就先来谈一下常微分方程。
十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程解决几何与理学中的新问题,结果是在天体理学中不仅能得到并解释早已知晓的那些事实,而且得到了新的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。
而偏微分方程的研究要晚的多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支——数学物理方程的建立。
J.达朗贝尔(D’Alembert)(1717-1783)、L.欧拉(Euler)(1707-1783)、D.伯努利(Bernoulli)(1700-1782)、J.拉格朗日(Lagrange)(1736-1813)、P.拉普拉斯(Laplace) (1749-1827)、S.泊松(Poisson)(1781-1840)、J.傅里叶(Fourier)(1768-1830)等人的工作为这一学科分支奠定了基础,它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。
十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。
而十九世纪偏微分方程的另一个重要发现是围绕着位势方程来进行的,这方面的代表人物格林(G.Green)是一位磨坊工出身、自学成才的英国数学家,位势方程也称为拉普拉斯方程:2222220V V VV x y z∂∂∂∆=++=∂∂∂偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来,而本学期学习的偏微分方程理论的第一篇就介绍了线性椭圆形方程,椭圆形方程它的方法是先验估计加泛函分析手段,在线性椭圆形这一块以6章来详细介绍线性椭圆形方程,在这一篇中讲到了很多内容和知识点,下面我就来介绍一些关于线性椭圆形方程的一些定理及应用在第一章预备知识这一块主要学习了若干技巧和一些重要的不等式,若干技巧分单位分解定理、齐次化边界条件、振动方法等单位分解定理:(设12,,...,k ΩΩΩ是开集组,K 是紧集,满足1kj j K ϕ=⊂,则存在函数0()j j C ϕ+∞∈Ω,使得0j ϕ≥,11kj j ϕ=≤∑,且在K 的领域内11kj j ϕ==∑)、;接下来介绍一些重要的不等式: 一、基本不等式 (1) Cauchy 不等式对任意的,0a b ≥,有2222a b ab ≤+(2) 带ε的Cauchy 不等式对任意的,0a b >和0ε>,有2222a b ab εε≤+(3) Jensen 不等式设:R R ϕ→是下凸的,则11(())(())b ba af t dt f t dt b a b a ϕϕ≤--⎰⎰ 对有限区间[,]a b 及可积函数:[,]f a b R →均成立 (4) Young 不等式对任意,0a b ≥,1,p q <<∞,111p q+=,有 p qa b ab p q≤+(5) 带ε的Young 不等式对任意,0a b ≥和0ε>,1,p q <<∞,111p q +=,有 pq p qa b ab pqεε-≤+(6) Holder 不等式pp LL uvdx uv Ω≤⎰, 1,p q ≤≤∞,111pq+=(7)一般的Holder 不等式121212......p p p kk kL L L u u u dx u u u Ω≤⎰,111...1kp p ++=(7’) Minkowski 不等式设1,p q ≤≤∞,,()p f g L ∈Ω,则()p f g L +∈Ω,使()()()p p p L L L f gfgΩΩΩ+≤+(8) 几何与算术平均不等式对任意12,,...,0k a a a ≥,有11212...(...)k kk a a a a a a k++≤(9) p L 空间的内插不等式1rsta a LLLuuu-≤, s r t ≤≤,11a ar s t-=+二、内插不等式 (1) (Green 恒等式)2uu udx u dx uds nΩΩ∂Ω∂∆=-∇+∂⎰⎰⎰ 记号()()()()()i i x x u x u x n x u x n x n∂=∇=∂为u 在点x 的外法向导数。
(2) (内插不等式)设2p ≤<∞,u 是光滑函数,在∂Ω上,0u =,则2121,1()()()i i j psnnrprs x x x i i j u dx C u dx u dx ΩΩΩ==≤∑∑⎰⎰⎰其中C 是仅依赖于p 的常数,且211p r s=+ 三、Sobolev 不等式设0():p Ln n u W R R R ∈→,则对1P n ≤<,有111()()n n inpp p p x RRi udx C u dx **=≤∑⎰⎰其中C 仅依赖于p 及n这些重要的不等式在以后的文章写作中也会用到,而且这是偏微分方程中最基本的知识。
偏微分方程理论与其他数学分支如泛函分析、函数论、拓扑学、代数、复分析的紧密联系,偏微分方程理论广泛应用数学这些领域中的基本概念、基础思想和基本方法,并且它本身也给这些学科分支的研究问题的范围与方向以影响,极值原理及其应用就是这种相互影响的经典范例,下面就来介绍一下弱极值原理及解的上下界估计、强极值原理、弱解的极值原理、极值原理等等弱极值原理: 假设:u R Ω→是20()()C C ΩΩ函数,满足微分不等式0i j i ij x x i x Lu a u bu cu ≡-++≤ in Ω其中ij a 满足椭圆性假设条件,i b 及c 有界,且()0c x ≥ in Ω,则sup max(0,sup )u u Ω∂Ω≤特别地,若0c ≡,则有sup sup u u Ω∂Ω=解的上下界模的估计:假设u 是方程()()i j i ij x x i x a u b u cu f in u on ϕ-++=Ω⎧⎪⎨=∂Ω⎪⎩的解,其中ij a 满足椭圆形假设条件,i b 及c 有界,且在Ω内()0c x ≥,则存在仅依赖于Ω及系数ij a ,i b ,c 的常数C ,使得sup sup sup u C f ϕΩ∂ΩΩ≤+弱极值原理断言,在一定条件下函数u 一定在Ω的边界取得它的最大值或最小值,但并不排除u 在Ω内也能取得最大(小)值,下面所讲的强极值原理说明,在一定条件下,若u 不恒为常数,则u 一定不能再内部达到最大值,下面就介绍强极值原理。
强极值原理:若函数20()()u C C ∈ΩΩ在Ω内满足0Lu ≤,且在一个内点处达到非负的最大值,()0c x ≥,则u 为常数。
接下来介绍弱解的极值原理,并由此获得问题()()()()0i j i i ij x x i x i x a u b u cu f f in u on -++=+Ω⎧⎪⎨=∂Ω⎪⎩弱解的存在性,这里我们采用DeGiorgi 迭代法。
为了更精确地叙述弱极值原理,我们需要引进上、下解的概念定义1:1()u H ∈Ω称为方程(,),a u v T v =的弱下解(弱上解、弱解),如果对任意0()C ϕ∞∈Ω,0ϕ≥,有 00(,)(,),(,)(,)i i a u T f f D ϕϕϕϕ≤≥==-其中(,)[()]i j i ij x x i x a u a u u bu cu v dx ϕΩ=++⎰事实上式00(,)(,),(,)(,)i i a u T f f D ϕϕϕϕ≤≥==-对于任意1()H ϕ∈Ω,max(,0)ϕϕϕ+==也成立 弱解的极值原理:设L 的系数满足式()ij a L ∞∈Ω与式2nniL L ib c+≤Θ∑,且在Ω内几乎处处成立,如果1()u H ∈Ω是方程(,),a u v T v =的弱下解,则对于任意p n >,我们有11()()sup sup ()npp n pn piLL ess u u C ff +-+ΩΩΩ∂Ω≤++Ω其中C 仅依赖于n ,p ,θ,Θ,Ω以及i b ,c ,但与Ω的下界无关。
上面介绍的是一些关于线性椭圆形的不等式极值原理及应用,下面我们来介绍有关线性椭圆形中有关解的估计、存在性及连续性梯度的边界估计:定理1.1假设u 满足()0()i j i ij x x i x a u b u cu f in u on -++=Ω⎧⎪⎨=∂Ω⎪⎩其中系数ij a ,i b ,c 有界,f 也有界,0c ≥,且ij a 满足椭圆性假设条件,Ω满足外球条件,则存在仅依赖于ij a ,i b ,c ,f 及Ω的常数C ,使得sup u C ∂Ω∇≤解的梯度在Ω上的估计:定理1.2假设u 是问题()0()i j i ij x x i x a u b u cu f in u on -++=Ω⎧⎪⎨=∂Ω⎪⎩的解,其中ij a 满足椭圆假设条件,ij a ,i b 与c 有有界的导数,且0c ≥,则存在仅依赖于θ (出现在椭圆假设条件中)及ij a ,i b ,c 的1,W ∞模的常数C ,使得sup sup (sup sup sup )u u C u f f Ω∂ΩΩΩΩ∇≤∇+++∇解的梯度在Ω上的估计有时是无用的,因为难以估计sup u ∂Ω∇,在这种情况下,我们考虑函数2'22()()()()W x x u x u x ξλ=∇+其中()x ξ是一光滑的截割函数,在∂Ω附近它恒为0,我们可以选择ξ,使它在某严格内域'Ω⊂Ω上恒等于1,并且利用前述估计,得到借助sup u Ω,sup f Ω及sup f Ω∇表示的sup u Ω∇的界。
一旦有了u ∇的界,利用同样的方法可得到高阶导数的界。
例如,我们可以利用极值原理于2''i j i j x x x x W u u u λ=+∇, λ待定以得到u 的二阶导数的界,利用2'''2i j i j x x x x W u u u ξλ=+∇以得到局部的二阶导数估计。