spss-协方差分析-的-基本原理
spss-协方差分析-的-基本原理
![spss-协方差分析-的-基本原理](https://img.taocdn.com/s3/m/8bfb28d6541810a6f524ccbff121dd36a22dc463.png)
SPSS 协方差分析的基本原理协方差分析是一种用于分析两个或两个以上变量之间关系的统计分析方法。
在SPSS 中,协方差分析用于评估变量之间的相关性以及它们如何随着时间或处理方式的变化而变化。
本文将介绍 SPSS 中协方差分析的基本原理及如何使用 SPSS 进行协方差分析。
协方差分析的基本概念协方差是用于测量两个变量之间线性关系的统计量。
如果两个变量存在正相关性,则它们的协方差将是正数;如果它们存在负相关性,则协方差将是负数;如果它们之间没有相关性,则协方差将是0。
协方差的计算公式如下:Cov(X, Y) = E[(X-E(X))(Y-E(Y))]其中,E(X) 和 E(Y) 分别是变量 X 和 Y 的期望值。
在 SPSS 中,我们可以使用协方差矩阵来查看多个变量之间的协方差。
协方差矩阵是一个 n x n 的矩阵,其中每一个元素是两个变量之间的协方差。
SPSS 中的协方差分析在 SPSS 中,使用协方差分析需要满足以下两个基本条件:1.至少有两个变量。
2.变量之间存在相关性。
首先,我们需要通过数据-选择数据进行数据输入。
然后,在分析-相关-协方差中,我们可以选择要分析的变量。
选择变量后,需要设置参数,如显示形式、统计量以及分析结果。
在选择协方差分析后,SPSS 会生成一个结果表格。
该表格包括了相关性系数、协方差和标准偏差等统计信息。
我们还可以使用 Scatterplot Matrix 查看多个变量之间关系的图像。
该图像显示了变量之间的散点图和相关性系数。
协方差分析是一种简单而有效的统计方法,用于分析多个变量之间的关系。
在SPSS 中,我们可以轻松地进行协方差分析,并获得有关变量之间相关性的详细信息。
本文介绍了协方差分析的基本原理和 SPSS 中的使用方法,希望本文能够帮助您更好地理解协方差分析的概念和应用。
SPSS_方差分析
![SPSS_方差分析](https://img.taocdn.com/s3/m/9b50c62aaf45b307e8719741.png)
第6章方差分析6.1实验目的在现实生活中,影响具体某个事物的因素往往很多,我们常常需要正确确定哪些因素的影响是显著的,方差分析(简称为ANOV A)就是解决这一问题的有效方法。
由于方差分析在统计分析工作中,是不可或缺的关键性的一个环节,因此掌握方差分析的原理及方法使非常必要的。
本实验的目的在于利用方差分析(简称为ANOV A)来进行相关的假设检验和统计决策。
具体有以下三个方面:1.帮助学生深入了解理解方差及方差分析的基本概念,掌握方差分析的基本思想和原理。
理解总离差(SST)、组间平方和(SSR)、组内平方和或残差平方和(SSE)、组间均方差(MSR)、组内均方差(MSE)、自由度、F统计量等基本概念及其相互关系。
2.掌握方差分析的过程:One-Way过程:单因素简单方差分析过程。
在Compare Means菜单项中,可以进行单因素方差分析、均值多重比较和相对比较;General Linear Model(简称GLM)过程:GLM过程由Analyze菜单直接调用。
这些过程可以完成简单的多因素方差分析和协方差分析,不但可以分析各因素的主效应,还可以分析各因素间的交互效应。
3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练进行单因素方差分析、两因素方差分析、协方差分析等操作,初步了解多元方差分析、重复测量的方差分析等操作,激发学生学习兴趣,增强自我学习和研究的能力。
6.2实验原理6.2.1统计原理方差分析是一种通过分析样本资料各项差异的来源以检验三个或三个以上总体平均数是否相等或者是否具有显著性差异的方法。
该方法在现实统计分析中应用非常广泛。
方差分析的方法是否正确,直接影响到统计分析的正确性和决策的科学性。
统计上存在两类误差:随机误差和系统误差。
随机误差是指在因素的同一水平(同一个总体)下,样本的各观察值之间的差异。
比如,同一种颜色的饮料在不同超市上的销售量是不同的;不同超市销售量的差异可以看成是随机因素的影响,或者说是由于抽样的随机性所造成的,这类差异称为随机误差。
6.5.3 协方差分析的应用举例_例说SPSS统计分析_[共5页]
![6.5.3 协方差分析的应用举例_例说SPSS统计分析_[共5页]](https://img.taocdn.com/s3/m/d8b08cde581b6bd97e19ea37.png)
146 例说
SPSS 统计分析 6.5 协方差分析
6.5.1 协方差分析的基本原理
方差分析时,除了要分析的因素变量外,其他的因素条件都要求一致或者尽可能地保持不变,然而实际中这一点非常难控制。
例如,考虑药物对患者某个生化指标变化的影响,比较实验组与对照组的该指标变化均值是否有显著性差异,以确定药物的有效性;但现实中,患者病程的长短、年龄以及原指标水平等混杂因素对疗效都有影响。
在有这些混杂因素的情况下处理因素对指标的影响是否显著就有必要使用协方差分析。
协方差分析是将方差分析和回归分析结合起来的一种统计方法。
它通过回归分析剔除其他混杂因素对指标的影响,再通过方差分析来研究处理因素对指标影响的显著性。
在协方差分析中,这些混杂因素被称为协变量。
协变量要求是连续型的数值变量,且多个协变量之间相互独立并与因素没有交互影响。
6.5.2 协方差分析的基本操作
下面以SPSS 15为例,介绍协方差分析的基本操作流程。
首先单击“Analyze ”下“General Linear Model ”中的“Univariate ”,指定因素变量到“Dependent ”框、影响因素到“
Fixed Factor(s)”
框和协变量到“
Covariate(s)”框;然后单击“Model ”按钮,定义方差分析的模型;再单击“Post Hoc ”按钮,定义各因素多重比较的检验方法。
具体如图6-19所示。
图6-19 协方差分析基本操作流程图
6.5.3 协方差分析的应用举例。
协方差分析spss实例
![协方差分析spss实例](https://img.taocdn.com/s3/m/150a4874814d2b160b4e767f5acfa1c7aa00821f.png)
协方差分析spss实例在统计学领域,协方差分析是一种重要的技术,它可以用来测量两个变量之间的变化程度。
它广泛应用于研究社会科学、心理学、生物学和其他领域,研究中需要测量变量间的相关性。
本文旨在讨论协方差分析的原理,以及有关应用SPSS软件计算协方差分析的实例。
一、协方差分析的原理协方差分析是一种可以测量两个变量之间的变化程度的统计方法。
协方差是衡量两个变量之间线性关系的度量。
从数学角度讲,协方差可以用来衡量两个变量X和Y的变化程度。
换句话说,如果X变量变化,Y变量也会变化,则可以称之为正相关;反之,则称之为负相关。
协方差可以用来检测变量间的线性相关性,以及变量间的变化关系。
二、应用SPSS软件计算协方差分析的实例1、准备数据首先,准备数据集,将需要测量协方差分析的变量输入到一个文本文件中,文件中的数据符合一定的格式,比如X1,X2,...Xn,每个变量占据一列。
接下来,将文本文件保存为.csv格式的文件。
2、使用SPSS软件计算协方差分析打开SPSS软件,在软件的右上方,找到“数据”选项,点击“导入”,选择数据文件,在“数据文件”选项下,将上一步准备好的数据文件上传;然后,会出现一个“数据文件选择”窗口,选择要测量协方差的变量,点击确定。
3、测量协方差接下来,在SPSS软件的“统计”选项中,找到“描述统计”,点击“协方差”,出现一个“协方差分析”窗口,在“变量”栏中,将要测量的变量输入,点击确定,系统就会根据输入的数据,计算出两个变量之间的协方差,并显示出来。
三、总结本文讲述了协方差分析的原理,以及如何使用SPSS软件计算协方差分析的实例说明。
协方差分析是一种重要的技术,它可以测量变量之间的相关性,应用于各种学科的研究,也是社会科学研究的重要手段。
应用SPSS软件计算协方差分析,可以简化运算,提高工作效率。
SPSS之方差分析最全总结(原理案例介绍)
![SPSS之方差分析最全总结(原理案例介绍)](https://img.taocdn.com/s3/m/48872ce2d0f34693daef5ef7ba0d4a7302766ce0.png)
讨论
本研究通过单因素方 差分析发现不同药物 治疗方案对患者病情 的改善程度存在显著 差异,为临床医生选 择最佳治疗方案提供 了科学依据。
然而,本研究仅关注 了药物治疗方案对患 者病情的短期影响, 未来可进一步探讨长 期疗效及安全性等问 题。
Hale Waihona Puke 此外,本研究样本量 较小,可能存在一定 的抽样误差。未来可 扩大样本量以提高研 究的准确性和可靠性 。
方差分析基本思想
F统计量
通过计算处理组间均方与处理组内均 方的比值,得到F统计量。如果F值较 大,说明处理组间的差异相对于处理 组内的差异更为显著。
假设检验
根据F统计量的值和给定的显著性水平 ,进行假设检验,判断因素对因变量 是否有显著影响。
02
SPSS中方差分析操作步骤
数据准备与导入
数据准备
案例结论与讨论
结论
通过协方差分析,发现不同治疗方法对患者生理指标的影响存在显著 差异,且患者年龄、性别等协变量对生理指标也有一定影响。
治疗方法的选择
根据分析结果,可以为患者提供更加个性化的治疗方案。
协变量的影响
考虑患者年龄、性别等协变量的影响,有助于提高治疗效果和患者满 意度。
研究局限性
本案例仅考虑了部分协变量的影响,未来研究可进一步探讨其他潜在 协变量的作用。
05
协方差分析案例解析
案例背景介绍
案例来源
01
某医学研究项目,探讨不同治疗方法对患者某项生理
指标的影响。
研究目的
02 通过协方差分析,研究不同治疗方法对患者生理指标
的差异,并考虑患者年龄、性别等协变量的影响。
数据收集
03
收集患者的年龄、性别、治疗方法及生理指标等数据
协方差分析
![协方差分析](https://img.taocdn.com/s3/m/8dddf5e1aeaad1f346933f18.png)
YOUR LOGO
YOUR LOGO
点击“确定”开始分析数据
YOUR LOGO
YOUR LOGO
YOUR LOGO
YOUR LOGO
在出来的结果中,我们主要是看自 变量和协变量的交互作用,如图所示, sig值大于0.05,所以交互作用不显著, 这就满足了协率同质性假设。
YOUR LOGO
利用协方差分析就可以完成这样的功能。 协方差将那些很难控制的随机变量作为协变 量,在分析中将其排除,然后再分析控制变 量对观察变量的影响,从而实现对控制变量 效果的准确评价。 协方差分析要求协变量应是连续数值型, 多个协变量间互相独立,且与控制变量之间 也没有交互影响。
YOUR LOGO
前面单因素方差分析和多因素方差分析中 的控制变量都是一些定性变量。而协方差分 析中则即包含了定性变量(控制变量),又 包含了定量变量(协变量)。
4.总结
• 单因素方差分析所解决的是一个因素下的 多个不同水平之间的相关问题;多因素方 差分析的控制变量在两个或两个以上,其 主要用于分析多个控制变量的作用、多个 控制变量的交互作用以及其他随机变量是 否对结果产生了显著影响;协方差分析将 那些很难控制的因素作为协变量,在排除 协变量影响的条件下,分析控制变量对观 察变量的影响,从而更准确地对控制因素 进行评价。
YOUR LOGO
3.SPSS分析步骤
YOUR LOGO
协方差分析之前,要先检验一下数据是否 满足协率同质假设,也就是检验自变量和斜 变量之间有木有交互作用,如图所示,在菜 单栏上执行:分析 一般线性模型(G) 单变量
YOUR LOGO
YOUR LOGO
• 在打开的对话框中,将因变量、自变量、 协变量都放到各自的位置,如图所示,评 定得分为因变量,培训方式为自变量,家 庭指数为斜变量,点击“选项”按钮,进 入子对话框
第六章 SPSS方差分析讲解
![第六章 SPSS方差分析讲解](https://img.taocdn.com/s3/m/05bf80376c175f0e7cd1375d.png)
SPSS单因素方差分析的基本操作步骤: (1)选择菜单:【分析】-【比较均值】-【单因素ANOVA】 (2)选择观测变量到【因变量列表】 (3)选择控制变量到【因子】(自变量)。
ANOVA(广告形式对销售额的单因素的方差分析结果)
43.4732
61.3689 53.7135 57.7044 57.5944 57.2863 44.0597
61.0268
78.1311 80.2865 70.5456 76.4056 81.2137 63.6903
40.00
51.00 42.00 52.00 50.00 44.00 37.00
70.00
常用的几个检验统计量 (1)LSD方法(Least Significant Difference) LSD方法称为最小显著性差异法。其字面就体现了其检 验敏感性高的特点,即水平间的均值只要存在一定程度的微 小差异就可能被检验出来。它利用全部观测变量值,而非仅 使用某两组的数据。 LSD方法使用于各总体方差相等的情况,但它并没有对 范一类错误的概率问题加以有效控制。 (2)Bonferroni方法 Bonferroni方法与LSD方法基本相同。不同的是Bonferroni对 范一类错误的概率进行了控制。
如果控制变量各水平下的观测变量总体的分布出现了显著 差异,则认为观测变量值发生了明显的波动,意味着控制变 量的不同水平对观测变量产生了显著影响;反之,如果控制 变量值没有发生明显波动,意味着控制变量的不同水平对观 测变量没有产生显著影响。
方差分析对观测变量各总体的分布还有以下两个基本假设前提: 观测变量各总体应服从正态分布。(不是非常严格)
第六章SPSS的方差分析-精品文档
![第六章SPSS的方差分析-精品文档](https://img.taocdn.com/s3/m/363af32955270722192ef77b.png)
多因素方差分析的基本思想
SPSS
概念
多因素方差分析用来研究两个及两个以 上控制变量是否对观测变量产生显著影响。 它不仅能分析多个因素对观测变量的独立 影响,更能够分析多个控制因素的交互作 用能否对观测变量的分布产生显著影响, 进而找到有利于观测变量的最优组合。
基本思想 SPSS
确定观测变量和若干个控制变量 剖析观测变量的方差 比较观测变量总离差平方和和各部分所占
S-N-K方法 SPSS
• 用于进行所有各组均值间的配对比较,且 用于水平观测值个数相等的情况。用逐步 过程进行其次子集的均值配对比较。在该 过程中各组均值按从小到大的顺序排列, 最先比较最极端的差异。
方差不相等时的一些多重比较方法
SPSS
• Tamhane,sT2方法:表示用T检验进行配 对比较检验
对销售额有显著差异。
SPSS
方法二 分析
比较均值
均值
SPSS
SPSS
SPSS
单因素 方差分 析一定 要选上
SPSS
单因素方差分析的进一步分析
SPSS
进一步 分析
SPSS
方差相等时的一些多重比较方法
SPSS
LSD方法
即最小显著性差异法。用T检验完成组间成对 均值的比较。检验的敏感度较高,即使是 各个水平间的均值存在细微差别也有可能 被检验出来,但此方法对第一类弃真错误 不进行控制和调整
i1 j1 k1
S S T S S A S S B S S C S S A B S S B C S S A B C S S E
多因素方差分析的数学模型
SPSS
• 设控制变量A有k个水平,B有r个水平,每 个交叉水平下均有l个样本,则在控制变量
SPSS数据分析—协方差分析
![SPSS数据分析—协方差分析](https://img.taocdn.com/s3/m/a4b7285db307e87101f696aa.png)
我们在实际工作中为了准确的分析问题,经常会收集多个变量,这些变量之前存在相互影响,导致分析的因素混杂,影响分析结果,为了获得准确的实验效应,我们需要控制其中一些影响因变量的变量,这些变量称为就协变量,带有协变量的方差分析称为协方差分析。
协方差分析的基本思想为:在进行方差分析之前,先用直线回归找出各组因变量与协变量之间的数量关系,求得假定协变量相等时的因变量值,然后以这个修正后的因变量值做方差分析,这样就有可以做到控制协变量对因变量产生的影响。
协方差分析有如下假定
1.协变量与因变量是线性关系
2.各组残差呈正态分布
3.各组回归线平行,斜率相等
其中第三点为协方差分析特有的平行性假定,实际上就是检验对于不同的自变量,协变量对因变量的影响是否相同,这点很重要,如果该假设不满足的话,说明自变量和协变量之间存在相互影响,而它们又同时都会对因变量产生影响,这样混杂起来我们就无法完全控制协变量了。
如果不满足平行性假定,需要对数据进行处理或者改用其他方法。
协方差分析在一般线性模型的三个子过程中都可以做,本例只有一个因变量,因此选择单变量分析—一般线性模型—单变量。
SPSS方差分析
![SPSS方差分析](https://img.taocdn.com/s3/m/cd97253c84868762cbaed5a6.png)
(5)输出结果的最后部分是各组观察变 量均值的折线图,如图5-6所示。
5.3 多因素方差分析
5.3.1 统计学上的定义和计算公式
定义:多因素方差分析中的控制变量在两 个或两个以上,它的研究目的是要分析多个控 制变量的作用、多个控制变量的交互作用以及 其他随机变量是否对结果产生了显著影响。例 如,在本章开始讲述的例子,在获得教学效果 的时候,不仅单纯考虑教学方法,还要考虑不 同风格教材的影响,因此这是两个控制变量交 互作用的效果检验。
受不同因素的影响,研究所得的数据会不 同。造成结果差异的原因可分成两类:一类是 不可控的随机因素的影响,这是人为很难控制 的一类影响因素,称为随机变量;另一类是研 究中人为施加的可控因素对结果的影响,称为 控制变量。
方差分析就是实现上述功能的分析方法。 方差分析的基本思想是:通过分析研究不同变 量的变异对总变异的贡献大小,确定控制变量 对研究结果影响力的大小。通过方差分析,分 析不同水平的控制变量是否对结果产生了显著 影响。如果控制变量的不同水平对结果产生了 显著影响,那么它和随机变量共同作用,必然 使结果有显著的变化;如果控制变量的不同水 平对结果没有显著的影响,那么结果的变化主 要由随机变量起作用,和控制变量关系不大。
定义:协方差分析是将那些很难控制的因 素作为协变量,在排除协变量影响的条件下, 分析控制变量对观察变量的影响,从而更加准 确地对控制因素进行评价。
利用协方差分析就可以完成这样的功能。 协方差将那些很难控制的随机变量作为协变量, 在分析中将其排除,然后再分析控制变量对观 察变量的影响,从而实现对控制变量效果的准 确评价。
第3章 统计描述
3.1 均值(Mean)和均值标准误差(S.E.mean)
3.2
中位数(Median)
SPSS统计分析第五章方差分析
![SPSS统计分析第五章方差分析](https://img.taocdn.com/s3/m/02d8ac5fa0116c175f0e48d1.png)
例题
用4种饲料喂猪,共19头猪分为四组,每组用一种饲料。一段时间后称重。猪体重增 加数据如下。比较四种饲料对猪体重增加的作用有无不同。
4.因素的主效应和因素间的交互效应
有A、B两种药物治疗缺铁性贫血,患者12例,分为4组。实验方案是:第一组用一 般疗法;第二组在一般疗法基础上加用A药;第三组在一般疗法基础上加用B药,第 四组在一般疗法基础上A、B两药同时使用。一个月后观察红细胞增加数。要求分析 两种药物的疗效(数据下表)。
实验数据
2.水平
因素的不同等级称作水平。 例如,性别因素在一般情况下只研究两个水平:男、女。化学实验或生物实验中的“剂 量”必须离散化为几个有限的水平数。如:1ml、2ml、4ml三个水平。 应该特别注意的是在SPSS数据文件中,作为因素出现的变量不能是字符型变量,必须 是数值型变量。例如性别变量SEX,定义为数值型,取值为0、1。换句话说,因素变量 的值实际上是该变量实际值的代码,代码必须是数值型的。可以定义值标签F、M(或 Fema1e、ma1e)来表明0、1两个值的实际含义,以便在打印方差分析结果时使用。使 结果更加具有可读性。
1、单因素方差分析
单因素方差分析也称作一维(元)方差分析。它检验由单一因素影响的一个(或几 个相互独立的)因变量按因素各水平分组的均值之间的差异是否具有统计意义。还 可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析 即进行均值的多重比较。
One-way ANOVA过程适用情况
三、方差分析过程
SPSS提供的方差分析过程有: One-way过程
第6章spss方差分析(共39张PPT)
![第6章spss方差分析(共39张PPT)](https://img.taocdn.com/s3/m/a7f81f6aa517866fb84ae45c3b3567ec102ddca5.png)
因sp为he当ric一ity个)I因n,变c否l量则u被应d重校e复正i测n。量te几r次c,ep从t而i同n一m个体o的d几e次l 观-在察结模果间型存在中相关包,这括样就截不满距足独。立若性的能要求确,但定要求回满足协方差矩阵的球形性( 归线不通过原点,则不选此项。 01,说明模型有统计学意义。
控制因素,可多 个
随机因素,不是 必需
协变量-用于去除该变量对因变量 的影响 ,协方差分析用
5
异方差时,将选入变量用加权最小二乘 法估计模型参数,协方差分析用
【Model按钮】:
Full factorial 全模型,包括所有因素的主效应、交互效应、协变 量主效应等。是系统默认的模型。
Custom 自定义模型。用户可以选择实验中感兴趣的效应 。
6
Factors&covariate-框中所列出的是主对话框中所选的因素:包 括固定因素(标F)、随机因素(标R)、协变量因素(标C) 。本例中只含有固定因素。
Build terms:针对所选因素选择不同的效应。 Interaction 指定任意的交互效应; Main effects 指定主效应; All 2-way 指定所有2维交互效应; All 3-way 指定所有3维交互效应; All 4-way 指定所有4维交互效应 All 5-way 指定所有5维交互效应。
Error 误差。其偏差平方和反应的是组内差异。也称组内偏差平方 和。
Total 是偏差平方和,在数值上等于截距+主效应+交互效应+误差
偏差平方和。 Corrected Total 校正总和。其偏差平方和等于校正模型与误差之偏 差平方和之总和。
22
SPSS教程-方差分析
![SPSS教程-方差分析](https://img.taocdn.com/s3/m/3672ab340622192e453610661ed9ad51f01d5428.png)
SPSS教程-⽅差分析⽅差分析是⽤于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,⼀是不可控的随机因素,另⼀是研究中施加的对结果形成影响的可控因素。
⽅差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献⼤⼩,从⽽确定可控因素对研究结果影响⼒的⼤⼩。
⽅差分析主要⽤途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作⽤,③分析因素间的交互作⽤,④⽅差齐性检验。
在科学实验中常常要探讨不同实验条件或处理⽅法对实验结果的影响。
通常是⽐较不同实验条件下样本均值间的差异。
例如医学界研究⼏种药物对某种疾病的疗效;农业研究⼟壤、肥料、⽇照时间等因素对某种农作物产量的影响;不同化学药剂对作物害⾍的杀⾍效果等,都可以使⽤⽅差分析⽅法去解决。
⽅差分析原理⽅差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,⽤变量在各组的均值与该组内变量值之偏差平⽅和的总和表⽰,记作SS w,组内⾃由度df w。
(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。
⽤变量在各组的均值与总均值之偏差平⽅和表⽰,记作SS b,组间⾃由度df b。
总偏差平⽅和 SS t = SS b + SS w。
组内SS t、组间SS w除以各⾃的⾃由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均⽅MS w和MS b,⼀种情况是处理没有作⽤,即各组样本均来⾃同⼀总体,MS b/MS w≈1。
另⼀种情况是处理确实有作⽤,组间均⽅是由于误差与不同处理共同导致的结果,即各样本来⾃不同总体。
那么,MS b>>MS w(远远⼤于)。
MS b/MS w⽐值构成F分布。
⽤F值与其临界值⽐较,推断各样本是否来⾃相同的总体。
⽅差分析的假设检验假设有m个样本,如果原假设H0:样本均数都相同即µ1=µ2=µ3=…=µm=µ,m个样本有共同的⽅差。
SPSS基础学习方差分析—协方差分析
![SPSS基础学习方差分析—协方差分析](https://img.taocdn.com/s3/m/3c7a40c89fc3d5bbfd0a79563c1ec5da50e2d6df.png)
SPSS基础学习⽅差分析—协⽅差分析
⽬的:在多因素⽅差分析中我们提到“协变量“是⽤来控制其他变量与因⼦变量有关⽽且影响⽅差分析的⽬标变量的其他⼲扰因素。
注意点:在利⽤协⽅差分析的时候,我们先对这个变量进⾏分析。
案例分析:研究三中不同的饲料对⽣猪的体重增加的影响。
(数据来源:薛薇《统计分析与SPSS的应⽤》第六章)
⾸先,先对猪喂养前的体重进⾏⼀个散点图的绘制
步骤:图形—旧对话框—点状/散点
由图可知:变量之间呈现较为相似的线性关系,各斜率基本相同,所以喂养前的体重可以作为协变量参与协⽅差分析。
协⽅差分析的步骤:
分析—⼀般线性模型—单变量
关键截图:
结果分析:
由协变量的图:
没有协变量的图:
分析:我们可以清楚地的看出SL的变差由1238.375减少为227.615,这就是剔除了喂养前体重的影响造成的,因此不能忽略”猪喂养前的体重“。
参考书籍:
薛薇《统计分析与SPSS的应⽤》第五版
吴骏《SPSS统计分析从零开始》。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
协方差分析的基本原理1.协方差分析的提出无论是单因素方差分析还是多因素方差分析,它们都有一些人为可以控制的控制变量。
在实际问题中,有些随机因素是很难人为控制的,但它们又会对结果产生显著影响。
如果忽略这些因素的影响,则有可能得到不正确的结论。
例如,研究3种不同的教学方法的教学效果的好坏。
检查教学效果是通过学生的考试成绩来反映的,而学生现在考试成绩是受到他们自身知识基础的影响,在考察的时候必须排除这种影响。
又比如,考查受教育程度对个人工资是否有显著影响,这时必须考虑工作年限因素。
一般情况下,工作年限越长,工资就越高。
在研究此问题时必须排除工作年限因素的影响,才能得出正确的结论。
再如,如果要了解接受不同处理的小白鼠经过一段时间饲养后体重增加量有无差别,已知体重的增加和小白鼠的进食量有关,接受不同处理的小白鼠其进食量可能不同,这时为了控制进食量对体重增加的影响,可在统计阶段利用协方差分析(Analysis of Covariance),通过统计模型的校正使得各组在“进食量”这个变量的影响上相等,即将进食量作为协变量,然后分析不同处理对小白鼠体重增加量的影响。
为了更加准确地控制变量不同水平对结果的影响,应该尽量排除其它在实验设计阶段难以控制或者是无法严格控制的因素对分析结果的影响。
利用协方差分析就可以完成这样的功能。
协方差分析将那些难以控制的随机变量作为协变量,在分析中将其排除,然后再分析控制变量对于观察变量的影响,从而实现对控制变量效果的准确评价。
协方差分析要求协变量应是连续数值型,多个协变量间互相独立,且与控制变量之间没有交互影响。
前面单因素方差分析和多因素方差分析中的控制变量都是一些定性变量,而协方差分析中既包含了定性变量(控制变量),又包含了定量变量(协变量)。
协方差分析在扣除协变量的影响后再对修正后的主效应进行方差分析,是一种把直线回归或多元线性回归与方差分析结合起来的方法,其中的协变量一般是连续性变量,并假设协变量与因变量间存在线性关系,且这种线性关系在各组一致,即各组协变量与因变量所建立的回归直线基本平行。
当有一个协变量时,称为一元协方差分析,当有两个或两个以上的协变量时,称为多元协方差分析。
以下将以一元协方差分析为例,讲述协方差分析的基本思想和步骤。
2.协方差分析的计算公式以单因素协方差分析为例,总的变异平方和表示为:Q Q Q Q++总控制变量协变量随机变量=协方差分析仍然采用F检验,其零假设H为多个控制变量的不同水平下,各总体平均值没有显著差异。
F统计量计算公式为:22SFS控制变量控制变量随机变量=,22SFS协变量协变量随机变量=以上F统计量服从F分布。
SPSS将自动计算F值,并根据F分布表给出相应的相伴概率值。
如果F控制变量的相伴概率小于或等于显著性水平,则控制变量的不同水平对观察变量产生了显著的影响;如果F协变量的相伴概率小于或等于显著性水平,则协变量的不同水平对观察变量产生了显著的影响。
3.协方差分析需要满足的假设条件(1)自变量是分类变量,协变量是定距变量,因变量是连续变量;(2)对连续变量或定居变量的协变量的测量不能有误差;(3)协变量与因变量之间的关系是线性关系,可以用协变量和因变量的散点图来检验是否违背这一假设;(4)协变量的回归系数是相同的。
在分类变量形成的各组中,协变量的回归系数(即各回归线的斜率)必须是相等的,即各组的回归线是平行线。
如果违背了这一假设,就有可能犯第一类错误,即错误地接受虚无假设。
(5)自变量与协变量是直角关系,即互不相关,它们之间没有交互作用。
如果协方差受自变量的影响,那么协方差分析在检验自变量的效应之前对因变量所作的控制调整将是偏倚的,自变量对因变量的间接效应就会被排除。
4.协方差分析SPSS的示例在进行新的外语教学方法实验时,往往需要在实验前和实验后对实验组和控制组的学生都进行成绩测试,以便确定新的教学方法对实验后成绩的影响。
显然,实验前成绩与实验后成绩之间会有内在联系,如果要更准确地确定新的教学方法的效果,有必要考虑实验前成绩对实验后成绩的影响,也就是说可以把前测成绩作为协变量进行协方差分析。
本例子中的实验研究共有15名受试者,将这些受试者随机分为3组,各组有5人,然后对这三组进行不同的教学方法实验。
其中一组为控制组,实验时不对教学方法进行改变,仍然采用以前的传统教学方法。
另两组为实验组,分别用交际法和沉浸法两种教学方法进行教学方法实验。
实验开始前对这三组学生用相同的试卷进行了英语测试,得出了前测成绩。
实验结束后,用新的试卷同时对这三组学生进行了测试,得出了后测成绩。
然后将要分析的数据输入到SPSS中去。
见数据录入表格所示。
我们用1表示传统教学方法,2表示交际法,3表示沉浸法。
我们先不考虑前测成绩,以“教学方法”为因素变量,“后测成绩”为因变量进行单因素方差分析。
从方差分析结果来看,概率值为0.463(远远大于0.05的显著性水平),说明三种教学方法在后测成绩上似乎没有显著差异,但如果以前测成绩作为协变量进行方差分析时,分析结果可能就会有差异。
以下将以前测成绩作为协变量进行方差分析,检验三种不同教学方法是否真的没有显著差异。
未作协方差分析之前的单因素方差分析表ANOVA后测成绩用SPSS进行协方差分析,可以分两大步骤进行,首先检验回归斜率相等的假设,然后进行协方差分析。
一、回归斜率相等的假设1、分组散点图对于本例,首先应了解三种教学方法的前测成绩与后测成绩的回归线是否平行,即前测考试成绩的影响在分别采用三种教学法的三个班级中是否相同,这可以用前测成绩与教学法是否存在交互作用来表示。
对于该问题,首先可以作分组散点图,观察三组直线趋势是否近似,然后看交互作用有无统计学意义,当交互作用无统计学意义时,则进行协方差分析,得出统计结论。
在菜单中选择Graphs→Scatter/Dot,打开atter/Dot对话框,选择SimpleScatter选项,按右上角Define按钮,以前测成绩为X轴,后测成绩为Y轴,教学方法作为(Panelby→Rows),作出散点图,注意在作出散点图之后,左键双击输出的图形,调出ChartEditor对话框,按照菜单Element→Fit Line atTotal,可以得到如下图所示的散点图,从图中可知三组中前测成绩和后测成绩有明显的直线趋势,且三组中直线趋势的斜率接近,因此从图形上未发现违反前提条件的迹象,可以进一步作假设检验,检验各组总体斜率是否相等。
如果按照菜单Graphs→Scatter/Dot,打开atter/Dot对话框,选择SimpleScatter选项,按右上角Define按钮,以前测成绩为X轴,后测成绩为Y轴,教学方法作为标记变量(Set markers by),作出散点图,注意在作出散点图之后,左键双击输出的图形,调出Chart Editor对话框,按照菜单Element→Fit L ine at Total,可以得到如下图所示的散点图,作出散点图,注意在作出散点图之后,左键双击输出的图形,调出Chart Editor对话框,按照菜单Element→Fit Line at subgroups,可以得到如下图所示的散点图,从图中可知三组中前测成绩和后测成绩有明显的直线趋势,且三组中直线趋势的斜率接近,因此从图形上未发现违反前提条件的迹象,可以进一步作假设检验,检验各组总体斜率是否相等。
2、组内回归斜率相同检验步骤1:选择协方差分析菜单(与GLM单因素方差分析菜单相同)。
点击数据编辑界面的Analyze命令,选择General LinearModel,并打开Univariate对话框。
步骤2:选定因变量、因素变量和协变量。
在对话框中左边变量列表中选择“后测成绩”作为因变量,并将其移入Dependent Variable方框中。
然后选择“教学方法”作为因素变量,将其移入到Fixed Fact or(s)方框中。
再选择“前测成绩”作为协变量,将其移入Ccvariate(s)方框中。
步骤3:确定分析模型。
在对话框中单击Model命令按钮,进入Univariate Model对话框中。
该对话框提供了两种不同形式的模型,完全因素(full factorial)和自定义因素(custom)模型。
由于要进行回归斜率相同的检验,所以本例使用自定义因素模型。
点击Custom选择按钮后,从左边的变量列表中选择“教学方法”,点击右向箭头将其移入Model方框中。
用同样的方法将变量列表中的“前测成绩”移入Model方框中。
最后在变量列表中连续点击“教学方法”和“前测成绩”,同时选中它们,再点击右向箭头,Model方框中会出现“教学方法*前测成绩”字样,意为进行交互效应分析,即检验回归线斜率相等的假设。
点击Continue命令按钮回到主对话框中,并点击OK按钮提交程序运行。
组内回归斜率相同检验结果Tests ofBetween-Subjects Effects Dependent Variable:后测成绩SourceType IIISum of SquaresdfMeanSquareF Sig.CorrectedModel1498.531(a) 5299.706 9.816 .002Intercept 632.390 1 632.390 20.711.001教学方法84.312 2 42.156 1.381 .300前测成绩86.072 1 86.0722.819 .127 教学方法*前测成绩166.488 2 83.244 2.726.119Error 274.8029 30.534Total 47700.000 15Corrected Total 1773.333 14a R Squared= .845 (AdjustedRSquared = .759)上表是组内回归斜率相同检验结果,教学方法与前测成绩的交互效应检验的F值为2.726,概率值为0.119(大于0.05),没有达到显著性水平,表明三组的回归斜率相同,即各组的回归线为平行线,符合了协方差分析的回归斜率相同的条件。
这一结果表明,下面所进行的协方差分析的结果是有效的。
ﻫ二、协方差分析步骤步骤1:选择协方差分析菜单(与GLM单因素方差分析菜单相同)。
点击数据编辑界面的Analyze命令,选择General LinearModel,并打开Univariate对话框。
步骤2:选定因变量、因素变量和协变量。
在对话框中左边变量列表中选择“后测成绩”作为因变量,并将其移入Dependent Variable方框中。
然后选择“教学方法”作为因素变量,将其移入到FixedFactor(s)方框中。
再选择“前测成绩”作为协变量,将其移入Ccvariate(s)方框中。