代数几何综合题(题型概述)
代数几何综合(含答案)
23.(本小题7分)如图,在平面直角坐标系中,A(-3,0),点C 在y 轴的正半轴上,BC ∥x 轴,且BC=5,AB 交y 轴于点D ,OD=23. (1)求出点C 的坐标; (2)过A 、C 、B 三点的抛物线与x 轴交于点E ,连接BE .若动点M 从点A 出发沿x 轴向x 轴正方向运动,同时动点N 从点E 出发,在直线EB 上作匀速运动,两个动点的运动速度均为每秒1个单位长度,请问当运动时间t 为多少秒时,△MON 为直角三角形? 23.解:(1)∵ BC ∥x 轴, ∴ △BCD ∽△AOD .∴ CD BC OD AO=. ∴ 535322CD =⨯=.∴ 53422CO =+=. ∴ C 点的坐标为 (0,4) . ……………………… 1分 (2)如图1,作BF ⊥x 轴于点F ,则BF= 4. 由抛物线的对称性知EF=3.∴BE=5,OE=8,AE=11. ………………………… 2分 根据点N 运动方向,分以下两种情况讨论: ① 点N 在射线EB 上.若∠NMO=90°,如图1,则cos ∠BEF=ME FENE BE=, ∴1135t t -=,解得558t =.……………… 3分 若∠NOM=90°,如图2,则点N 与点G 重合.∵ cos ∠BEF=OE FEGE BE=, ∴ 835t =,解得403t =. …………………… 4分∠ONM=90°的情况不存在. ………………………………………………………… 5分 ② 点N 在射线EB 的反向延长线上.若∠NMO=90°,如图3,则cos ∠NEM= cos ∠BEF ,∴ME FENE BE =. ∴ 1135t t -=,解得552t =. …………………… 6分 而∠NOM=90°和∠ONM=90°的情况不存在.…… 7分 综上,当558t =、403t =或552t =时,△MON 为直角三角形.(第23题图2)D(N)(第23题图3)D(第23题)25.(7分)已知,抛物线22y ax bx =+-与x 轴的两个交点分别为A (1,0),B (4,0),与y 轴的交点为C . (1)求出抛物线的解析式及点C 的坐标;(2)点P 是在直线x=4右侧的抛物线上的一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OCB 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由. 25.(7分)解:(1)据题意,有0164202a b a b =+-⎧⎨=+-⎩, . 解得 1252a b ⎧=-⎪⎪⎨⎪=⎪⎩, . ∴抛物线的解析式为:215222y x x =-+-.点C 的坐标为:(0,-2). ………………………(2)答:存在点P (x ,215222x x -+-),使以A ,P ,M ∵∠COB =∠AMP =90°,∴①当OC OBMP MA =时,△OCB ∽△MAP . ②当OC OB MA MP=时,△OCB ∽△MP A . ①OC MP OB MA =,∴215222241x x x -+=-. 解得:x 1=8,x 2=1(舍). ②OC MA OB MP =,∴221154222x x x -=-+. 解得:x 3=5,x 4=1(舍).综合①,②知,满足条件的点P 为:P 1(8,-14),P 2(5,-2). ……………………… 7分24. 在△ABC 中,∠A =∠B =30°,AB=.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(1) 当点BB 的横坐标;(2) 如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:当a =,12b =-,c =A ,B 两点是否都在这条抛物线上?并说明理由。
【初三数学】代数几何综合题(含答案)(共15页)
代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。
例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。
解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。
关键是搞清楚用坐标表示的数与线段的长度的关系。
练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。
(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。
中考压轴题目归类总结代数几何综合板块
中考压轴题目归类总结代数几何综合板块.doc 中考压轴题目归类总结:代数几何综合板块引言介绍中考压轴题目的重要性代数几何综合板块在中考中的地位归类总结的目的和意义代数几何综合板块概述代数几何综合板块的定义该板块涵盖的主要内容代数方程几何图形函数与图形几何证明代数几何综合题目特点结合代数和几何的解题思路需要综合运用多种数学知识题目通常具有较高的难度和综合性代数几何综合题目解题策略分析题目要求,确定解题方向利用代数方法解决几何问题利用几何直观辅助代数计算综合运用函数、方程、不等式等数学工具代数几何综合板块常见题型题型一:代数方程与几何图形结合例题分析解题步骤易错点提示题型二:几何图形中的代数问题例题分析解题步骤易错点提示题型三:函数与几何图形的结合例题分析解题步骤易错点提示题型四:几何证明中的代数应用例题分析解题步骤易错点提示代数几何综合题目解题技巧转化思想:将几何问题转化为代数问题建模思想:建立数学模型解决实际问题归纳推理:通过已知条件推导未知结论逆向思维:从结论出发,逆向求解代数几何综合板块备考建议系统复习代数和几何基础知识多做综合题目,提高解题能力总结解题规律,形成自己的解题方法培养空间想象能力和逻辑推理能力经典例题解析选取几道历年中考中的代数几何综合题目分步骤解析解题过程总结解题思路和技巧结语强调代数几何综合板块在中考中的重要性鼓励学生通过不断练习提高解题能力表达对学生中考取得优异成绩的祝愿。
高考新题型——代数与几何综合题
高考新题型——代数与几何综合题
一、概念:
代数与几何综合题是综合考查学生在代数和几何方面的知识及应用技能的一种新的高考题型。
二、特点:
1、多元综合题型。
这种题型综合考查学生在代数和几何方面的知识及运用能力,涉及几何图形的判断、计算、归纳等的问题,一般还同时包括解方程、不定项数的求解、解一元二次方程等代数问题。
2、能考查学生综合运用知识的能力。
这种题型不但要求考生熟悉数学基础知识,还要求考生能够根据实际问题,综合运用这些基础知识,独立解决问题,用数学方法描述及解释实际问题的状况。
三、实施:
在实施代数与几何综合题的过程中,要求学生充分运用课堂所学的数学知识,从问题描述中找出关键信息,分析问题,归纳提取有用信息,有效应用数学知识解决问题,最后进行结果分析,以及总结拓展出更广泛的问题解决思路。
2019届中考数学总复习:代数几何综合问题
2019届中考数学总复习:代数几何综合问题【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.【思路点拨】过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG.求证△BEC≌△BGM,△ABE≌△ABG,设CE=x,在直角△ADE中,根据AE2=AD2+DE2求x的值,即CE的长度.【答案与解析】解:过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG,∴∠AMB=90°,∵AD∥CB,∠D CB=90°,∴∠D=90°,∴∠AMB=∠DCB=∠D=90°,∴四边形BCDM为矩形.∵BC=CD,∴四边形BCDM是正方形,∴BC=BM,且∠ECB=∠GMB,MG=CE,∴Rt△BEC≌Rt△BGM.∴BG=BE,∠CBE=∠GBM,∵∠CBE+∠EBA+∠ABM=90°,且∠ABE=45°∴∠CBE+∠ABM=45°∴∠ABM+∠GBM=45°∴∠ABE=∠ABG=45°,∴△ABE≌△ABG,AG=AE=10.设CE=x,则AM=10-x,AD=12-(10-x)=2+x,DE=12-x,在Rt△ADE中,AE2=AD2+DE2,∴100=(x+2)2+(12-x)2,即x2-10x+24=0;解得:x1=4,x2=6.故CE的长为4或6.【总结升华】本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和性质,本题中求证△ABE≌△ABG,从而说明AG=AE=10是解题的关键.类型二、函数与几何问题2.如图,二次函数y =(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.【思路点拨】(1)将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性,将y=3代入二次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A、B的交点坐标可直接求出满足kx+b≥(x-2)2+m的x的取值范围.【答案与解析】解:(1)将点A(1,0)代入y=(x-2)2+m得,(1-2)2+m=0,1+m=0,m=-1,则二次函数解析式为y=(x-2)2-1.当x=0时,y=4-1=3,故C点坐标为(0,3),由于C和B关于对称轴对称,在设B点坐标为(x,3),令y=3,有(x-2)2-1=3,解得x=4或x=0.则B点坐标为(4,3).设一次函数解析式为y=kx+b,将A(1,0)、B(4,3)代入y=kx+b中,得,解得,则一次函数解析式为y=x-1;(2)∵A、B坐标为(1,0),(4,3),∴当kx+b≥(x-2)2+m时,1≤x≤4.【总结升华】本题考察了待定系数法求二次函数,一次函数函数解析式以及数形结合法解不等式.求出B点坐标是解题的关键.举一反三:【变式】如图,二次函数2(0)=++≠的图象与x轴交于A、B两点,其中A点坐标为(-1,0),y ax bx c a点C(0,5)、D(1,8)在抛物线上,M为抛物线的顶点.(1)求抛物线的解析式. (2)求△MCB 的面积.【答案】解:(1)设抛物线的解析式为2y ax bx c =++,根据题意,得058a b c c a b c -+=⎧⎪=⎨⎪++=⎩, 解之,得145a b c =-⎧⎪=⎨⎪=⎩. ∴所求抛物线的解析式为245y x x =-++.(2)∵C 点的坐标为(0,5).∴OC =5.令0y =,则2450x x -++=,解得121,5x x =-=.∴B 点坐标为(5,0).∴OB =5.∵2245(2)9y x x x =-++=--+,∴顶点M 坐标为(2,9).过点M 作MN ⊥AB 于点N ,则ON =2,MN =9.∴11(59)9(52)551522MCB BNM OBC OCMN S S S S ∆∆∆=+-=+⨯⨯--⨯⨯=梯形. 类型三、动态几何中的函数问题3.如图,在平面直角坐标系中,已知点A (-2,-4),OB=2,抛物线y=ax 2+bx+c 经过点A 、O 、B三点.(1)求抛物线的函数表达式;(2)若点M 是抛物线对称轴上一点,试求AM+OM 的最小值;(3)在此抛物线上,是否存在点P ,使得以点P 与点O 、A 、B 为顶点的四边形是梯形?若存在,求点P 的坐标;若不存在,请说明理由.【思路点拨】(1)把A 、B 、O 的坐标代入到y=ax 2+bx+c 得到方程组,求出方程组的解即可;(2)根据对称求出点O 关于对称轴的对称点B ,连接AB,根据勾股定理求出AB 的长,就可得到AM+OM 的最小值.(3)①若OB ∥AP ,根据点A 与点P 关于直线x=1对称,由A (-2,-4),得出P 的坐标;②若OA ∥BP ,设直线OA 的表达式为y=kx ,设直线BP 的表达式为y=2x+m ,由B (2,0)求出直线BP 的表达式为y=2x-4,得到方程组,求出方程组的解即可;③若AB ∥OP ,设直线AB 的表达式为y=kx+m ,求出直线AB ,得到方程组求出方程组的解即可. 【答案与解析】解:(1)由OB=2,可知B (2,0),将A (-2,-4),B (2,0),O (0,0)三点坐标代入抛物线y=ax 2+bx+c ,得4420420a b c a b c c -=-+⎧⎪=++⎨⎪=⎩ 解得:1,21,0.a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴抛物线的函数表达式为y=212x x -+(2)由y=212x x -+=211(1)22x x --+可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段OB的垂直平分线,连接AB 交直线x=1于点M ,M 点即为所求.∴MO=MB ,则MO+MA=MA+MB=AB,作AC ⊥x 轴,垂足为C ,则|AC|=4,|BC|=4,∴AB=42, ∴MO+MA 的最小值为42. 答:MO+MA 的最小值为42.(3)①如图1,若OB ∥AP ,此时点A 与点P 关于直线x=1对称,由A (-2,-4),得P (4,-4),则得梯形OAPB .② 如图2,若OA ∥BP ,设直线OA 的表达式为y=kx ,由A (-2,-4)得,y=2x .设直线BP 的表达式为y=2x+m ,由B (2,0)得,0=4+m ,即m=-4, ∴直线BP 的表达式为y=2x-4. 由12⎧⎪⎨⎪⎩2y=2x-4,y=-x+x.解得x 1=-4,x 2=2(不合题意,舍去), 当x=-4时,y=-12,∴点P (-4,-12),则得梯形OAPB .③ 如图3,若AB ∥OP ,设直线AB 的表达式为y=kx+m ,则4202k m k m -=-+⎧⎨=+⎩,. 解得12k m =⎧⎨=-⎩,.∴AB 的表达式为y=x-2. ∵AB ∥OP ,∴直线OP 的表达式为y=x .由2,12y x y x x =⎧⎪⎨=-+⎪⎩得 x 2=0,解得x=0,(不合题意,舍去),此时点P 不存在.综上所述,存在两点P (4,-4)或P (-4,-12),使得以点P 与点O 、A 、B 为顶点的四边形是梯形. 【总结升华】本题主要考查对梯形,解二元二次方程组,解一元二次方程,二次函数的性质,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用性质进行计算是解此题的关键.举一反三:【变式】如图,直线434+-=x y 与x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在,请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.【答案】(1)证明:y=443x -+ ∵当x=0时,y=4; 当y=0时,x=3, ∴B (3,0),C (0,4), ∵A (-2,0),由勾股定理得:BC=22345+= ∵AB=3-(-2)=5, ∴AB=BC=5,∴△ABC 是等腰三角形; (2)解:①∵C (0,4),B (3,0),BC=5, ∴sin ∠B=40.85OC BC == 过N 作NH ⊥x 轴于H .∵点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度, 又∵AB=BC=5,∴当t=5秒时,同时到达终点, ∴△MON 的面积是S=12OM NH ⨯⨯ ∴S=20.4t t-⨯②点M 在线段OB 上运动时,存在S=4的情形.理由如下: ∵C (0,4),B (3,0),BC=5, ∴sin ∠B=40.85OC BC == 根据题意得:∵S=4, ∴|t-2|×0.4t=4,∵点M 在线段OB 上运动,OA=2, ∴t-2>0,即(t-2)×0.4t=4,化为t 2-2t-10=0, 解得:111,111(t t =+=-舍去)∴点M 在线段OB 上运动时,存在S=4的情形,此时对应的t 是(111t =+)秒. ③∵C (0,4)B (3,0)BC=5, ∴cos ∠B=30.65OB BC == 分为三种情况:I 、当∠NOM=90°时,N 在y 轴上,即此时t=5;II 、当∠NMO=90°时,M 、N 的横坐标相等,即t-2=3-0.6t ,解得:t=3.125, III 、∠MNO 不可能是90°,即在运动过程中,当△MON 为直角三角形时,t 的值是5秒或3.125秒. 类型四、直角坐标系中的几何问题4.(2015•阳山县一模)如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边分别交于点M 、N ,直线m 运动的时间为t (秒). (1)点A 的坐标是 ,点C 的坐标是 ; (2)当t= 秒或 秒时,MN=AC ; (3)设△OMN 的面积为S ,求S 与t 的函数关系式.【思路点拨】(1)根据BC∥x 轴,AB∥y 轴即可求得A 和C 的坐标;(2)分成MN 是△OAC 的中位线和MN 是△ABC 的中位线时两种情况进行讨论;(3)根据时间t 值的范围不同,M,N 与矩形的两边相交构成不同的三角形,画出图形进行分类讨论,然后正确表示出△OMN 的面积即可. 【答案与解析】 解:(1)A 的坐标是(4,0),C 的坐标是(0,3); (2)当MN 是△OAC 的中位线时,M 是OA 的中点,则t=OA=×4=2; 当MN 是△ABC 的中位线时,如图1. 则△AME∽△OCA,则AE=OA=×4=2,则E 的坐标是(6,0),即平移了6个单位长度.故答案是:2或6.(3)当0<t≤4时,OA=t ,则ON=t , 则S △OMN =×t×t=238t (0<t≤4). 即当4<t <8时,如图1.设直线AC 的解析式是y=kx+b ,根据题意得,解得:,则直线AC 的解析式是y=﹣x+3.设MN 的解析式是y=﹣x+c ,E 的坐标是(t ,0),代入解析式得:c=t , 则直线MN 的解析式是y=﹣x+t .令x=4,解得y=﹣3+t ,即M 的坐标是(4,﹣3+t ). 令y=3,解得:x=t ﹣4,则N 的坐标是(t ﹣4,3). 则S 矩形OABC=3×4=12, S △OCN =OC•CN=×3•(t ﹣4)=36.2t -S △OAM =OA•AM=×4•(﹣3+t )=﹣6.S △BMN =BN•BM=[4﹣(t ﹣4)][3﹣(﹣3+t )]=t 2﹣6t+24. 则S=12﹣(﹣6)﹣(t ﹣6)﹣(t 2﹣6t+24),即S=﹣t 2+3t(4<t <8).【总结升华】本题考查了矩形的性质以及待定系数法求一次函数的解析式,直线平行的条件,正确利用t 表示出M 和N 的坐标是关键.类型五、几何图形中的探究、归纳、猜想与证明问题5.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(01),,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是_______.【思路点拨】由题目中所给的质点运动的特点找出规律,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,即可得出第35秒时质点所在位置的坐标.【答案与解析】解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒12 3 xy1 2 3 …数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).【总结升华】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.举一反三:【变式】(2016•泰山区一模)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2014次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0) C.(6,4) D.(8,3)【答案】B.【解析】解:如图,经过6次反弹后动点回到出发点(0,3),∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故选;B.【巩固练习】一、选择题1.(2017•河北一模)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.2.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()二、填空题3. 将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象如图所示,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足的条件的t的值,则t=.4. (2017•宝山区一模)如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果AC=8,tanA=,那么CF :DF= .三、解答题5.一个形如六边形的点阵.它的中心是一个点(算第一层)、第二层每边有两个点,第三层每边有三个点……依次类推.(1)试写出第n 层所对应的点数; (2)试写出n 层六边形点阵的总点数;(3)如果一个六边形点阵共有169个点,那么它一共有几层?6.如图,Rt △ABC 中,∠B=90°,AC=10cm ,BC=6cm ,现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以2cm/s 的速度,沿AB 向终点B 移动;点Q 以1cm/s 的速度沿BC 向终点C 移动,其中一点到终点,另一点也随之停止.连接PQ .设动点运动时间为x 秒. (1)用含x 的代数式表示BQ 、PB 的长度; (2)当x 为何值时,△PBQ 为等腰三角形;(3)是否存在x 的值,使得四边形APQC 的面积等于20cm 2?若存在,请求出此时x 的值;若不存在,请说明理由.7.阅读理解:对于任意正实数a 、b ,∵2()0,a b -≥20,2,a ab b a b ab ∴-+≥∴+≥a b =只有当时,等号成立。
代数几何综合题
第二轮复习十 代数几何综合题Ⅰ、综合问题精讲:代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题. Ⅱ、典型例题剖析【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是 BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且 BF AD =,EM 切⊙O 于M 。
⑴ △ADC∽△EBA ;⑵ AC2=12 BC·CE;⑶如果AB =2,EM =3,求cot∠CAD 的值。
解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE,∵ BF AD =,∴∠DCA=∠BAE,∴△CAD∽△AEB⑵ 过A 作AH⊥BC 于H(如图)∵A 是 BDC中点,∴HC=HB =12BC , ∵∠CAE=900,∴AC 2=CH·CE=12BC·CE⑶∵A 是 BDC中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2① ∵AC 2=12 BC·CE,BC·CE=8 ②①+②得:EC(EB +BC)=17,∴EC 2=17 ∵EC 2=AC 2+AE 2,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=co t∠AEC=AE AC =132点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的非常突出.如,将∠CAD 转化为∠AEC 就非常关键.【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90○。
过C 作CD ⊥x 轴,D 为垂足.(1)求点 A 、B 的坐标和AD 的长;(2)求过B 、A 、C 三点的抛物线的解析式。
几何代数综合大题
几何代数综合大题一、介绍本文将从几何和代数两个方面综合讨论一道关于几何代数的大题。
我们将深入探讨几何代数这一主题,并提供详细和全面的解答。
二、几何2.1 定义几何是研究空间、形状和位置关系的数学学科。
在几何中,我们使用点、线、面和体来描述和研究物体的几何特征。
2.2 几何大题的解答方法在解答几何大题时,一般会使用几何定理和公式,通过推理和证明得出最终的结论。
几何问题常常需要画图进行可视化,并利用图形的性质进行分析。
同时,常常需要使用一些特定的几何分析方法,如相似三角形、平行线和垂直线等。
2.3 解答例题2.3.1 题目描述已知一个三角形的三个顶点分别为A(2, 3), B(4, 1), C(1, -2),求这个三角形的周长和面积。
2.3.2 解答步骤1.根据三点坐标求线段长度:–AB的长度= √[(4-2)² + (1-3)²] = √[4 + 4] = 2√2–BC的长度= √[(1-4)² + (-2-1)²] = √[9 + 9] = 3√2–AC的长度= √[(2-1)² + (3+2)²] = √[1 + 25] = √262.根据三边长度计算周长:周长 = AB + B C + AC = 2√2 + 3√2 + √263.根据海伦公式计算面积:–p = (AB + BC + AC) / 2 = (2√2 + 3√2 + √26) / 2–面积= √[p(p-AB)(p-BC)(p-AC)] = √[(√2 + 3√2 + √26)(√2 + √26)(√2)(3√2 - √26)]2.4 其他几何问题除了计算周长和面积,几何问题还包括求解角度、判断相似性、证明定理等。
三、代数3.1 定义代数是研究抽象代数结构及其上的运算符和过程的数学学科。
在代数中,我们使用符号和字母表示未知数,通过运算和方程式来探索数学规律。
3.2 代数大题的解答方法在解答代数大题时,一般会使用代数运算的基本法则,如加减乘除、指数和根号运算等。
最新-中考压轴题代数几何综合第2部分 精品
代几综合点睛提分4、动点与平行四边形问题兵法:1.利用对边平行,进行分类讨论,然后画出要求的点 2.利用全等或锐角三角函数求出点的坐标【例1】 在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.【解析】 (1)设抛物线的解析式为y =ax2+bx +c (a ≠0),则有⎪⎩⎪⎨⎧02440416 =++==+--c b a c c b a 解得⎪⎪⎩⎪⎪⎨⎧4121- ===c b a ∴抛物线的解析式为y =21x2+x -4 (2)过点M 作MD ⊥x 轴于点D ,设M 点的坐标为(m ,21m2+m -4)则AD =m +4,MD =-21m2-m +4 ∴S=S △AMD +S 梯形DMBO -S △ABO =21(m +4)(-21m2-m +4)+21(-21m2-m +4+4)(-m )-21×4×4 =-m2-4m (-4<m <0)即S=-m2-4m =-(m +2)2+4∴S 最大值=4(3)满足题意的Q 点的坐标有四个,分别是:(-4,4),(4,-4) (-2+52,2-52),(-2-52,2+52)【例2】 如图,已知抛物线y =ax2+bx +c (a ≠0)的顶点坐标为Q (2,-1),且与y 轴交于点C (0,3),与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D .(1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在题(2)的结论下,若点E 在x 轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在,求点F 的坐标;若不存在,请说明理由.【解析】 (1)∵抛物线的顶点为Q (2,-1),∴设y =a (x -2)2-1将C (0,3)代入上式,得3=a (0-2)2-1 ∴a =1 ∴该抛物线的函数关系式为y =(x -2)2-1即y =x2-4x +3(2)如图1,有两种情况:①当点P 为直角顶点时,点P 与点B 重合令y =0,得x2-4x +3=0,解得x 1=1,x 2=3 ·················· 4分∵点A 在点B 的右侧,∴B (1,0),A (3,0) ··············· 5分 ∴P 1(1,0) ······························································ 6分 ②当点A 为直角顶点时∵OA =OC ,∠AOC =90°,∴∠OAD 2=45°当∠D 2AP 2=90°时,∠OAP 2=45°,∴AO 平分∠D 2AP 2 又∵P 2D 2∥y 轴,∴P 2D 2⊥AO ,∴P 2、D 2关于x 轴对称 设直线AC 的函数关系式为y =kx +b , 将A (3,0),C (0,3)代入得:⎩⎪⎨⎪⎧0=3k +b 3=b 解得⎩⎪⎨⎪⎧k =-1b =3 ∴y =-x +3∵D 2在y =-x +3上,P 2在y =x2-4x +3上∴设D 2(x ,-x +3),P 2(x ,x2-4x +3)∴(-x +3)+(x2-4x +3)=0,即x2-5x +6=0解得x 1=2,x 2=3(舍去)∴当x =2时,y =x2-4x +3=22-4×2+3=-1∴P 2的坐标为P 2(2,-1)(即为抛物线顶点) ················· 9分 ∴P 点坐标为P 1(1,0),P 2(2,-1) ··························· 10分 (3)由题(2)知,当点P 的坐标为P 1(1,0)时,不能构成平行四边形 当点P 的坐标为P 2(2,-1)(即顶点Q )时图1如图2,平移直线AP 交x 轴于点E ,交抛物线于点F当AP =FE 时,四边形APEF 是平行四边形 ∵P (2,-1),∴可令F (x ,1)∴x2-4x +3=1,解得x 1=2-2,x 2=2+2故存在以A 、P 、E 、F 为顶点的平行四边形,点F 的坐标为: F 1(2-2,1),F 2(2+2,1)【例3】 如图,在平面直角坐标系中,抛物线经过A (-1,0),B (3,0),C (0,-1)三点.(1)求该抛物线的表达式;(2)点Q 在y 轴上,点P 在抛物线上,要使以点Q 、P 、A 、B 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标.【解析】 设该抛物线的表达式为y =ax2+bx +c ,根据题意,得⎪⎩⎪⎨⎧--==++=+10390c c b a c b a 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧132 31 --===c b a∴所求抛物线的表达式为y =31x2-32x -1(2)①当AB 为边时,只要PQ ∥AB ,且PQ =AB =4即可图2又知点Q 在y 轴上,∴点P 的横坐标为4或-4,这时,符合条件的点P 有两个当x =4时,y =35;当x =-4时,y =7∴P 1(4,35),P 2(-4,7) ①当AB为对角线时,只要线段PQ 与线段AB 互相平分即可 又知点Q 在y 轴上,且线段AB 中点的横坐标为1 ∴点P的横坐标为2,这时,符合条件的点P 只有一个当x =2时,y =-1∴P 3(2,-1)综上,满足条件的点P 有三个,其坐标分别为: P 1(4,35),P 2(-4,7),P 3(2,-1)【例4】 已知抛物线y =x2+bx +c 交y 轴于点A ,点A 关于抛物线对称轴的对称点为B (3,-4),直线y =41x 与抛物线在第一象限的交点为C ,连结OB .(1)求抛物线的解析式;(2)如图(1),点P 在射线..OC ..上运动,连结BP ,设点P 的横坐标为x ,△OBP 的面积为y ,求y 与x 之间的函数关系式; (3)如图(2),点P 在直.线.OC ..上运动,点Q 在抛物线上运动,试问点P 、Q 在运动过程中是否存在以O 、B 、P 、Q 为顶点的四边形是平行四边形的情况,若存在,请求出点P 的坐标;若不存在,请说明理由.图(1) 图(2) 备用图【解析】 (1)∵B (3,-4),点A 与点B 关于抛物线的对称轴对称,A (0,-4)把A (0,-4)、B (3,-4)代入y =x2+bx +c 得:⎩⎪⎨⎪⎧c =-49+3b +c =-4 ∴⎩⎪⎨⎪⎧b =-3c =-4 ∴抛物线的解析式为y =x2-3x -4(2)如图(1),连结AB ,作PD ⊥y 轴,则D (0,41x ) S 梯形ABPD=21(x +3)(41x +4)=81x2+819x +6 S △AOB=21×3×4=6,S △DOP=21×x ×41x =81x2∴y =S 梯形ABPD -S △AOB -S △DOP=819x (3)平移线段OB ,使点B 落在直线y =41x 上,落点为P ,点落在抛物线上,落点为Q ,则四边形OBPQ 为平行四边形 设P (x ,41x ),∵O (0,0),B (3,-4)∴Q (x -3,41x +4)∵点Q 在抛物线上,∴41x +4=(x -3 )2-3( x -3)-4整理得:4x2-37x +40=0,解得:x =8或x =45∴P 1(8,2),P 2(45,165) 平移线段OB ,使点O 落在直线y =41x 上,落点为P ,点B 落在抛物线上,落点为Q ,则四边形OBQP 为平行四边形设P (x ,41x ),∵O (0,0),B (3,-4),∴Q (x +3,41x -4)∵点Q 在抛物线上,∴41x -4=( x +3 )2-3( x +3)-4整理得:4x2+11x =0,解得:x =0(舍去)或x =-411∴P 3(-411,-1611)平移线段OP 3,使点P 3与点O 重合,则点O 落在直线y =41x 上点P 4处,四边形OPBQ 为平行四边形∴P 4(411,1611)综上所述,符合条件的点P 有4个,分别是:P 1(8,2),P 2(45,165),P 3(-411,-1611),P 4(411,1611)图(2)图(1)【例5】 如图,抛物线交x 轴于点A (-2,0),点B (4,0),交y 轴于点C (0,-4).(1)求抛物线的解析式,并写出顶点D 的坐标;(2)若直线y =-x 交抛物线于M ,N 两点,交抛物线的对称轴于点E ,连接BC ,EB ,EC .试判断△EBC 的形状,并加以证明; (3)设P 为直线MN 上的动点,过P 作PF ∥ED 交直线MN 下方的抛物线于点F .问:在直线MN 上是否存在点P ,使得以P 、E 、D 、F 为顶点的四边形是平行四边形?若存在,请求出点P 及相应的点F 的坐标;若不存在,请说明理由.【解析】 (1)设抛物线的解析式为y =ax2+bx +c (a ≠0)∵点A 、B 、C 均在此抛物线上 ∴⎩⎪⎨⎪⎧4a -2b +c =016a +4b +c =0c =-4∴⎩⎪⎨⎪⎧a =21b =-1c =-4∴所求的抛物线的解析式为y =21x2-x -4 ,顶点D 的坐标为(1,-29) (2)△EBC 的形状为等腰三角形证明:(法一)∵直线MN 的函数解析式为y =-x ∴ON 是∠BOC 的平分线∵B 、C 两点的坐标分别为(4,0),(0,-4) ∴CO =BO =4∴MN 是BC 的垂直平分线 ∴CE =BE即△ECB 是等腰三角形(法二)∵直线MN 的函数解析式为y =-x ∴ON 是∠BOC 的平分线 ∴∠COE =∠BOE∵B 、C 两点的坐标分别为(4,0)、(0,-4) ∴CO =BO =4又∵OE =OE∴△COE ≌△BOE ∴CE =BE 即△ECB 是等腰三角形(法三)∵点E 是抛物线的对称轴x =1和直线y =-x 的交点 ∴E 点的坐标为(1,-1)∴利用勾股定理可求得CE =2213+=10,BE =2213+=10∴CE =BE即△ECB 是等腰三角形 (3)解:存在 ∵PF ∥ED∴要使以P 、E 、D 、F 为顶点的四边形是平行四边形,只要使PF =ED ∵点E 是抛物线的对称轴x =1和直线y =-x 的交点 ∴E 点的坐标为(1,-1) ∴ED =-1-(-29)=27 ∵点P 是直线y =-x 上的动点 ∴设P 点的坐标为(k ,-k ) 则直线PF 的函数解析式为x =k ∵点F 是抛物线和直线PF 的交点 ∴F 的坐标为(k ,21k2-k -4) ∴PF =-k -(21k2-k -4)=-21k2+4 ∴-21k2+4=27∴k =±1 当k =1时,点P 的坐标为(1,-1),F 的坐标为(1,-29) 此时PF 与ED 重合,不存在以P 、F 、D 、E 为顶点的平行四边形 当k =-1时,点P 的坐标为(-1,1),F 的坐标为(-1,-25) 此时,四边形PFDE 是平行四边形5、动点与梯形问题兵法:1.利用对边平行,进行分类讨论,然后画出要求的点 2.利用一次函数与二次函数联立求交点坐标【例1】 在平面直角坐标系xOy 中,抛物线的解析式是y =41x2+1,点C 的坐标为(-4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上. (1)写出点M 的坐标;(2)当四边形CMQP 是以MQ ,PC 为腰的梯形时. ①求t 关于x 的函数解析式和自变量x 的取值范围;②当梯形CMQP 的两底的长度之比为1 :2时,求t 的值.【解析】 (1)∵OABC 是平行四边形,∴AB ∥OC ,且AB =OC =4∵A ,B 在抛物线上,y 轴是抛物线的对称轴,∴A ,B 的横坐标分别是2和-2代入y =41x2+1,得A (2,2),B (-2,2) ∴M (0,2) (2)①过点Q 作QH ⊥x 轴于H ,连接CM 则QH =y ,PH =x -t由△PHQ ∽△COM ,得:2y =4tx ,即t =x -2y ∵Q (x ,y )在抛物线y =41x2+1上∴t =-21x2+x -2当点P 与点C 重合时,梯形不存在,此时,t =-4,解得x =1±5 当Q 与B 或A 重合时,四边形为平行四边形,此时,x =±2 ∴x 的取值范围是x ≠1±5且x ≠±2的所有实数 ②分两种情况讨论:ⅰ)当CM >PQ 时,则点P 在线段OC 上∵CM ∥PQ ,CM =2PQ ,∴点M 纵坐标为点Q 纵坐标的2倍 即2=2(41x2+1),解得x =0 ∴t =-21×02+0-2=-2 ⅱ)当CM <PQ 时,则点P 在OC 的延长线上∵CM ∥PQ ,CM =21PQ ,∴点Q 纵坐标为点M 纵坐标的2倍 即41x2+1=2×2,解得:x =±32 当x =-32时,得t =-21×(-32)2-32-2=-8-32 当x =32时,得t =-21×(32)2+32-2=32-8【例2】 如图,在菱形ABCD 中,AB =2cm ,∠BAD =60°,E 为CD 边中点,点P 从点A开始沿AC 方向以每秒32cm 的速度运动,同时,点Q 从点D 出发沿DB 方向以每秒1cm 的速度运动,当点P 到达点C 时,P ,Q 同时停止运动,设运动的时间为x 秒.(1)当点P 在线段AO 上运动时. ①请用含x 的代数式表示OP 的长度;②若记四边形PBEQ 的面积为y ,求y 关于x 的函数关系式(不要求写出自变量的取值范围);(2)显然,当x =0时,四边形PBEQ 即梯形ABED ,请问,当P 在线段AC 的其他位置时,以P ,B ,E ,Q 为顶点的四边形能否成为梯形?若能,求出所有满足条件的x 的值;若不能,请说明理由.【解析】 (1)①由题意得∠BAO =30°,AC ⊥BD∵AB =2,∴OB =OD =1,OA =OC =3∴OP =3-32x ②如图1,过点E 作EH ⊥BD 于H ,则EH 为△COD 的中位线 ∴EH =21OC =23,∵DQ =x ,∴BQ =2-xOEACQD B H图1POEACQD BP∴y =S △BPQ+S △BEQ=21(2-x )(3-32x +23)=3x2-4311x +233(2)能成为梯形,分三种情况:ⅰ)如图2,当PQ ∥BE 时,∠PQO =∠DBE =30°∴OQ OP =tan30°=33即x x --1323=33,∴x =52 此时PB 不平行QE ,∴x =52时,四边形PBEQ 为梯形 ⅱ)如图3,当PE ∥BQ 时,P 为OC 中点∴AP =233,即32x =233,x =43此时,BQ =2-x =45≠PE ,∴x =43时,四边形PEQB 为梯形ⅲ)如图4,当QE ∥BP 时,△QEH ∽△BPO∴OP HE =OB HQ ,∴33223-x =121-x ,∴x =1(x =0舍去) 此时,BQ 不平行于PE ,∴x =1时,四边形PEQB 为梯形 综上所述,当x =52或43或1时,以P ,B ,E ,Q 为顶点的四边形是梯形图4OEACQ D B H P 图2OEACQ D B HP图3OE AC QD B HP【例3】 如图1,直线AB 交x 轴于点A (2,0),交抛物线y =ax2于点B (1,3),点C到△OAB 各顶点的距离相等,直线AC 交y 轴于点D .(1)求抛物线的解析式; (2)当x >0时,在直线OC 和抛物线上是否分别存在点P 和点Q ,使四边形DOPQ 是特殊的梯形?若存在,求点P 、Q 的坐标;若不存在,说明理由;(3)如图2,抛物线的解析式和点D 的坐标不变.当x >0时,在直线y =kx (0<k <1)和抛物线上是否分别存在点P 和点Q ,使四边形DOPQ 是以OD 为底的等腰梯形?若存在,求点P 、Q 的坐标;若不存在,说明理由.【解析】 (1)∵抛物线y =ax2经过点B (1,3),∴3=a ×12,∴a =3∴抛物线的解析式为y =3x2(2)设直线AB 的解析式为y =k 1x +b 1,∵它过点A (2,0),B (1,3)∴⎩⎨⎧0=2k 1+b 13=k 1+b 1 解得⎩⎨⎧k 1=-3b 1=32∴y =-3x +32又∵点C 到△OAB 各顶点的距离相等,即点C 是△OAB 三边的垂直平分线的交点 如图1,连结BC 并延长交OA 于A ,则BE ⊥OA ,OE =AE ∴点E 的坐标为(1,0)在Rt △OEC 中,CE =OE ²tan30°=33,∴C (1,33) 设直线OC 的解析式为y =k 2x ,则33=k 2×1,∴k 2=33 ∴y =33x 设直线AC 的解析式为y =k 3x +b 3,则⎩⎪⎨⎪⎧0=2k 3+b 333=k 3+b 3解得⎩⎪⎨⎪⎧k 3=-33b 3=332∴y =-33x +332图2图1∵直线AC 交y 轴于点D ,则点D (0,332),∴OD =332 当OD ∥PQ 时,①DQ =OP 时,四边形DOPQ 为等腰梯形(如图1)由题意得,△OCD 为等边三角形,∴∠CDO =∠COD ∴Q 是直线AD 与抛物线的交点 由-33x +332=3x2,解得x 1=-1(舍去),x 2=32 当x =32时,3x2=934∴点Q 的坐标为(32,934)当x =32时,33x =932∴点P 的坐标为(32,932)②∠ODQ =90°时,四边形DOPQ 为直角梯形(如图2)过点D (0,332)且平行x 轴的直线交抛物线于点Q ∴332=3x2,解得x 1=-36(舍去),x 2=36∴点Q 的坐标为(36,332) 把x =36代入直线y =33x 中,得y =32∴点P 的坐标为(36,32) 当DQ ∥OP 时,①OD =PQ 时,四边形DOPQ 为等腰梯形(如图1)过点D (0,332)且平行于OC 的直线为33x +332,交抛物线于点Q∴33x +332=3x2,解得x 1=-32(舍去),x 2=1 把x =1代入y =3x2中,得y =3 ∴点Q 的坐标为(1,3)(与点B 重合) 又∵△OCD 为等边三角形,∴∠DOC =∠BPO =60° 设过点Q (1,3)且平行于AD 的直线为y =-33x +b ,交OC 于点P , 则b =334∴y =-33x +334∴-33x +334=33x ,解得x =2 把x =2代入y =-33x +334中,得y =332∴点P 的坐标为(2,332) ②∠OPQ =90°时,四边形DOPQ 为直角梯形由以上解法知,点Q 的坐标(1,3)(与点B 重合),过B 与OC 垂直的直线为AB ,设OC 与AB 的交点为P则⎩⎨⎧y =-3x +32y =33x 解得⎩⎪⎨⎪⎧x =23y =23∴点P 的坐标为(23,23)综上所述:当P 1(32,932),Q 1(32,934)和P 2(2,332),Q 2(1,3)(与点B 重合)时,四边形DOPQ 为等腰梯形;当P 3(36,32),Q 3(36,332)和P 4(23,23),Q 4(1,3)(与点B 重合)时,四边形DOPQ 为直角梯形(3)设OD 的中点为G ,则G (0,33) 如图3,过点G 作GH ⊥y 轴,交直线y =kx 于点H ,连结DH ,则H (k 33,33) 设直线DH 的解析式为y =k 4x +b 4,则⎩⎪⎨⎪⎧332=b 433=k 4×k33+b 4解得⎩⎪⎨⎪⎧k 4=-k b 4=332∴直线DH 的解析式为y =-kx +332 ∵直线DH 与抛物线相交于点Q ,∴3x2=-kx +332 解得x 1=6832)(+--k k (舍去),x 2=6832)(++-k k∴点Q 的坐标为(6832)(++-k k ,648322)(++-k k k )点P 的坐标为(6832)(++-k k ,68322)(-++k k k )【例4】 如图,四边形ABCO 是平行四边形,AB =4,OB =2,抛物线过A 、B 、C 三点,与x 轴交于另一点D .一动点P 以每秒1个单位长度的速度从B 点出发沿BA 向点A 运动,运动到点A 停止,同时一动点Q 从点D 出发,以每秒3个单位长度的速度沿DC 向点C 运动,与点P 同时停止. (1)求抛物线的解析式;(2)若抛物线的对称轴与AB 交于点E ,与x 轴交于点F ,当点P 运动时间t 为何值时,四边形POQE 是等腰梯形?【解析】 (1)∵四边形ABCO 是平行四边形,∴OC =AB =4∴A (4,2),B (0,2),C (-4,0),∵抛物线y =ax2+bx +c 过点B ,∴c =2由题意,有⎩⎪⎨⎪⎧16a -4b +2=016a +4b +2=2 解得⎩⎪⎨⎪⎧a =-161b =41 ∴所求抛物线的解析式为y =-161x2+41x +2(2)将抛物线的解析式配方,得y =-161(x -2)2+49∴抛物线的对称轴为x =2 ∴D (8,0),E (2,2),F (2,0) 欲使四边形POQE 为等腰梯形,则有OP =QE ,即BP =FQ ∴t =6-3t ,即t =23【例5】 如图,二次函数y =x2+px +q (p <0)的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围; (3)在该二次函数的图象上是否存在点D ,使四边形ACBD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.【解析】 (1)∵二次函数y =x2+px +q 的图象与y 轴交于点C (0,-1).∴-1=02+p ×0+q ,∴q =-1. ∴y =x2+px -1.设点A (x 1,0),B (x 2,0),且x 1<x 2. 则x 1、x 2是方程x2+px -1=0的两个实数根.方法一:由根与系数的关系得x 1+x 2=-p ,x 1x 2=-1.∵△ABC 的面积为45,∴21AB ²OC =45.即21(x 2-x 1)1⨯=45,∴x 2-x 1=25.∴(x 2-x 1)2=425,即(x 2+x 1)2-4x 1x 2=425. ∴(-p )2+4=425,解得p =±23. ∵p <0,∴p =-23. ∴所求二次函数的关系式为y =x2-23x -1. 方法二:由求根公式得x 1=242+--p p ,x 2=242++-p p .AB =x 2-x 1=242++-p p -242+--p p =42+p .∵△ABC 的面积为45,∴OC AB · 21=45.即21(x 2-x 1)1⨯=45,∴42+p =25,解得p =±23.∵p <0,∴p =-23. ∴所求二次函数的关系式为y =x2-23x -1. (2)令x2-23x -1=0,解得x 1=-21,x 2=2. ∴A (-21,0),B (2,0). 如图1,在Rt △AOC 中,AC2=OA2+OC2=(21)2+12=45.在Rt △BOC 中,BC2=OB2+OC2=22+12=5.∵AB =42+p =25,∴AC2+BC2=45+5=425=AB2.∴△ABC 是直角三角形.∴△ABC 的外接圆的圆心是斜边AB 的中点.∴△ABC 的外接圆的半径r =21AB =45.∵垂线与△ABC 的外接圆有公共点. ∴-45≤m ≤45. (3)存在.①若AD ∥BC ,设点D 的坐标为(x 0,x 02-23x 0-1)(x 0>0). 过点D 作DE ⊥x 轴于E ,如图2.方法一:在Rt △AED 中,tan ∠DAE =AEDE=)21(1230020----x x x . 在Rt △BOC 中,tan ∠CBO =OB OC =21.∵∠DAE =∠CBO ,∴tan ∠DAE =tan ∠CBO .∴)21(1230020----x x x =21,即4x 02-8x 0-5=0.解得x 0=25或x 0=-21. ∵x 0>0,∴x 0=25,∴x 02-23x 0-1=(25)2-23×25-1=23. ∴D (25,23). ∵AD2=AE 2+DE2=(21+25)2+(23)2=445≠BC2.图1图2∴当AD ∥BC 时,在该二次函数的图象上存在点D (25,23),使四边形ACBD 为直角梯形. 方法二:在Rt △AED 与Rt △BOC 中∵∠DAE =∠CBO ,∴Rt △AED ∽Rt △BOC .∴AE DE =OBOC,即)21(1230020----x x x =21.以下同方法一.②若AC ∥BD ,设点D 的坐标为(x 0,x 02-23x 0-1)(x 0<0). 过点D 作DF ⊥x 轴于F ,如图3. 在Rt △DFB 中,tan ∠DBF =BF DF=022123x x x ---. 在Rt △COA 中,tan ∠CAO =OAOC=211=2. ∵∠DBF =∠CAO ,∴tan ∠DBF =tan ∠CAO . ∴00202123x x x ---=2,即2x 02+x 0-10=0.解得x 0=-25或x 0=2. ∵x 0<0,∴x 0=-25,∴x 02-23x 0-1=(-25)2-23×(-25)-1=9. ∴D (-25,9).∵BD ≠AC , ∴当AC ∥BD 时,在该二次函数的图象上存在点D (-25,9),使四边形ACBD 为直角梯形.综上所述,在该二次函数的图象上存在点D ,使四边形ACBD 为直角梯形,并且点D 的坐标为(25,23)或(-25,9).图36、动点与其他四边形【例1】 在直角梯形OABC 中,CB ∥OA ,∠COA =90︒,CB =3,OA =6,BA =53.分别以OA 、OC 边所在直线为x 轴、y 轴建立如图1所示的平面直角坐标系. (1)求点B 的坐标;(2)已知D 、E 分别为线段OC 、OB 上的点,OD =5,OE =2EB ,直线DE 交x 轴于点F .求直线DE 的解析式;(3)点M 是(2)中直线DE 上的一个动点,在x 轴上方的平面内是否存在另一个点N ,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.【解析】 如图1,作BH ⊥x 轴于点H ,则四边形OHBC 为矩形∴OH =CB =3∴AH =OA -OH =6-3=3,在Rt △ABH 中,BH =22AH BA-=22353-)(=6∴点B 的坐标为(3,6)(2)如图1,作EG ⊥x 轴于点G ,则EG ∥BH ∴△OEG ∽△OBHOE =2EB ∴OB OE =32,∴32=3OG =6EG∴OG =2,EG =4 ∴点E 的坐标为(2,4)又∵设直线DE 的解析式为y =kx +b则⎩⎪⎨⎪⎧2k +b =4b =5 解得k =-21,b =5 ∴直线DE 的解析式为y =-21x +5 (3)存在①如图1,当OD =DM =MN =NO =5时,四边形ODMN 为菱形 作MP ⊥y 轴于点P ,则MP ∥x 轴,∴△MPD ∽△FOD ∴OF MP =OD PD =FD MD ,又∵当y =0时,-21x +5=0,解得x =10图1备用图∴F 点的坐标为(10,0),∴OF =10在Rt △ODF 中,FD =22OF OD+=22105+=55∴10MP =5PD=555,∴MP =52,PD =5 ∴点M 的坐标为(-52,5+5)∴点N 的坐标为(-52,5) ②如图2,当OD =DN =NM =MO =5时,四边形ODNM 为菱形 延长NM 交x 轴于点P ,则MP ⊥x 轴 ∵点M 在直线y =-21x +5上,∴设M 点坐标为(a ,-21a +5) 在Rt △OPM 中,OP 2+PM 2=OM 2,∴a2+(-21a +5)2=52 解得a 1=4,a 2=0(舍去),点M 的坐标为(4,3) ∴点N 的坐标为(4,8)③如图3,当OM =MD =DN =NO 时,四边形OMDN 为菱形 连接NM ,交OD 于点P ,则NM 与OD 互相垂直平分∴y M=y N=OP =25,∴-21x M+5=25∴x M=5,∴x N=-x M=-5 ∴点N 的坐标为(-5,25) 综上所述,x 轴上方的点N 有三个,分别为N 1(-52,5),N 2(4,8),N 3(-5,25)【例2】 如图,□ABCD 在平面直角坐标系中,AD =6,若OA 、OB 的长是关于x 的一元二次方程x2-7x +12=0的两个根,且OA >OB . (1)求sin ∠ABC 的值.(2)若E 为x 轴上的点,且S △AOE=316,求经过D 、E 两点的直线的解析式,并判断△AOE 与△DAO 是否相似?(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A 、C 、F 、M 为顶点的四边形为菱形?若存在,请直接写出F 点的坐标;若不存在,请说明理由.【解析】 (1)解方程x2-7x +12=0,得x 1=3,x 2=4.∵OA >OB ,∴OA =4,OB =3. 在Rt △AOB 中,AB =22OB OA +=5.∴sin ∠ABC =AB OA =54(2)∵点E 在x 轴上,S △AOE=316, ∴21OA ²OE =316,即21×4OE =316,∴OE =38. ∴E (38,0)或E (-38,0)由已知可知D (6,4)设经过D 、E 两点的直线的解析式为y =kx +b 当E (38,0)时,有⎪⎩⎪⎨⎧0b k 384b k 6 ==++ 解得⎪⎪⎩⎪⎪⎨⎧516b 56k - ==当E (-38,0)时,有⎪⎩⎪⎨⎧0b k 384b k 6 ==+-+ 解得⎪⎪⎩⎪⎪⎨⎧1316b 136k ==∴经过D 、E 两点的直线的解析式为y =516x 56-或y =1316x 136+在△AOE 中,∠AOE =90°,OA =4,OE =38.在△DAO 中,∠DAO =90°,OA =4,AD =6. ∴OA OE =AD OA =32∴△AOE ∽△DAO . (3)存在点F ,使以A 、C 、F 、M 为顶点的四边形为菱形,点F 的坐标分别为: F 1(3,8),F 2(-3,0),F 3(2542-,2544),F 4(1475-,722-). ············· 10分 ⅰ)当AC 为菱形的边长时,有三种情形:如图1,当点F 1在BA 的延长线上,且AC =CD =DF 1=F 1A 时,点M 与点D 重合,四边形ACMF 1为菱形,易知此时点F 1的坐标为F 1(3,8);如图2,当点F 2与点B 重合,且AC =CM =MF 2=F 2A 时,四边形ACMF 2为菱形,此时点F 2的坐标为F 2(-3,0);如图3,当AC =CF 3=F 3M =MA 时,四边形ACF 3M 为菱形. 由已知可求得直线AB 的解析式为y =4x 34+,设点F 3的坐标为(x ,4x 34+). ∵CF 32=AC 2=32+42=25∴22)4x 34()3x (++-=25,解得x 1=0(即点A 的横坐标),x 2=2542-(即点F 3的横坐标). ∴点F 3的纵坐标为:4)2542(34+-⨯=2544,∴F 3(2542-,2544). ⅱ)当AC 为菱形的对角线时,设AC 与F 4M 相交于点N ,F 4M 交y 轴于点G ,如图4.由已知可求得点N 的坐标为(23,2) ∵Rt △ANG ∽Rt △AOC ,∴AN AG =AO AC ,即25AG =45,∴AG =825.∴OG =8254-=87,∴G (0,87). 设直线F 4M 的解析式为y =n m x +,则78322n m n ⎧=⎪⎪⎨⎪+=⎪⎩,解得⎪⎪⎩⎪⎪⎨⎧==87n 43m ,∴直线F 4M 的解析式为y =87x 43+. 联立⎪⎪⎩⎪⎪⎨⎧+=+=87x 43y 4x 34y ,解得⎪⎪⎩⎪⎪⎨⎧-=-=722y 1475x ,∴F 4(1475-,722-).图1图2图3M【例3】 如图,在平面直角坐标系中,Rt △AOB ≌Rt △CDA ,且A (-1,0)、B (0,2),抛物线y =ax2+ax -2经过点C . (1)求抛物线的解析式;(2)在抛物线(对称轴的右侧)上是否存在两点P 、Q ,使四边形ABPQ 是正方形,若存在,求点P 、Q 的坐标;若不存在,请说明理由.【解析】 (1)由Rt △AOB ≌Rt △CDA ,得OD =2+1=3,CD =1∴C 点坐标为(-3,1)∵抛物线经过点C ,∴1=a (-3)2+a (-3)-2 ∴a =21∴抛物线的解析式为y =21x2+21x -2 (2)在抛物线(对称轴的右侧)上存在点P 、Q ,使四边形ABPQ 是正方形 方法一:以AB 为边在AB 的右侧作正方形ABPQ ,过P 作PE ⊥OB 于E ,QG ⊥x 轴于G ,可证△PBE ≌△AQG ≌△BAO∴PE =AG =BO =2,BE =QG =AO =1 ·············· 8分 ∴P 点坐标为(2,1),Q 点坐标为(1,-1)由(1)抛物线y =21x2+21x -2 当x =2时,y =1;当x =1时,y =-1 ∴P 、Q 在抛物线上故在抛物线(对称轴的右侧)上存在点P (2,1)、Q (1,使四边形ABPQ 是正方形(2)方法二:延长CA 交抛物线于Q ,过B 作BP ∥CA 交抛物线于P ,连结PQ ,设直线CA 、BP 的解析式分别为y =k 1x +b 1、y =k 2x +b 2 ∵A (-1,0),C (-3,1),∴CA 的解析式为y =-21x -21同理可得BP 的解析式为y =-21x +2解方程组⎩⎪⎨⎪⎧y =-21x -21y =21x2+21x -2得Q 点坐标为(1,-1),同理得P 点坐标为(2,1)由勾股定理得AQ =BP =AB =5,又∠BAQ =90°,∴四边形ABPQ 是正方形 故在抛物线(对称轴的右侧)上存在点P (2,1)、Q (1,-1),使四边形ABPQ 是正方形方法三:将线段CA 沿CA 方向平移至AQ∵C (-3,1)的对应点是A (-1,0),∴A (-1,0)的对应点是Q (1,-1);再将线段AQ 沿AB 方向平移至BP ,同理可得P (2,1) ∵∠BAC =90°,AB =AC ,∴四边形ABPQ 是正方形由(1)抛物线y =21x2+21x -2 当x =2时,y =1;当x =1时,y =-1 ∴P 、Q 在抛物线上故在抛物线(对称轴的右侧)上存在点P (2,1)、Q (1,-1),使四边形ABPQ 是正方形【例4】 已知点A 、B 分别是x 轴、y 轴上的动点,点C 、D 是某个函数图像上的点,当四边形ABCD (A 、B 、C 、D 各点依次排列)为正方形时,称这个正方形为此函数图像的伴侣正方形.例如:如图,正方形ABCD 是一次函数y =x +1图像的其中一个伴侣正方形.(1)若某函数是一次函数y =x +1,求它的图像的所有伴侣正方形的边长;(2)若某函数是反比例函数y =xk(k >0),它的图像的伴侣正方形为ABCD ,点D (2,m )(m <2)在反比例函数图像上,求m 的值及反比例函数的解析式; (3)若某函数是二次函数y =ax2+c (a ≠0),它的图像的伴侣正方形为ABCD ,C 、D 中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标__________,写出符合题意的其中一条抛物线解析式________________,并判断你写【解析】 (1)如图,当点A 在x 轴正半轴、点B 在y 轴负半轴上时,正方形ABCD 的边长为2;当点A 在x 轴负半轴、点B 在y 轴正半轴上时,设正方形的边长为a ,易得3a =2 解得a =32,所以正方形的边长为32(2)如图2,过点D 作DE ⊥x 轴于点E ,过点C 作CF ⊥y 轴于点F .易知△ADE ≌△BAO ≌△CBF此时m <2,DE =OA =BF =m ,OB =CF =AE =2-m . ∴OF =BF +OB =2∴点C 的坐标为(2-m ,2)∵点C 、D 在反比例函数y =xk(k >0)的图像上 ∴2m =2(2-m ),解得m =1.∴点D 的坐标为(2,1),代入y =x k,得k =2.∴反比例函数的解析式为y =x2 (3)(-1,3);(7,-3);(-4,7);(4,1) (写对1个1分,2个或3个2分,4个3分)对应的抛物线分别为y =81x2+823;y =-407x2+40223;y =73x2+71;y =-73x2+755.(写对其中任何1个即可)所求出的任何抛物线的伴侣正方形的个数是偶数.图2【例5】 如图,在梯形ABCD 中,AB ∥CD ,AB =2,DC =10,AD =BC =5,点M 、N 分别在边AD 、BC 上运动,并保持MN ∥AB ,ME ⊥DC ,NF ⊥DC ,垂中分别为E 、F . (1)求梯形ABCD 的面积;(2)探究一:四边形MNFE 的面积有无最大值?若有,请求出这个最大值;若无,请说明理由;(3)探究二:四边形MNFE 能否为正方形?若能,请求出正方形的面积;若不能,请说明理由.【解析】 (1)过点A 作AH ⊥DC 于H ,交MN 于点G在梯形ABCD 中,∵AB ∥CD ,AB =2,DC =10,AD =BC =5 ∴DH =21(10-2)=4,AH =2245-=3 ∴S 梯形ABCD=21(AB +DC )²AH =21×(2+10)×3=18 (2)四边形MNFE 的面积有最大值 ∵AB ∥CD ,MN ∥AB ,∴MN ∥CD ,即MN ∥EF ∵ME ⊥DC ,NF ⊥DC ,∴ME ∥NF ,∠MEF =90° ∴四边形MNFE 是矩形 设ME =x ,则AG =3-x∵∠MED =∠AHD =90°,∠MDE =∠ADH∴△MDE ∽△ADH ,∴DH DE =AH ME 即4DE =3x ,∴DE =34x ∴MN =DC -2DE =10-38x∴S 矩形MNFE=ME ²MN =x (10-38x )=-38x2+10x =-38(x -815)2+875∴当x =815时,四边形MNFE 的面积有最大值,S 最大=875(3)四边形MNFE 能为正方形 设ME =x ,则由(2)知MN =10-38x当ME =MN ,即x =10-38x ,即x =1130时,四边形MNFE 为正方形S 正方形MNFE=x2=(1130)2=121900C A BDMNFE CA BD MNF E H G。
数学代数与几何综合题
数学代数与几何综合题一、简答题1. 请解释什么是代数与几何的综合题?代数与几何综合题是一类需要同时运用代数和几何概念与方法来解答的数学题目。
通常这类题目会结合代数方程、函数关系以及几何图形等知识点,要求考生既能够理解代数概念的本质,又能够将其与几何图形进行有效地联结,从而得出正确的解答。
2. 举例说明一个代数与几何综合题。
考虑一个代数与几何综合题的例子:已知一个矩形的长为x,宽为y,其面积为100,求出矩形的周长。
解答思路如下:首先,根据面积定义,我们可以列出代数方程xy = 100。
接着,我们考虑矩形的周长等于两倍的长加上两倍的宽,即2(x+y)。
由于我们已知面积为100,所以可以将该条件带入代数方程中,得到2(x+y) = 2(10) = 20。
因此,矩形的周长为20。
二、综合题已知平面上有一条弧线AB,其中A(2,1)和B(5,4)。
求以下问题:1. 弧线AB的长度。
解答思路如下:首先,我们可以计算出弧线AB的斜率。
斜率的计算公式为k = (y2-y1)/(x2-x1)。
代入A(2,1)和B(5,4)的坐标,得到k = (4-1)/(5-2) = 1。
由于斜率为1,说明弧线AB与x轴的夹角为45度。
然后,根据两点间的距离公式d = √((x2-x1)^2 + (y2-y1)^2),我们可以计算出弧线AB的长度为√((5-2)^2 + (4-1)^2) = √18。
2. 弧线AB所在的直线方程。
解答思路如下:由于已知A(2,1)和B(5,4)在弧线上,我们可以利用这两个点的坐标来确定所求直线方程。
首先,我们可以计算出直线的斜率,使用斜率公式k = (y2-y1)/(x2-x1),代入A(2,1)和B(5,4)的坐标,得到k = (4-1)/(5-2) = 1。
接着,我们可以利用其中一点的坐标(x1,y1)和斜率k来得到直线的方程。
选择点A(2,1)和斜率k = 1,代入直线方程的一般公式y-y1 = k(x-x1),得到y-1 = 1(x-2)。
专题四 代数几何综合题
专题四 代数几何综合题Ⅰ、综合问题精讲:代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题.Ⅱ、典型例题剖析例1、(2006年杭州)已知,直线1y x =+与x 轴,y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90º。
且点P (1,a )为坐标系中的一个动点。
(1)求三角形ABC 的面积S △ABC ;(2)证明不论a 取任何实数,三角形BOP 的面积是一个常数; (3)要使得△ABC 和△ABP 的面积相等,求实数a 的值。
例2、(2006年芜湖)如图,在平面直角坐标系中,以点M (0323⊙M 交x 轴于A 、B 两点,交y 轴于C 、D 两点,连结AM 并延长交⊙M 于P 点,连结PC 交x轴于E 。
(1)求出CP 所在直线的解析式; (1) 连结AC ,求ACP 的面积。
例3、(2005年重庆)如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?解:例4、(2006年海淀)如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。
(1)若sin ∠BAD =35,求CD 的长; (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留π)。
解:图10-1例5、(2006年宁波北仑)如图,抛物线y =ax 2+bx +c 的顶点M 在x 轴上,与y 轴交于A 点,且2ac +b =0,AM =3 2 ,若直线y =3ax +k 过M 点与抛物线交于B 点,与y 轴交于Q 点; ⑴分别求出二次函数和一次函数的解析式;⑵以AB 为直径作⊙O 1,试判断该圆与两坐标轴的位置关系;⑶过Q 点作⊙O 1的切线,切点为N ,切线交过B 点与y 轴平行的直线于P ,求QN ·NP 的值. 解:例6、(2006年深圳)如图,在平面直角坐标系xoy 中,点M 在x 轴的正半轴上, ⊙M 交x 轴于 A B 、两点,交y 轴于C D 、两点,且C 为 AE的中点,AE 交y 轴于G 点,若点A 的坐标为(-2,0),AE 8(1)求点C 的坐标. 解:(2)连结MG BC 、,求证:MG ∥BC 。
【初三数学】代数几何综合题(含答案)(共15页)
代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。
例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。
解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。
关键是搞清楚用坐标表示的数与线段的长度的关系。
练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。
(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。
人教版数学中考专题:代数几合综合问题含答案完整版
人教版数学中考专题:代数几合综合问题含答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】中考数学专题:代数几何综合问题一、填空题1. 在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的 C点的坐标为______________.2.如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的坐标是______.二,选择题3.如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A. B.B. D.C.D. 4. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为()E.?F.G.三、解答题H. 5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以厘米/秒的速度沿BC向终点C运动.过点P作I.PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).J.(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;K.(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?L.(3)当t为何值时,△EDQ为直角三角形.M.N.6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒)O.(1)求线段AB的长;当t为何值时,MN∥OC?P.(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?Q.R.7. 条件:如下图,A、B是直线l同旁的两个定点.S.T.问题:在直线l上确定一点P,使PA+PB的值最小.U.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).V.模型应用:W.(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;X.(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;Y.(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB 上的动点,求△PQR周长的最小值.Z.8.如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x 轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.9.(1)求N点、M点的坐标;10.(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;11.(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;12.②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S 是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.13.14.9. 如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.10. (2018?成都)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a <0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y 轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.11. 如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M 为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F 是否在直线NE上?请直接写出结论,不必证明或说明理由;(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.?【答案与解析】一、填空题1.【答案】(0,0),(0,10),(0,2),(0,8)2.【答案】(2×3n﹣1,0).【解析】∵点B1、B2、B3、…、Bn在直线y=2x的图象上,∴A1B1=4,A2B2=2×(2+4)=12,A3B3=2×(2+4+12)=36,A4B4=2×(2+4+12+36)=108,…,∴An Bn=4×3n﹣1(n为正整数).∵OAn =AnBn,∴点An的坐标为(2×3n﹣1,0).故答案为:(2×3n﹣1,0).二、选择题3.【答案】A.【解析】分两种情况:①当0≤t<4时,作OG⊥AB于G,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,AD=AB=BC=4cm,∵O是正方形ABCD的中心,∴AG=BG=OG=AB=2cm,∴S=AP?OG=×t×2=t(cm2),②当t≥4时,作OG⊥AB于G,如图2所示:S=△OAG的面积+梯形OGBP的面积=×2×2+(2+t﹣4)×2=t(cm2);综上所述:面积S(cm2)与时间t(s)的关系的图象是过原点的线段,故选A.4.【答案】A.三、解答题5.【答案与解析】解:(1)能,如图1,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以厘米/秒的速度沿BC向终点C运动,t=1秒∴AP=1,BQ=,∵AC=4,BC=5,点D在BC上,CD=3,∴PC=AC-AP=4-1=3,QD=BC-BQ-CD==,∵PE∥BC,解得PE=,∵PE∥BC,PE=QD,∴四边形EQDP是平行四边形;(2)如图2,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以厘米/秒的速度沿BC向终点C运动,∴PC=AC-AP=4-t,QC=BC-BQ=,∴?∴PQ∥AB;(3)分两种情况讨论:①如图3,当∠EQD=90°时,显然有EQ=PC=4-t,又∵EQ∥AC,∴△EDQ∽△ADC∴,∵BC=5,CD=3,∴BD=2,∴DQ=,∴解得t=(秒);②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则EM=PC=4-t,在 Rt△ACD中,∵AC=4,CD=3,∴AD=,?∵∠CDA=∠EDQ,∠QED=∠C=90°,∴△EDQ∽△CDA,?∴ t=(秒).综上所述,当 t=秒或t=秒时,△EDQ为直角三角形.6.【答案与解析】解:(1)过点B作BD⊥OA于点D,则四边形CODB是矩形,BD=CO=4,OD=CB=3,DA=3在Rt△ABD中,.当?时,,?,.∵?,,∴,即?(秒).(2)过点作轴于点,交的延长线于点,∵?,∴,.即?,.?,?.?,∴.即?().由?,得.∴当时,S有最小值,且7.【答案与解析】解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=∴;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===10.即△PQR周长的最小值等于10.8.【答案与解析】解:(1)∵CN=CB=15,OC=9,∴ON==12,∴N(12,0);又∵AN=OA﹣ON=15﹣12=3,设AM=x∴32+x2=(9﹣x)2,∴x=4,M(15,4);(2)解法一:设抛物线l为y=(x﹣a)2﹣36则(12﹣a)2=36∴a1=6或a2=18(舍去)∴抛物线l:y=(x﹣6)2﹣36 解法二:∵x2﹣36=0,∴x1=﹣6,x2=6;∴y=x2﹣36与x轴的交点为(﹣6,0)或(6,0)由题意知,交点(6,0)向右平移6个单位到N点,所以y=x2﹣36向右平移6个单位得到抛物线l:y=(x﹣6)2﹣36;(3)①由“三角形任意两边的差小于第三边”知:P点是直线MN与对称轴x=6的交点,设直线MN的解析式为y=kx+b,则?,解得?,∴y=x﹣16,∴P(6,﹣8);②∵DE∥OA,∴△CDE∽△CON,∴;∴S=∵a=﹣<0,开口向下,又m=﹣∴S有最大值,且S最大=﹣.9.【答案与解析】解:(1)∵y=kx﹣1与y轴相交于点C,∴OC=1;∵tan∠OCB=,∴OB=;∴B点坐标为:;把B点坐标为:代入y=kx﹣1得:k=2;(2)∵S=,y=kx﹣1,∴S=×|2x﹣1|;∴S=|x﹣|;(3)①当S=时,x﹣=,∴x=1,y=2x﹣1=1;∴A点坐标为(1,1)时,△AOB的面积为;②存在.满足条件的所有P点坐标为:P1(1,0),P2(2,0),P3(,0),P4(,0).10.【答案与解析】解:(1)令y=0,则ax2﹣2ax﹣3a=0,解得x1=﹣1,x2=3∵点A在点B的左侧,∴A(﹣1,0),如图1,作DF⊥x轴于F,∴DF∥OC,∴=,∵CD=4AC,∴==4,∵OA=1,∴OF=4,∴D点的横坐标为4,代入y=ax2﹣2ax﹣3a得,y=5a,∴D(4,5a),把A、D坐标代入y=kx+b得,解得,∴直线l的函数表达式为y=ax+a.(2)设点E(m,a(m+1)(m﹣3)),yAE =k1x+b1,则,解得:,∴yAE=a(m﹣3)x+a(m﹣3),∴S△ACE=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,∴有最大值﹣a=,∴a=﹣;(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得x1=﹣1,x2=4,∴D(4,5a),∵y=ax2﹣2ax﹣3a,∴抛物线的对称轴为x=1,设P1(1,m),①若AD是矩形的一条边,由AQ∥DP知xD ﹣xP=xA﹣xQ,可知Q点横坐标为﹣4,将x=﹣4带入抛物线方程得Q(﹣4,21a),m=yD +yQ=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∵AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,PD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴[4﹣(﹣1)]2+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=,∵a<0,∴a=﹣,∴P1(1,﹣).②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形ADPQ为矩形,∴∠APD=90°,∴AP2+PD2=AD2,∵AP2=[1﹣(﹣1)]2+(8a)2=22+(8a)2,PD2=(4﹣1)2+(8a﹣5a)2=32+(3a)2,AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴22+(8a)2+32+(3a)2=52+(5a)2,解得a2=,∵a<0,∴a=﹣,∴P2(1,﹣4).综上可得,P点的坐标为P1(1,﹣4),P2(1,﹣).11.【答案与解析】解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上.(2)成立.证明:连结DE,DF.∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,∴∠MDF=∠NDE.在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,∴△DMF≌△DNE.∴MF=NE.(3)画出图形(连出线段NE),MF与EN相等的结论仍然成立(或MF=NE成立).。
中考专题训练 专题五 代数几何综合ppt课件
=6÷
(3)如图(4),设过点M作MN⊥AB于点N, 则MN∥DE,∠NMB=∠B=45°,
∴NB=NM,NF=NB-FB=MN-x
∵MN∥DE ∴△FMN∽FED,
①当
时,如图(4) ,
设DE与BC相交于点G
则DG=DB=4+x
∴
;∴
即
图4-4 即
∴
19
【解典答】例解析
②当
时,如图(5)
③当 6 2 3 x 6 时, 如图(6),
时,可得 FMN,过 FMN 三边的中点作PQW.设动点M、N的速
度都是1个单位/秒,M、N运动的时间为 x 秒.试解答下列问题:
(1)说明 FMN ∽ QWP;
(2)设0≤ x ≤4(即M从D到A运动的时间段).试问 x 为何值时,
PQW为直角三角形?当 x 在何范围时,PQW不为直角三角形?
(3)问当 x 为何值时,线段MN最短?求此时MN的值.
7
典例解析
【分析】本题是双动点问题,是一道与矩形、相似三角形、 勾股定理、二次函数最值相关的综合题.解题的关键是利用勾 股定理计算运动过程中相关线段的长度. 【解答】
(1)证明: ∵PQ∥FN,PW∥MN ∴∠QPW =∠PWF,∠PWF =∠MNF ∴∠QPW =∠MNF 同理可得:∠PQW =∠NFM ∴△FMN∽△QWP
③若AB与两坐标轴都不平行,则可构造全等三角形或利用勾股 定理求AB. 【变式】
(2012·深圳)如图3,已知△ABC的三个顶点 坐标分别为A(-4,0)、B(1,0)、C(-2,6). (1)求经过A、B、C三点的抛物线解析式; (2)设直线BC交y轴于点E,连接AE, 求证:AE=CE; (3)设抛物线与y轴交于点D,连接AD交BC于点F, 试问以A、B、F,为顶点的三角形与△ABC相似 吗?请说明理由.
中考数学复习专题三:代数、三角、几何综合问题
中考数学复习专题3 代数、三角、几何综合问题概述:代数、三角与几何综合题是较复杂与难度较大的问题,其中包括方程、函数、三角与几何等,内容基本上包含所有的初中数学知识,必须把以前的函数观念、方程思想、数形结合思想、转化与化归思想进行综合来解题.典型例题精析例1.有一根直尺的短边长2cm ,长边长10cm ,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm ,如图1,将直尺的矩边DE 放置与直角三角形纸板的斜边AB 重合,且点D 与点A 重合,将直尺沿AB 方向平移如图2,设平移的长度为xcm (•0≤x ≤10),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为Scm 2.(1)当x=0时(如图),S=________;当x=10时,S=___________; (2)当0<x ≤4时(如图2),求S 关于x 的函数关系式;(3)当4<x<10时,求S 关于x 的函数关系式,并求出S 的最大值(同学可在图3、•图4中画草图)解析:(1)2;2.(2)在Rt △ADG 中,∠A=45°, ∴DG=AD=x .同理EF=AE=x+2,∴S 梯形DEGF =12(x+x+2)×2=2x+2, ∴S=2x+2.(3)①当4<x<6时,(如图5) GD=AD=x ,EF=EB=12-(x+2)=10-x , 则S △ADG =12x -2,S △BEF =12(10-x )2, 而S △ABC =12×12×6=36,∴S=36-12x 2-12(10-x )2=-x 2+10x-14,S=-x 2+10x-14=-(x-5)2+11,∴当x=5(4<5<6)时,S 最大值=11.②当6≤x<10时(如图6), BD=BG=12-x ,BE=EF=10-x ,S=12(12-x+10-x )×2=22-2x , S 随x 的增大而减小,所以S ≤10.由①、②可得,当4<x<10时,S 最大值=11.例2.如图所示,点O 2是⊙O 1上一点,⊙O 2与⊙O 1相交于A 、D 两点,BC⊥AD,垂足为D ,分别交⊙O 1、⊙O 2于B 、C 两点,延长DO 2交⊙O 2于E ,交BA 的延长线于F ,BO 2交AD 于G ,连结AG .• (1)求证:∠BGD=∠C ;(2)若∠DO 2C=45°,求证:AD=AF ;(3)若BF=6CD ,且线段BD 、BF 的长是关于x 的方程x 2-(4m+2)x+4m 2+8=0•的两个实数根,求BD 、BF 的长.解析:(1)∵BC ⊥AD 于D ,∴∠BDA=∠CDA=90°,∴AB 、AC 分别为⊙O 1、⊙O 2的直径.∵∠2=∠3,∠BGD+∠2=90°,∠C+∠3=90°, ∴∠BGD=∠C .(2)∵∠DO 2C=45°,∴∠ABD=45°,∵O 2D=O 2C ,∴∠C=∠O 2DC=12(180°-∠DO 2C )=67.5°, ∴∠4=22.5°, ∵∠O 2DC=∠ABD+∠F , ∴∠F=∠4=22.5°,∴AD=AF .(3)∵BF=6CD ,∴设CD=k ,则BF=6k . 连结AE ,则AE ⊥AD ,∴AE ∥BC ,∴AE AFBD BF∴AE ·BF=BD ·AF . 又∵在△AO 2E 和△DO 2C 中,AO 2=DO 2 ∠AO 2E=∠DO 2C , O 2E=O 2C ,∴△AO 2E≌△DO 2C ,∴AE=CD=k,∴6k 2=BD·AF=(BC-CD )(BF-AB ). ∵∠BO 2A=90°,O 2A=O 2C ,∴BC=AB.∴6k 2=(BC-k )(6k-BC ).∴BC 2-7kBC+12k 2=0, 解得:BC=3k 或BC=4k . 当BC=3k ,BD=2k .∵BD 、BF 的长是关于x 的方程x 2-(4m+2)x+4m 2+8=0的两个实数根. ∴由根与系数的关系知:BD+BF=2k+6k=8k=4m+2.整理,得:4m 2-12m+29=0.∵△=(-12)2-4×4×29=-320<0,此方程无实数根. ∴BC=3k (舍). 当BC=4k 时,BD=3k .∴3k+6k=4m+2,18k 2=4m 2+8,整理,得:m 2-8m+16=0, 解得:m 1=m 2=4,∴原方程可化为x 2-18x+72=0,解得:x 1=6,x 2=12, ∴BD=6,BF=12.中考样题训练1.已知抛物线y=-x 2+(k+1)x+3,当x<1时,y 随着x 的增大而增大,当x>1时,y 随x 的增大而减小.(1)求k 的值及抛物线的解析式;(2)设抛物线与x 轴交于A 、B 两点(A 在B 的左边),抛物线的顶点为P ,试求出A 、•B 、P 三点的坐标,并在直角坐标系中画出这条抛物线;(3)求经过P 、A 、B 三点的圆的圆心O ′的坐标; (4)设点G (0,m )是y 轴上的动点.①当点G 运动到何处时,直线BG 是⊙O ′的切线?并求出此时直线BG 的解析式.②若直线BG 与⊙O 相交,且另一个交点为D ,当m 满足什么条件时,点D 在x 轴的下方?2.如图,已知圆心A (0,3),⊙A 与x 轴相切,⊙B 的圆心在x 轴的正半轴上,且⊙B 与⊙A 外切于点P ,两圆的公切线MP 交y 轴于点M ,交x 轴于点N .(1)若sin ∠OAB=45,求直线MP 的解析式及经过M 、N 、B 三点的抛物线的解析式; (2)若⊙A 的位置大小不变,⊙B 的圆心在x 轴的正半轴上移动,并使⊙B 与⊙A 始终外切,过M 作⊙B 的切线MC ,切点为C ,在此变化过程中探究:①四边形OMCB 是什么四边形,对你的结论加以证明;②经过M 、N 、B 三点的抛物线内是否存在以BN 为腰的等腰三角形?若存在,•表示出来;若不存在,说明理由.yMCBA xPO N3.如图,已知直线L与⊙O相交于点A,直径AB=6,点P在L•上移动,连结OP交⊙O于点C,连结BC并延长BC交直线L于点D.(1)若AP=4,求线段PC的长;的面积.(•答案要求保留根号)LA考前热身训练1.如图,已知A 为∠POQ 的边OQ 上一点,以A 为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角),当∠MAN 为以点A 为旋转中心,AM 边从与AO•重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP•上同时以不同的速度向右平行移动.设OM=x ,ON=y(y>x ≥0),△AOM 的面积为S ,若cos α、OA•是方程2z 2-5z+2=0的两个根. (1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离; (2)求证:AN 2=ON ·MN ;(3)求y 与x 之间的函数关系式及自变量量x 的取值范围;(4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.2.如图,已知P 、A 、B 是x 轴上的三点,点A 的坐标为(-1,0),点B 的坐标为(3,0),•且PA :AB=1:2,以AB 为直径画⊙M 交y 轴的正半轴于点C . (1)求证:PC 是⊙M 的切线;(2)在x 轴上是否存在这样的点Q ,使得直线QC 与过A 、C 、B•三点的抛物线只有一个交点?若存在,求点Q 的坐标,若不存在,请说明理由;(3)画⊙N ,使得圆心N 在x 轴的负半轴上,⊙N 与⊙M 外切,且与直线PC 相切于D ,•问将过A 、C 、B 三点的抛物线平移后,能否同时经过P 、D 、A 三点?为什么?答案:中考样题看台1.(1)k=1,抛物线解析式y=-x 2+2x+3(2)A (-1,0),B (3,0),C (1,4)M AQP O N(3)∵⊙O′过A、B两点,∴O′在AB的垂直平分线上,即在抛物线的对称轴上,设抛物线的对称轴交x轴于M,交⊙O′于N,则有MP×MN=MA×MB,4MN=2×2,∴MN=1,•PN=5,O′P=52<PM,∴O′点在x轴上方,∴O′M=32,∴O′(1,32).(4)①过B点作⊙O′的切线交y轴于点G,直线BO′交y轴于点E,可求出直线BO•′的解析式为,y=-34x+94,∴E(0,94),∵BG是⊙O′的切线,BO⊥EG,∴BO=OE×OG,∴OG=4,•∴G(0,-4),求出直线BG的解析式为y=43x-4.②-4<m<0.2.(1)在Rt△AOB中,∵OA=3,sin∠OAB=45,cos∠OAB=35,∴AB=5,OB=4,BP=5-3=2.•在Rt△APM中,APAM=cos∠OAB=35,∴AM=5,OM=2,∴点M(0,-2),又△NPB∽△AOB,∴BN AB BP OB,∴BN=52,•∴ON=32,∴点B(32,0),设MP的解析式为y=kx+b,∵MP经过M、N两点,∴MP的解析式为y=43x-2,设过M、N、B的抛物线解析式为y=a(x-32)(x-4)且点M(0,-2)在其上,可得a=-13,即y=-13x2+116x-2.(2)①四边形OMCB是矩形.证明:在⊙A不动,⊙B运动变化过程中,恒有∠BAO=∠MAP,OA=AP,∠AOB=∠APM=90°,∴△AOB≌△APM,∴OB=PM,AB=AM,∴PB=OM,而PB=BC,∴OM=BC,由切线长定理知MC=MP,∴MC=OB,∴四边形MOBC是平行四边形,又∵∠MOB=90°,∴四边形MOBC是矩形.②存在,由上证明可知,Rt△MON≌Rt△BPN,∴BN=MN .因此在过M 、N 、B 三点的抛物线内有以BN 为腰的等腰三角形MNB 存在,• 由抛物线的轴对称性可知,在抛物线上必有一点M ′与M 关于其对称轴对称, ∴BN=BM ′,这样得到满足条件的三角形有两个,△MNB 和△M ′NB . 3.(1)∵L 与⊙O 相切于点A ,∴∠4=90°,∴OP 2=OA 2+AP 2, ∵OB=OC=12AB=3,AP=4, ∴OP 2=32+42,∴OP=5, ∴PC=5-3=2.(2)∵△PAO ∽△BAD ,且∠1>∠2,∠4=90°, ∴∠2=∠APO ,∴OB=OC ,∴∠2=∠3 ∵∠1=∠2+∠3,∴∠2=2∠2=2∠APO ∴∠4=90°,∴∠1+∠APO=90° ∴3∠APO=90°,∴∠APO=30°. 在Rt △BAD 中,∠2=∠APO=30°.∴AD=6sin30°=6 过点O 作OE ⊥BC 于点E ∵∠2=30°,BO=3,∴OE=32,BE=3×cos30°∴∴S 四边形OADC =S △BAD -S △BOC =12AB ·AD=12BC ·OE=12×6×12×3294154.考前热身训练1.(1)易知OA=2,cos α=12,∠POQ=∠MAN=60°, ∴初始状态时,△AON 为等边三角形,•∴ON=OA=2,当AM 旋转到AM ′时,点N 移动到N ′, ∵∠OAM ′=30°,∠POQ=∠M ′AN•′=60°,∴∠M ′N ′A=30°,在Rt △OAN 中,ON ′=2AO=4, ∴NN ′=ON ′-ON=2,∴点N 移动的距离为2.(2)易知△OAN ∽△AMN ,∴AN 2=ON ·MN .(3)∵MN=y-x ,∴AN 2=y 2-xy ,过A 点作AD ⊥OP ,垂足为D ,可得OD=1, ∴DN=ON-OD=y-1,在Rt △AND 中,AN 2=AD 2+DN 2=y 2-2y+4,∴y 2-xy=y 2-2y+4,即y=42x-. ∴y>0,∴2-x>0,即x<2,又∵x ≥0,∴x 的取值范围是:0≤x<2.(4)S=12·OM ·,∵S 是x ,∴0≤S<2·2.即0≤2.(1)易知⊙M 半径为2,设PA=x ,则x :4=1:2⇒x=2,由相交弦定理推论得OC=OA .OB=1×3,2=PO 2+OC 2=32+2=12,PM 2=42=16,MC 2=22=4,∴PM 2=PC 2+MC 2,∴∠PCM=90°.(2)易知过A 、C 、B 三点的抛物线的解析式为(x+1)(x-3),•假设满足条件的Q 点存在,坐标为(m ,0),直线QC 的解析式为 ∵直线QC 与抛物线只有一个公共点,∴方程x+1)(x-3)∴(2+3m)2=0,∴m=-32,即满足条件的Q 点存在,•坐标为(-32,0);(3)连结DN ,作DH ⊥PN ,垂足为H ,设⊙N 的半径为r ,则∵ND ⊥PC , ∴ND ∥MC ,∴DN PN MC PM =,∴224r r -=, ∴r=23,∵DN 2=NH ·NP , ∴(23)2=NH ·(2-23),∴NH=13,∴3,∴D (-2,3).∵抛物线(x+1)(x-3)平移,使其经过P 、A 两点的抛物线的解析式为x+•1)(x+3)又经验证D是该抛物线上的点,∴将过A、C、B三点的抛物线平移后能同时经过P、D、A三点.。
专题31代数与几何综合题PPT课件
首页
末页
【例 1】(2017•乌鲁木齐)如图,抛物线 y=ax2+bx+c(a≠0)与直线 y=x+1 相交于 A(﹣1,0),B(4,m)两点,且抛物线经过点 C(5,0). (1)求抛物线的解析式; (2)点 P 是抛物线上的一个动点(不与点 A、点 B 重合),过点 P 作直线 PD⊥x 轴于点 D,交直线 AB 于点 E.当 PE=2ED 时,求 P 点坐标; (3)在(2)条件下是否存在点 P 使△BEC 为等腰三角形?若存在请直接写出点 P 的坐标;若不存在,请说明理由.
首页
末页
解:(1)∵点 B(4,m)在直线 y=x+1 上, ∴m=4+1=5, ∴B(4,5),
a b c 0 ∴ 16a 4b c 5 ,
25a 5b c 0 解得:a=﹣1,b=4,c=5, ∴抛物线解析式为 y=﹣x2+4x+5;
首页
末页
(2)设 P(x,﹣x2+4x+5),则 E(x,x+1),D(x,0), 则 PE=|﹣x2+4x+5﹣(x+1)|=|﹣x2+3x+4|,DE=|x+1|, ∵PE=2ED, ∴|﹣x2+3x+4|=2|x+1|, 当﹣x2+3x+4=2(x+1)时,解得 x=﹣1 或 x=2, 但当 x=﹣1 时,P 与 A 重合不合题意,舍去, ∴P(2,9); 当﹣x2+3x+4=﹣2(x+1)时,解得 x=﹣1 或 x=6, 但当 x=﹣1 时,P 与 A 重合不合题意,舍去, ∴P(6,﹣7); 综上可知 P 点坐标为(2,9)或(6,﹣7);
2023年中考数学总复习:代数几何综合问题
2023年中考数学总复习:代数几何综合问题【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径.解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.第1页共23页。
专题20 几何与代数综合性及易错问题解析版
专题20 几何与代数综合性及易错问题题型一:几何与代数综合性问题尺规作图、利用代数方法解决图形存在性(最值、性质)问题等题型二:易错题型基于分类讨论的题型.【例1】(2019·洛阳二模)如图,直线y =-43x +4与 x 轴、y 轴的交点为A ,B .按以下步骤作图:①以点 A 为圆心,适当长度为半径作弧,分别交 AB ,x 轴于点 C ,D ;②分别以点 C ,D 为圆心,大于12CD 的长为半径作弧,两弧在∠OAB 内交于点M ;③作射线AM ,交 y 轴于点E .则点 E 的坐标为【答案】(0,32).【解析】解:过点E 作EF ⊥AB 于F ,如图所示,在y =-43x +4中,当x =0时,y =4;当y =0时,x =3,即A (3,0),B (0,4),在Rt △AOB 中,由勾股定理得:AB =5,由题意的尺规作图方法可知,AM 为∠BOA 的平分线,∴EO=EF,∴△OAE≌△FAE,∴OA=AF=3,∴BF=AB-AF=2,设OE=x,则EF=x,BE=4-x,在Rt△BEF中,由勾股定理得:(4-x)2=x2+22,解得:x=32,即OE=32,∴答案为:(0,32).【变式1-1】(2019·偃师一模)如图,点A(0,2),在x轴上取一点B,连接AB,以A为圆心,任意长为半径画弧,分别交OA,AB于点M,N,再以M,N为圆心,大于12MN的长为半径画弧,两弧交于点D,连接AD并延长交x轴于点P.若△OPA与△OAB相似,则点P的坐标为【答案】0).【解析】解:由题意知,AP为∠OAB的平分线,∴∠OAP=∠BAP,∵△OPA与△OAB相似,∴∠OPA=∠OAB=2∠OAP,∴∠OAP=30°,∵OA=2,∴OP=OA·tan即P0).【变式1-2】(2018·河南第一次大联考)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1y x =和9y x =在第一象限的图象于点A ,B ,过点B 作BD ⊥x 轴于点D ,交1y x =的图象于点C ,连接AC .若△ABC 是等腰三角形,则k 的值是__________..【解析】解:联立y =kx ,1y x =,得:x ,y ,即A ),同理,得点B 的坐标为),∵BD ⊥x 轴,∴C ),∴BC ,BC ,∴A 不在BC 的垂直平分线上,即AB ≠AC ,(1)当AB =BC 时,即AB 2=BC 2,(222æ+=ççè,解得:k k =(舍);(2)当AC =BC 时,即AC 2=BC 2,222æ+=-ççè,解得:k 或k =(舍);.【例2】(2019·偃师一模)当-2≤x≤1时,二次函数y=-(x-m)2+m2+1有最大值4,则实数m的值为或2.【解析】解:①当-2≤m≤1时,x=m时,y=4,即m2+1=4,解得:m= m=,②当m<-2时,x=-2时,y=4,即-(-2-m)2+m2+1=4,解得:m=74(舍);③当m>1时,x=1时,y=4,即-(1-m)2+m2+1=4,解得:m=2,综上所述,m或2.【变式2-1】(2019·洛阳二模)四张背面相同的扑克牌,分别为红桃1,2,3,4,背面朝上,先从中抽取一张把抽到的点数记为a,再在剩余的扑克中抽取一张点数记为b,则点(a,b)在直线y=x+1 上方的概率是【答案】1 4 .【解析】解:抽到的点数有序数对为:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12中可能,只有(1,2),(2,3),(3,4)三个点在直线y=x+1上,即点(a,b)在直线y=x+1 上方的概率是31= 124,故答案为:1 4 .【变式2-2】(2018·信阳一模)如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A.P1>P2B.P1<P2C.P1=P2D.以上都有可能【答案】A.【解析】解:由图甲可知,黑色方砖6块,共有16块方砖,∴在乙种地板上最终停留在黑色区域的概率为P1=63 168=,由图乙可知,黑色方砖3块,共有9块方砖,∴在乙种地板上最终停留在黑色区域的概率为P2=31 93 =,∴P1>P2;故答案为:A.1.(2018·焦作一模)如图,在直角坐标系中,正方形ABCO的点B坐标(3,3),点A、C分别在y轴、x轴上,对角线AC上一动点E,连接BE,过E作DE⊥BE交OC于点D.若点D坐标为(2,0),则点E 坐标为.【答案】(1,2).【解析】解:过点E作EH⊥OC于H,延长HE交AB于F,连接OE,∵四边形ABCO是正方形,∴AB∥OC,∠OAB=∠AOC=90°,∠OAC=∠BAC=∠OCA=45°,OA∥BC,∴FH∥OA,∴∠HEC=∠OAC=∠OCA= 45°,∠BFH=∠OAB=90°,∠DHE=∠AOC=90°,∴EH=CH=BF,∠EBF=∠DEH,∴△BEF≌△EDH,∴BE=DE,∵点D坐标为(2,0),即OD=2,由正方形性质得:OE=BE=DE,∵FH⊥OC,∴OH=DH=12OD=1,∴EF=DH=1,∵FH=OA=3,∴EH=2,∴点E的坐标为(1,2),∴答案为:(1,2).2.(2018·焦作一模)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN的周长的最大值.图1 图2【答案】(1)等边三角形;(2)(3)见解析.【解析】解:(1)∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵AD=AE,∴BD=CE,∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM= 12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;答案为等边三角形;(2)△PMN的形状不发生改变,理由如下:连接CE、BD,∵AB=AC,AE=AD,∠BAC=∠DAE=60°,由旋转性质得:BD=CE,∠ABD=∠ACE,∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠BCE+∠CBD=∠BCA+∠ACE+∠CBD=∠BCA+∠ABD+∠CBD=∠BCA+∠ABC=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12 BD,∴当BD的值最大时,PN的值最大,当A、B、D共线时且A在B、D之间时,BD取最大值,此时BD=1+3=4,∴PN的最大值为2,即△PMN的周长的最大值为6.3.(2019·三门峡二模)如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD,BC分别与x轴交于E,F,连接BE,DF,若正方形ABCD的顶点B,D在双曲线y=ax上,实数a满足1aa-=1,则四边形DEBF的面积是()A.12B.32C.1D.2【答案】D.【解析】解:∵实数a满足1aa-=1,∴a=±1,又∵a>0,∴a=1,∵正方形ABCD的顶点B,D在y=ax上,∴S矩形BGOF=1,∵正方形ABCD的对称中心在坐标原点,∴S平行四边形DEBF =S矩形ABFEF=2S矩形BGOF=2×1=2,故答案为:D.4.(2019·省实验一模)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,以大于12 BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.如果CD=AC,∠ACB=105°,那么∠B的度数为()A.20° B.25° C.30°D.35°【答案】B.【解析】解:由尺规作图可得:MN垂直平分BC,∴DC=BD,∴∠DCB=∠DBC,∵DC=AC,∴∠A=∠CDA,设∠B为x,则∠BCD=x,∠A=∠CDA=2x,∴x+2x+105°=180°,解得:x=25,即∠B=25°,故答案为:B.5.(2019·省实验一模)如图,点A(m,5),B(n,2)是抛物线C1:y=12x2﹣2x+3上的两点,将抛物线C1向左平移,得到抛物线C2,点A,B的对应点分别为点A',B'.若曲线段AB扫过的面积为9(图中的阴影部分),则抛物线C2的解析式是()A.y=12(x﹣5)2+1 B.y=12(x﹣2)2+4C.y=12(x+1)2+1D.y=12(x+2)2﹣2【答案】C.【解析】解:∵y =12x 2﹣2x +3=12(x ﹣2)2+1,∵阴影部分的面积为9,A (m ,5),B (n ,2),∴3BB ′=9,∴BB ′=3,即将C 1沿x 轴向左平移3个单位长度得到C 2的图象,∴C 2的函数表达式是y =12(x +1)2+1.答案为:C .6.(2019·省实验一模)如图,网格线的交点称为格点.双曲线y =1k x 与直线y =k 2x 在第二象限交于格点A .(1)填空:k 1= ,k 2= ;(2)双曲线与直线的另一个交点B 的坐标为;(3)在图中仅用直尺、2B 铅笔画△ABC ,使其面积为2|k 1|,其中点C 为格点.【答案】(1)﹣2;﹣2;(2)(1,﹣2);(3)见解析.【解析】解:(1)由图可得:A (﹣1,2),将点A (﹣1,2)分别代入双曲线y =1k x 和直线y =k 2x ,可得:k 1=﹣2,k 2=﹣2,(2)由对称性可知,两函数图象的另一个交点与A (﹣1,2)关于坐标原点对称,∴B (1,﹣2);(3)∵k 1=﹣2,∴2|k1|=4,∴满足条件的点C有四个,如图所示.7.(2019·叶县一模)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF (如图1),连接BD,MF,若BD=16cm,∠ADB=30°.(1)如图1,试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.图1 图2 图3【答案】见解析.【解析】解:(1)结论:BD=MF,BD⊥MF.理由:延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.∵∠DMN =∠AMF ,∴∠ADB +∠DMN =∠AFM +∠AMF =90°,∴∠DNM =90°,∴BD ⊥MF .(2)由题意知,∠KAF <90°,①当AF =AK 时,∠AKF =∠F =30°,此时∠KAF =120°,不符题意,此种情况不存在;②当AK =FK 时,∠KAF =∠F =30°,则∠BAB 1=180°﹣∠B 1AD 1﹣∠KAF =180°﹣90°﹣30°=60°,即β=60°;③当AF =FK 时,∠FAK =75°,∴∠BAB 1=90°﹣∠FAK =15°,即β=15°;综上所述,β的度数为60°或15°;(3)由题意得四边形PNA 2A 是矩形,设A 2A =PN =x ,在Rt △A 2M 2F 2中, F 2M 2=FM =16,∠F =∠ADB =30°,∴A 2M 2=8,A 2F 2=,∴AF 2=﹣x .同理,AP =8x ,∴PD =AD ﹣AP =x .∵NP ∥AB ,,解得x =12﹣∴平移距离为:12﹣.8.(2019·濮阳二模)若函数y =(m ﹣1)x 2﹣6x +32m 的图象与x 轴有且只有一个交点,则m 的值为( )A .﹣2或3B .﹣2或﹣3C .1或﹣2或3D .1或﹣2或﹣3【答案】C .【解析】解:(1)当m =1时,函数解析式为:y =﹣6x +32,是一次函数,图象与x 轴有且只有一个交点,(2)当m ≠1时,函数为二次函数,∴62﹣4×(m ﹣1)×32m =0,解得:m =﹣2或3,故答案为:C .9.(2019·濮阳二模)如图,点A 在双曲线y =k x (x >0)上,过点A 作AB ⊥x 轴,垂足为点B ,分别以点O 和点A 为圆心,大于12OA 的长为半径作弧,两弧相交于D ,E 两点,作直线DE 交x 轴于点C ,交y 轴于点F (0,2),连接AC .若AC =1,则k 的值为( )A .2B .3225CD 【答案】B .【解析】解:设OA 交CF 于K .由作图方法可知,CF 垂直平分线段OA ,∴OC =CA =1,OK =AK ,在Rt △OFC 中,由勾股定理得:CF ,由三角形的面积知:AK =OK∴OA 由△FOC ∽△OBA ,可得:OF OC CF OB AB AO ==,∴21OB AB ==,∴OB =85,AB =45,即A (85,45),∴k =3225.∴答案为:B .10.(2019·商丘二模)如图,平面直角坐标系中,矩形OABC 绕原点O 逆时针旋转30°后得到矩形OA ′B ′C ′,A ′B ′与BC 交于点M ,延长BC 交B ′C ′于N ,若A ,0),C (0,1),则点N 的坐标为( )A .1)B .(2,1)C .-2,1)D .(1,1)【答案】B .【解析】解:连接ON ,取∠ONE =∠NOC ,由旋转性质得:C 'O =CO ,∠COC '=30°∵CO =C 'O ,NO =NO∴Rt △CON ≌Rt △C 'ON (HL )∴∠NOC =∠NOC '=15°∴∠ONE =∠NOC =15°∴∠NEC =30°,NE =EO∵NC ⊥OC ,∠NEO =30°∴NC =12NE ,CE NC ∵CE +OE =1∴2NC NC =1∴NC =2即点N 坐标(2,1)所以答案为:B .11.(2019·开封模拟)如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为 .【答案】12.【解析】解:∵四边形ABCD 为正方形,∴AB =CD ,AB ∥CD ,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF DG=2,∴AF=2GF=4,∴AG=6.由题意得:CG为△EAB的中位线,∴AE=2AG=12.所以答案为:12.12.(2019·新乡一模) 如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;②连接MN分别交AB、AC于点E、F;③连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.8【答案】D.【解析】解:由作图方法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理,DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,由DE∥AC,得:BD BE CD AE=,∵BD=6,AE=4,CD=3,∴BE=8,故答案为:D.13.(2017·西华县一模)如图,在△ABC中,AB=AC,∠A=36°,且BC=2,则AB= .+1.【解析】解:作∠ABC的平分线交AC于D,∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∴∠ABD=∠CBD=36°,∴DA=DB,∴∠BDC=∠A+∠ABD=72°,∴BD=BC=2,∴AD=BC=2,∵∠CBD=∠A,∠BCD=∠ACB,∴△BCD∽△ABC,∴BC:AC=CD:BC,∴BC2=AC•CD,即:()222AC AC =×-,解得:AC 或AC =1(舍)即AB 14.(2019·省实验一模)如图,点A (m ,5),B (n ,2)是抛物线C 1:y =12x 2﹣2x +3上的两点,将抛物线C 1向左平移,得到抛物线C 2,点A ,B 的对应点分别为点A ',B '.若曲线段AB 扫过的面积为9(图中的阴影部分),则抛物线C 2的解析式是( )A .y =12(x ﹣5)2+1B .y =12(x ﹣2)2+4C .y =12(x +1)2+1D .y =12(x +2)2﹣2【答案】C .【解析】解:y =12x 2﹣2x +3=12(x ﹣2)2+1,∵曲线段AB 扫过的面积为9,A (m ,5),(n ,2)∴四边形ABB ’A ’为平行四边形,且BB ’边上的高为3,即3BB ′=9,∴BB ′=3,新函数图象是将函数y =12(x ﹣2)2+1的图象沿x 轴向左平移3个单位长度得到,∴新图象的函数表达式是y =12(x +1)2+1.故答案为:C .15.(2019·郑州联考)如图,在△ABC 中,∠ACB =90°,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若∠B =34°,则∠BDC 的度数是( )A .68°B .112°C .124°D .146°【答案】B .【解析】解:∵∠ACB =90°,∠B =34°,∴∠A =56°,由作图方法可知:DE 是AC 的垂直平分线,∴AD =CD ,∴∠DCA =∠A =56°,∴∠BCD =90°﹣56°=34°,∴∠BDC =180°﹣34°﹣34°=112°,故答案为:B .16.(2019·郑州联考)如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 cm 2.【答案】41.【解析】解:连接EF ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴S △EFC =S △BCF ,S △EFQ =S △BCQ ,S△EFD =S△ADF,S△EFP=S△ADP,∵S△APD =16cm2,S△BQC=25cm2,∴S四边形EPFQ=41cm2,故答案为:41.17.(2019·安阳二模)如图,在△ABC中,∠C=50°,∠B=35°,分别以点A,B为圆心,大于AB 的长为半径画弧,两弧相交于点M,N,直线MN交BC于点D,连接AD.则∠DAC的度数为()A.85°B.70°C.60°D.25°【答案】C.【解析】解:在△ABC中,∠B=35°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=95°,由作图可知MN为AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=35°,∴∠CAD=∠BAC﹣∠DAB=60°,故答案为:C.18.(2019·枫杨外国语三模)如图,已知矩形AOBC的三个顶点的坐标分别为O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交OC,OB于点D,E;②分别以点D,E为圆心,大于12DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A.(4,43)B.(43,4)C.(53,4)D.(4,53)【答案】A.【解析】解:由作图方法知,OG是∠BOC的平分线,过G作GH垂直AC于H,∴GH=BG,由题意知:∠CBO=90°,BC=3,OB=4,由勾股定理知:OC=5,∵OG=OG,GH=BG,∴Rt△OGH≌Rt△OGB,∴OB=OH=4,∴CH=1,设G(4,m),则BG=m,CG=3-m,CH=1,∴(3-m)2=m2+1,解得:m=43,即G(4, 43),答案为:A.19.(2019·中原名校大联考)如图,在△ABC中,AD平分∠BAC,按如下步作图:①分别以点A,D为圆心,以大于12AD的长为半径在AD两侧作弧,两弧交于两点M,N;②作直线MN分别交AB,AC于点E,F;③连接DE,DF,若BD=6,AE=4,CD=3,则CF的长是()A.1B.1.5C.2D.3【答案】C.【解析】解:由作图方法知:EF垂直平分AD,设AD、EF交于O,∴AE=DE,AF=DF,EF⊥AD,∵AD平分∠BAC,得:△AEO≌△AFO,∴AE=AF,∴AE=AF=DE=DF=4,∴四边形AEDF为菱形,∴DF∥AB,∴CF CD AF BD,∴CF=2.故答案为:C.20.(2019·许昌月考)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形【答案】B.【解析】解:由作图方法知,GH是线段EF的垂直平分线,∵EG=EH,∴△EGH是等腰三角形.即A正确;∵EG=GF,∴△EFG是等腰三角形,由图知,EF不一定等于EG,即B错误.∵EG=EH=HF=FG,∴四边形EHFG是菱形.即C正确.∵EH=FH,∴△EFH是等腰三角形.即D正确.。
51代数几何综合题
51.代数、几何综合题一、考点梳理代数、几何综合题需要综合运用代数、几何这两部分知识解题,是初中数学中知识涵盖面广、综合性最强的题型,它的解法有多种多样,代数与几何综合题考查数学基础知识和灵活运用知识的能力;考查对数学知识的迁移整合能力;考查将大题分解为小题、复杂问题简单化的能力;考查对代数、几何知识的内在联系的认识,运用数学思想方法(如数形结合、数学建模、分类讨论、转化、函数与方程等)分析与解决问题的能力.这类题目往往是中考的压轴题.代数、几何综合题一般包括:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.二、考点精析【例1】(2017湖北襄阳模拟)如图51-1,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连接AD.(1)求证:AD =AN ;(2)若AB =8,ON =1,求⊙O 的半径.图51-1【答案】(1)证明:∵∠ABC 与∠ADC 是同弧所对的圆周角,∴∠B =∠D ,∵AE ⊥CD ,AM ⊥BC ,∴∠AMB =∠AEN =90°,∴∠ANE+∠BAM =90°,∠B+∠BAM =90°,∴∠B =∠ANE∴∠D =∠ANE ,∴AD =AN.(2)设OE =x ,连接OA ,∵AN =AD ,CD ⊥AB ,∴DE =EN =1x +,∴OD =OE+DE =121x x x ++=+,∴OA =OD =21x +∴在Rt △OAE 中,由勾股定理得:222OE AE OA += ∴()222421x x +=+,解得:53x =或3x =-(不合题意,舍去). ∴OA =513212133x +=⨯+=,即⊙O 的半径为133. 【解析】本题是比较典型的几何与方程相结合的例子,第一问利用圆周角的性质,直角三角形的性质,全等三角形的判断来解决问题.第二问利用垂径定理和勾股定理的知识并结合方程的思想求解.【例2】(2016辽宁阜新)如图51-2,已知二次函数2y x bx c =-++的图象交x 轴于点A (-4,0),和点B ,交y 轴于点C (0,4).(1)求这个二次函数的表达式;(2)若点P 在第二象限内的抛物线上,求△PAC 面积的最大值和此时点P 的坐标;(3)在平面直角坐标系内,是否存在点Q ,使A ,B ,C ,Q 四点构成平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.图51-2 图51-3 【答案】(1)∵二次函数2y x bx c =-++的图象交x 轴于点A (-4,0),和点B ,交y 轴于点C (0,4)∴01644b c c =-+⎧⎨=⎩,解得:34b c =-⎧⎨=⎩ ∴二次函数的表达式为:234y x x =--+.(2)如图51-3,由(1)知二次函数的表达式为234y x x =--+令0y =,得2340x x --+=,解得4x =-或1x =,∴点B 的坐标为(1,0), 连接AC ,PA ,PC ,∴点P 是直线AC 平移后和抛物线只有一个交点时,△PAC 面积最大值.∵A (-4,0),C (0,4),∴直线AC 的解析式为4y x =+,设直线AC 平移后的直线解析式为4y x b =++, ∴2344y x x y x b⎧=--+⎨=++⎩,∴240x x b ++=,∴2440b ∆=-=,解得:4b =, ∴点P (-2,6),过点P 作PD ⊥y 轴,∴PD =2,OD =4,∵A (-4,0),C (0,4),∴OA =4,OC =4,CD =2,()()11122211124622448.222PAC PCD AOCAODP S S S S PD OA OD PD CD OA OC ∆∆∆∴=--=+⨯-⨯-⨯=+⨯-⨯⨯-⨯⨯=梯形 (3)存在点Q ,使A ,B ,C ,Q 四点构成平行四边形,理由如下:①以AB 为边时,CQ ∥AB ,CQ =AB ,过点C 作平行于AB 的直线l ,∵C (0,4),∴直线l 的解析式为4y =,∴点Q 在直线l 上,设Q 点的坐标为(),4d ,∴CQ =d ,∵A (-4,0),B (1,0),∴AB =5,∴5d =,∴5d =±,∴Q 点的坐标为(-5,4)或(5,4);②以AB 为对角线时,CQ 必过线段AB 的中点,且被AB 平分,即:AB 的中点也是CQ 的中点,∵A (-4,0),B (1,0),∴线段AB 的中点坐标为(32-,0) 设Q 点的坐标为(),Q Q x y ,且点C 为(0,4), 由中点公式得:0322402Q Q x y +⎧=-⎪⎪⎨+⎪=⎪⎩,解得:34Q Q x y =-⎧⎪⎨=-⎪⎩,∴Q 点的坐标为()3,4--.所以,满足条件的点Q 的坐标为Q (-5,4)或(5,4)或(-3,-4).【解析】此题是一道特殊四边形与二次函数相结合的典例.遇到有两个定点确定特殊四边形的问题,常常要用到分类讨论和数形结合的思想,分别画出符合要求的图形,找到所有的答案,分类时要注意不重不漏.三、考点精练(一)选择题1.(2015湖南邵阳)如图51-4,在等腰△ABC 中,直线l 垂直底边BC ,现将直线l 沿线段BC 从B 点匀速平移至C 点,直线l 与△ABC 的边相交于E ,F 两点.设线段EF 的长度为y ,平移时间为t ,则图51-5中能较好反映y 与t 的函数关系的图象是( )图51-4 图51-5A B C D 2.(2017湖北咸宁)在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图51-6放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C '的坐标为( ) A.3(,0)2 B. (2,0) C. 5(,0)2D. (3,0)(二)填空题3.(2017湖北黄冈模拟)一条排水管的截面如图51-7所示,已知排水管的半径OA =1m ,水面宽AB =1.2m ,某天下雨后,水管水面上升了0.2m ,则此时排水管水面宽CD 等于 m.图51-6 图51-74.(2017山西百校联考)如图51-8,在平面直角坐标系中,平行四边形ABCD 的顶点B ,C 在x 轴上,A ,D 两点分别在反比例函数3y x =-与1y x=的图象上,则平行四边形ABCD 的面积为 .5.(2016辽宁)如图51-9,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(4,3),∠CAO 的平分线与y 轴相交于点D ,则点D 的坐标为 .图51-8 图51-9 (三)能力提升6.(2014四川成都)在美化校园的活动中,某兴趣小组想借助如图51-10所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB =x m.(1)若花园的面积为1922m ,求x 的值.(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.7.如图51-11,在矩形ABCD中,AB=12cm,BC=8cm,点E,F,G分别从点A,B,C三点同时出发,沿矩形的边逆时针方向移动,点E,G的速度均为2cm/s,F的速度是4cm/s.当点F追上点G(即点F与点G重合)时.三个点随之停止运动.设移动开始后第t秒时,△cm.EFG的面积为S2(1)当t=1s时,S的值是多少?(2)写出S和t的函数关系式,并写出自变量的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点B,E,F为顶点的三角形与以点C,F,G为顶点的三角形相似?请说明理由.8.(2016贵州六盘水)如图51-12,抛物线2y ax bx c =++的图象与x 轴交于点A (-1,0),B (3,0)两点,与y 轴交于点C (0,-3),顶点为D.(1)求此抛物线的解析式;(2)求此抛物线顶点D 的坐标和对称轴;(3)探究对称轴上是否存在一点P ,使得以P ,D ,A 为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P 点的坐标;若不存在,请说明理由.9.(2017湖北荆州)如图51-13,在平面直角坐标系中,直线334y x=-+与x轴、y轴分别交于A,B两点,点P,Q同时从点A出发,运动时间为t秒,其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度,以点Q为圆心,PQ长为半径作⊙Q.(1)求证:直线AB是⊙Q的切线;(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M.若CM 与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB,CM,y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.参考答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数几何综合题【题型特征】代数、几何知识相结合的综合题是以几何知识为主体,以代数知识为工具(背景),来确定图形的形状、位置、大小(坐标)的问题.解答时往往需要从代数几何的结合点或在几何图形中寻找各元素之间的数量关系或在代数条件中探讨各个量的几何模型,进行数与形之间的互相转化,使问题得到解决.为了讲解方便,我们将代数几何综合题按题目叙述的背景分为:坐标系、函数为背景的代数几何综合题和以几何图形为背景的代数几何综合题.【解题策略】几何图形为背景的代数几何综合题,建立函数表达式的常见思路是:利用图形的面积公式建立函数表达式;或利用勾股定理或解直角三角形知识建立函数表达式;或利用相似三角形的线段成比例建立函数表达式.类型一坐标系、函数为背景典例1(2014·湖南怀化)如图(1),在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y.(1)求y与x之间的函数表达式;(2)当x=3秒时,射线OC平行移动到O'C',与OA相交于点G,如图(2),求经过G,O,B三点的抛物线的表达式;(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由.(1)(2)【全解】(1)∵AB=OB,∠ABO=90°,∴△ABO是等腰直角三角形.∴∠AOB=45°.∵∠yOC=45°,∴∠AOC=(90°-45°)+45°=90°.∴AO⊥CO.∵C'O'是CO平移得到,∴AO⊥C'O'.∴△OO'G是等腰直角三角形.∵射线OC的速度是每秒2个单位长度,∴OO'=2x.∴其以OO'为底边的高为x.∴点G的坐标为(3,3).设抛物线表达式为y=ax2+bx,整理,得x2-8x-10=0,解得x 1=4-,x2=4+,此时,点P的坐标为(4-,-2)或(4+,-2),综上所述,点P的坐标为(4-,2)或(4+,2)或(4-,-2)或(4+,-2)时,△POB的面积S=8.【技法梳理】(1)判断出△ABO是等腰直角三角形,根据等腰直角三角形的性质可得∠AOB=45°,然后求出AO⊥CO,再根据平移的性质可得AO⊥C'O',从而判断出△OO'G是等腰直角三角形,然后根据等腰直角三角形的性质列式整理即可得解;(2)求出OO',再根据等腰直角三角形的性质求出点G的坐标,然后设抛物线表达式为y=ax2+bx,再把点B,G的坐标代入,利用待定系数法求二次函数表达式解答;(3)设点P到x轴的距离为h,利用三角形的面积公式求出h,再分点P在x轴上方和下方两种情况,利用抛物线表达式求解即可.举一反三(第1题)【小结】本题是二次函数、反比例函数综合题型,主要利用了等腰直角三角形的判定与性质,勾股定理,待定系数法求二次函数表达式,三角形的面积,二次函数图象上点的坐标特征,要注意分情况讨论.类型二几何图形为背景典例2(2014·湖北荆门)如图(1),已知:在矩形ABCD的边AD上有一点O,OA=,以O为圆心,OA长为半径作圆,交AD于点M,恰好与BD相切于点H,过点H作弦HP∥AB,弦HP=3.若点E是CD边上一动点(点E与C,D不重合),过点E作直线EF∥BD交BC于点F,再把△CEF 沿着动直线EF对折,点C的对应点为G.设CE=x,△EFG与矩形ABCD重叠部分的面积为S.(1)求证:四边形ABHP是菱形;(2)问△EFG的直角顶点G能落在☉O上吗?若能,求出此时x的值;若不能,请说明理由;(3)求S与x之间的函数表达式,并直接写出FG与☉O相切时,S的值.(1)(2)【解析】(1)连接OH,如图(1).(1)∵AB∥HP,∠BAD=90°,∴AQ⊥HP.而AM是直径,∴∠HOQ=60°,则∠OHQ=30°,∠APH=60°.又BD与☉O相切,∴∠QHD=90°-∠OHQ=60°.∴∠APH=∠QHD.∴AP∥BH.又AB∥HP,∴四边形ABHP是平行四边形.由AB⊥AM,AM是直径知AB是☉O的切线,而BD也是☉O的切线,∴AB=BH.∴四边形ABHP是菱形.(2)点G能落在☉O上,如图(1).方法一:过C作射线CR⊥EF交EF于点R,交AD于点M1,交BD于点R1,交AP于点P1,则C关于EF对称点G在射线CR上.当点G落在M 1上时,M1E=CE=x,AB=CD=HP=3,AD=AB·tan60°=3,ED=CD-CE=3-x.∴M 1D=.而MD=AD-AM=,∴M1与M重合.∴M在CP1上,则MP1⊥AP,而MP⊥AP.∴P与P1重合,这时射线CR与☉O交于点M,P.由AP∥BD,CP⊥AP,CR1=PR1,知C与P关于BD对称.由于点E不与点D重合,故点G不可能落在P点.∴点G只能落在☉O的M点上,此时x=2.方法二:连接CM,PM,如图(1),由(1)知∠AMP=∠APH=60°,∴∠CMD=∠AMP=60°.∴C,M,P三点共线.∵∠BDA=30°,∴CM⊥BD.而BD∥EF,∴CM⊥EF,点C关于EF的对称点G落在CP上.又点P到BD的距离等于点C到BD的距离(即点A到BD的距离),EF与BD不重合, ∴点G不能落在点P,可以落在☉O上的点M.当点G落在☉O上的点M时,ME=CE=x,∴点G落在☉O上的点M,此时x=2.方法三:证法略.提示:过C作C'P⊥AP于点P',交BD于点R',可求CP'=2CR'=3,PM+CM=3,则CP'=CM+MP,从而C,M,P三点共线,x的值求法同上.(3)由(2)知:①当点G在CM上运动时,0<x≤2,【技法梳理】1)连接OH,可以求出∠HOD=60°,∠HDO=30°,从而可以求出AB=3,由HP ∥AB,HP=3可证到四边形ABHP是平行四边形,再根据切线长定理可得BA=BH,即可证到四边形ABHP是菱形.(2)当点G落到AD上时,可以证到点G与点M重合,可求出x=2.(3)当0≤x≤2时,如图(1),S=S△EGF,只需求出FG,就可得到S与x之间的函数表达式;当2<x ≤3时,如图(2),S=S△GEF-S△SGR,只需求出SG,RG,就可得到S与x之间的函数表达式.举一反三2.(2014·湖北孝感)如图,在半径为6cm的☉O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6cm;③;④四边形ABOC是菱形.其中正确结论的序号是().(第2题)A. ①③B. ①②③④C. ②③④D. ①③④【小结】综合考查矩形的性质、菱形的性质、切线的性质、切线长定理、垂径定理、轴对称性质、特殊角的三角函数值、30°角所对的直角边等于斜边的一半、等腰三角形的性质等知识,综合性非常强.类型一1.(2014·云南昆明)如图,在平面直角坐标系中,抛物线y=ax2+bx-3(a≠0)与x轴交于点A(-2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的表达式;(2)点P从点A出发,在线段AB上以每秒3个单位长度的速度向点B运动,同时点Q从点B 出发,在线段BC上以每秒1个单位长度的速度向点C运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK∶S△PBQ=5∶2,求点K坐标.(第1题)类型二(1)求a,b,c的值;(2)求证:在点P运动的过程中,☉P始终与x轴相交;(3)设☉P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.(第2题)3. (2014·湖南湘潭)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A,D,F,E四点共圆,已知,求此圆直径.(第3题)参考答案【真题精讲】(第1题)在Rt△EMN中,由勾股定理,得∴NF=CF.∵EN=CE,∴直线EF为线段CN的垂直平分线,即点N与点C关于直线EF对称.故命题②正确;命题③错误.理由如下:由题意,点F与点C(4,3)不重合,所以k≠4×3=12,故命题③错误;命题④正确.理由如下:为简化计算,不妨设k=12m,则E(4m,3),F(4,3m).设直线EF的表达式为y=ax+b,则有令x=0,得y=3m+3,∴D(0,3m+3);令y=0,得x=4m+4,∴G(4m+4,0).如图,过点E作EM⊥x轴于点M,则OM=AE=4m,EM=3.在Rt△ADE中,AD=OD-OA=3m,AE=4m,由勾股定理,得DE=5m;在Rt△MEG中,MG=OG-OM=(4m+4)-4m=4,EM=3,由勾股定理,得EG=5.∴k=12m=1,故命题④正确.综上所述,正确的命题是②④.2. D解析:∵点A是劣弧的中点,OA过圆心,∴OA⊥BC,故①正确;∴∠ABC=∠D=30°.∴∠AOB=60°.∵点A是劣弧的中点,∴BC=2CE.∵OA=OB,∴OB=AB=6cm.故③正确;∵∠AOB=60°,∴AB=OB.∵点A是劣弧的中点,∴AC=AB.∴AB=BO=OC=CA.∴四边形ABOC是菱形.故④正确.(第2题)【课后精练】1. (1)把点A(-2,0),B(4,0)分别代入y=ax2+bx-3(a≠0),得(2)设运动时间为t秒,则AP=3t,BQ=t.由题意得,点C的坐标为(0,-3).在Rt△BOC中,BC==5.如图(1),过点Q作QH⊥AB于点H.(第1题(1))∴QH∥CO.∴△BHQ∽△BOC.(3)设直线BC的表达式为y=kx+c(k≠0).把B(4,0),C(0,-3)代入,得(第1题(2)).(第2题)3. (1)∵DF⊥AB,EF⊥AC,∴∠BDF=∠CEF=90°.∵△ABC为等边三角形,∴∠B=∠C=60°.∵∠BDF=∠CEF,∠B=∠C,∴△BDF∽△CEF.(第3题(1))∴当m=2时,S取最大值,最大值为3.∴S与m之间的函数关系为当m=2时,S取到最大值,最大值为3.(3)如图(2),(第3题(2))∵A,D,F,E四点共圆,∴∠EDF=∠EAF.∵∠ADF=∠AEF=90°,∴AF是此圆的直径.。