Nrf2-Keap1抗氧化系统与肝脏疾病
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生课程论文(作业)封面(2014 至2015 学年度第1 学期)
课程名称:兽医内科学专题
课程编号:206332
学生姓名:
学号:
年级:2014级
任课教师:
提交日期:2014年11月25日
成绩:__________________
教师签字:__________________
开课---结课:第 1 周---第18 周
评阅日期:年月日
东北农业大学研究生部制
Nrf2-Keap1抗氧化系统与肝脏疾病
(东北农业大学动物医学院,黑龙江哈尔滨150030)
摘要
氧化应激与肝脏疾病关系密切。Nrf2-Keap1是细胞抵御氧化应激的一个重要调控系统,可诱导抗氧化酶及Ⅱ相解毒酶的表达,清除活性氧族,减轻细胞凋亡,本文对Nrf2-Keap1抗氧化系统进行概述,探讨其与肝脏疾病的联系。
关键词:Nrf2-Keap1;氧化应激;肝脏
Nrf2-Keap1 Antioxidant System and Liver Disease (College of veterinanry Medicine,Northeast Agricultural University,Harbin 150030,China)
Abstract
Oxidative stress and liver disease are closely related. Nrf2-Keap1 is an important regulatory system cells against oxidative stress, and can induce the expression of phaseⅡdetoxifying enzymes, scavenging reactive oxygen species, reducing apoptosis, This article mainly reviewed Nrf2-Keap1 antioxidant system, discussing its links with liver disease.
Key words: Nrf2-Keap1; oxidative stress; liver
引言
Nrf2是一个由氧化应激介导的转录因子,伴随一系列下游目的基因以保护细胞。有研究表明Nrf2-Keap1抗氧化系统能增加肝脏抵抗氧化应激的能力[1]。
1 Nrf2的概述
Nrf2首次从人类白血病细胞系(K562)的互补DNA文库中克隆出来,属于帽和领(Cap'n'Collar,CNC)转录因子家族成员,是一个由2.2kb的碱基对编码的相对分子质量为66000的蛋白质。Nrf2基因区域含有6个功能区,分别被命名为Nehl-6,Keap1是其特异性受体,正常情况下Nrf2作用被Keapl抑制,在氧化应激等情况下与Keapl解离被激活,Nehl 区中有一个亮氨酸拉链结构bZIP,bZIP与小Maf蛋白(small Mafproteins,包括MafG、MafK、MafF)形成异二聚体,识别抗氧化反应元件(ARE)上DNA基序(GCTGAGTCA)并与之结合,启动ARE调控的第Ⅱ相解毒酶及抗氧化酶基因表达,增加细胞对氧化应激和亲电子化学物质的抗性[2-6]。
2 Keap1的概述
Keap1即Kelch样环氧氯丙烷相关蛋白1,也被称作INrf2。Keapl最初描述在胞质中锚定于肌动蛋白,对Nrf2起着重要的负调节作用。在生理状态下,Nrf2的N末端上Neh2结构与Keap1的C末端上Kelch重复区域结合,铆合在肌动蛋白细胞骨架上。Keap1有三个主要的区,N末端BTB区、一个连接片段(IVR)以及C末端肌动蛋白结合区(DGR)。Keap1的N末端,与其他BTB家族蛋白相似,是Cullin依赖性E3泛素连接酶的作用底物,可致使Nrf2泛素化并最终被Cullin依赖性E3泛素连接酶降解,所以BTB域是Cul3/Rbx1诱导Nrf2降解时的中间接合物[7]。Keap1的C末端DGR区,对铆定Nrf2起重要作用[8]。
3 Nrf2与Keap1的相互作用
Keap1在哺乳动物细胞中以同源二聚体形式存在,并以这种形式与一个单分子Nrf2结合。对于Nrf2与Keap1的结合,近来的研究提出了一个“铰链与门闩(hinge and latch)”的相互作用理论。实验研究发现,Nrf2上Neh2域中存在2个不同的Keap1结合位点,即保守的29DLG31和79ETGE83基序,其可与Keap1上DGR域中一个独立重叠的部位紧密结合,从而保证泛素的有效转移和Nrf2被蛋白酶体降解;在正常情况下,Keap1与高亲和力的ETGE 基序结合后,可使Nrf2相对自由地移动,类似于“铰链”,而同时与低亲和力的DLG域结合后,严格限制了Nrf2使其靶赖氨酸处于与泛素结合的最佳位置,类似于“门闩”;而在化学/
氧化应激条件下,由于Keap1失去与DLG的“门闩”式结合,导致Nrf2泛素化受阻,且同时因Nrf2上靶赖氨酸的位置出现偏差,Nrf2不再能被蛋白酶体降解,但可能由于ETGE的“铰链”式连接仍存在,致使Keap1与Nrf2的结合处于饱和状态,任何新合成的Nrf2得以在细胞核蓄积,并激活细胞保护性基因,从而对细胞应激起解毒作用。
3.1 Keap1上的氨基酸残基
大量研究数据表明,Keap1上某些确定的半胱氨酸残基可能是诱导Nrf2和细胞保护性酶等亲电子化合物的靶标。靶标定点突变实验显示,Keap1上Cys-151、-273和-288对Keap1功能发挥起至关重要的作用,这些半胱氨酸残基也可能就是Nrf2等亲电子诱导剂的靶标,其中,Cys-151位于Keap1的BTB域,在化学或氧化应激条件下,可使Nrf2的抑制和泛素化减少,是诱导Nrf2从Keap1中释放的关键靶位,而Cys-273和-288处于Keap1上半胱氨酸丰富的插入区(IVR),在生理条件下其抑制Keap1活性的作用十分必要,在Keap1上Cys-273和-288发生突变的细胞中,Nrf2活化分子的反应性降低或消除[9]。此外,新近的研究发现,Keap1上还有其他靶位的作用也可将Nrf2从抑制中解除而激活。例如,Keap1对Nrf2的抑制作用还依赖于其是否能形成二聚体,Keap1上104位保守的丝氨酸残基(Ser-104)在二聚化过程中起重要作用,其突变将导致Keap1二聚体的解离和Nrf2的释放;而Keap1上141位酪氨酸(Tyr-141)的磷酸化和脱磷酸化也能调节Keap1的稳定性和降解,Tyr-141的磷酸化是Keap1维持稳定所必需的,Tyr-141的脱磷酸化则会导致Nrf2的释放。
3.2 Nrf2的磷酸化
半胱氨酸残基的存在是Nrf2活化分子的一个共同特征,而磷酸化信号传导通路的激活也可能刺激Nrf2依赖性细胞防御,如可促进蛋白高度磷酸化的蛋白磷酸酶抑制剂冈田酸在HepG2细胞中能刺激Nrf2的核蓄积和ARE受体转基因的激活[10]。许多研究显示,作为对Nrf2功能的一个调节性影响,磷酸化过程可通过药理上抑制特异性蛋白激酶而起作用,这将减弱Nrf2被已知的活性分子的诱导;抑制一条蛋白激酶通路确实对多种细胞信号传导过程有显著影响,并可能影响Nrf2信号传导通路的完整性[11]。而另有研究显示,蛋白激酶C(protein kinaseC,PKC)、细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)、PKR样内质网激酶(protein kinase R-like endoplasmic reticulum kinase,PERK)、磷脂酰肌醇3激酶(Phosphatidylinositol 3-kinase,PI3K)等的磷酸化作用会促进Nrf2和Keap1的解离[12]。目前,研究得比较透彻的是,PKC致使Nrf2上Neh2域的Ser-40磷酸化,能导致Nrf2与Keap1的解离;Nrf2的翻译后修饰也会诱导激活ARE[13]。但最近有实验研究表明,酪氨