万有引力与航天公式总结(可编辑修改word版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.三种模型

万有引力与航天重点规律方法总结

1.匀速圆周运动模型:

无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动

2.双星模型:

将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自

转动的向心力。

3.“天体相遇”模型:

两天体相遇,实际上是指两天体相距最近。

二.两种学说

1.地心说:代表人物是古希腊科学家托勒密

2/日心说:代表人物是波兰天文学家哥白尼

三.两个定律

1.开普勒定律:

第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆

的一个焦点上

第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫

过相同的面积。

第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟

公转周期T 的二次方的比值都相等。

3

表达式为:R

T 2 =K (K =

GM

)

4 2

k 只与中心天体质量有关

的定值与行星无关

2.牛顿万有引力定律

1687 年在《自然哲学的数学原理》正式提出万有引力定律

⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引

力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比.

Mm

⑵.数学表达式: F万=G r2

⑶.适用条件:

a.适用于两个质点或者两个均匀球体之间的相互作用。(两物体为均匀球体时,r 为

两球心间的距离)

b.当r → 0 时,物体不可以处理为质点,不能直接用万有引力公式计算

c.认为当r → 0 时,引力F →∞的说法是错误的

⑷.对定律的理解

a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力

b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。

c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附

近的物体间,它的存在才有实际意义.

d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在

空间的性质无关,与周期及有无其它物体无关.

(5)引力常数G:

GM

r

-11

-

2'

①大小: G = 6.67 ⨯10

N ⋅ m

/ kg ,由英国科学家卡文迪许利用扭秤测出 ②意义:

表示两个质量均为 1kg 的物体,相距为 1 米时相互作用力为: 6.67 ⨯10

N

四.两条思路:即解决天体运动的两种方法

1. 万有引力提供向心力: = 即: = Mm = =

v

2 =

42 = 2

F

F

F 万 G

r

2

ma n m r

mr

T 2

mr

2. 天体对其表面物体的万有引力近似等于重力:

Mm

G = m g R

2

注意:

即 GM = gR 2 (又叫黄金代换式)

①地面物体的重力加速度: g =

GM ≈9.8m/s 2

R

2

②高空物体的重力加速度: g ' =

GM (R + h ) 2

〈 9.8m/s 2

③关系:

g R 2

g =

(R + h )2

五.万有引力定律的应用

1. 计算天体运动的线速度、角速度、周期、向心加速度。

a.线速度: v =

b.角速度:=

c.周期: T = 2

r 3

GM

d.向心加速度: a 向 = GM

r

2

2. 计算中心天体的质量:

方法一:根据转动天体运动周期 T 和转动半径 r 计算:

4 2 r 3

M = G T

2 (适合于有行星、卫星转动的中心天体)

方法二:根据中心天体半径 R 和其表面的重力加速度 g 计算:

g R

2

M = (适合于没有行星、卫星转动的中心天体)

G

注意:转动天体的质量是求不出来的。只能求中心天体的质量。

3. 计算中心天体的密度:

方法一:根据转动天体运动周期 T 、转动半径 r 和中心天体半径 R 计算:

3

r 3

=

G T 2

R

3

(适合于有行星、卫星转动的中心天体)

方法二:根据中心天体半径 R 和其表面的重力加速度 g 计算:

=

3g 4GR

(适合于没有行星、卫星转动的天体)

GM

r

3

GM 4. 计算第一宇宙速度(环绕速度)

简单说就是卫星或行星贴近中心天体表面的飞行速度,这时卫星或行星高度忽略 r≈R 方法一。根据中心天体质量 M 和半径 R 计算: 2

由 G

Mm

= m v → v =

R

2

R

方法二。根据中心天体半径R 和表面重力加速度计算:

v 2

F

= mg = m

R

→ v = gR

5. 预测未知天体:

6. 研究天体运动,发射人造卫星

(1) 分类:主要有:侦察卫星、通信卫星、导航卫星、气象卫星、地球资源卫星、勘测

科学研究卫星、预警卫星、测地卫星等种类。

(2) 轨道:

由于是万有引力提供向心力,所以所有卫星都是围绕地心在转。轨道有三种:

a. 赤道平面内(如同步卫星)叫赤道轨道。

b. 与赤道平面垂直,通过地球两极,叫极地轨道。

c.可以和赤道平面成任一角度,叫一般轨道。

注意:没有跟某一经度或某一纬度重合的轨道(除赤道平面) (3) 发射:由于卫星运动的分析是针对地心这个参考系的,故火箭发射时的初速度不

等于零(自转速度),要充分利用地球的自转的惯性,就必须自西向东发射。这样可以更多地节省燃料和推力。发射可分为三个阶段: ①发射长空阶段 ②漂移进入轨道阶段

③在预定轨道上绕地球运行阶段 (4) 运行:

稳定运行时,由万有引力提供向心力。

①由公式:线速度: v =

角速度:= 周期: T = 2 r

GM

向心加速度:

a 向 = r

2 分析可知:在同一中心天体做匀速圆周运动的所

有卫星的 v 、、T 、a 各量都只与轨道半径 r 有关。

②离地面越高即 r 越大,则卫星的 v 、、a 、越小, T 越大。 (5) 变轨:

卫星的变轨实质是通过短时间内启动加速或减速火箭以改变卫星的速度,而使万有引力与所需向心力不再相等。当 F 引〉 F

向 ,卫星将做近心运动,轨道半

径将减小;当

F 引

〈F

时,卫星将做离心运动,轨道半径将增大。

(6) 对接:

交会对接指两个航天器(宇宙飞船、航天飞机等)在太空轨道会合并连接成一

个整体.它是实现太空装配、回收、补给、维修、航天员交换等过程的先决条件.空间交会对接技术包括两部分相互衔接的空间操作,即空间交会和空间对接.所谓交会是指两个或两个以上的航天器在轨道上按预定位置和时间相会,

GM R

GM r

GM r

3

3

相关文档
最新文档