运筹学中线性规划实例
管理运筹学第二章 线性规划的图解法
B、约束条件不是等式的问题:
若约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量si ,使它等于约束右 边与左边之差 si=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,si 也具有非负约束,即si≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+si = bi
第二章 线性规划 的图解法
一、线性规划的概念 二、线性规划问题的提出 三、线性规划的数学模型 四、线性规划的图解法 五、线性规划解的情况 六、LP图解法的灵敏度分析
一、线性规划的概念
线性规划Linear Programming 简称LP,是一 种解决在线性约束条件下追求最大或最小的 线性目标函数的方法。 线性规划的目标和约束条件都可以表示成线 性的式子。
max z 3 x1 2 x2
2 x1 x2 ≤ 10 设备B台时占用 s.t. x1 x2 ≤ 8 x , x ≥ 0 产量非负 1 2
决策变量 (decision variable) 目标函数 (objective function) 约束条件 (subject to)
-ai1
x1-ai2 x2- … -ain xn = -bi 。
例1.3:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x 1 , x 2 , x3 ≥ 0
线性规划应用案例分析
线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。
它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。
这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。
本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。
某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。
公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。
通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。
某物流公司需要计划将货物从多个产地运输到多个目的地。
公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。
通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。
某投资公司需要将其资金分配给多个不同的投资项目。
每个项目都有不同的预期回报率和风险水平。
公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。
通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。
这些案例展示了线性规划在实践中的应用。
然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。
线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。
线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。
这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。
下面我们将详细讨论线性规划的应用。
线性规划是一种求解最优化问题的数学方法。
它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。
这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。
工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。
管理运筹学第二章线性规划的图解法
02
图解法的基本原理
图解法的概念
图解法是一种通过图形来直观展示线性规划问题解的方法。它通过在坐标系中绘 制可行域和目标函数,帮助我们理解问题的结构和最优解的位置。
图解法适用于线性规划问题中变量和约束条件较少的情况,能够直观地展示出最 优解的几何意义。
图解法的步骤
确定决策变量和目标函数
明确问题的决策变量和目标函数,以便在图 形中表示。
目标函数是要求最小化或最大化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
LINDO是一款开源的线性规划求解器,用 户可以免费使用。
软件工具的使用方法
Excel
用户需要先在Excel中设置好线性规划模型,然后使 用“数据”菜单中的“规划求解”功能进行求解。
Gurobi/CPLEX/LINDO
这些软件通常需要用户先在软件界面中输入线性规划 模型,然后通过点击“求解”按钮进行求解。
实例三:分配问题
总结词
分配问题是指如何根据一定的分配原则 或目标,将有限的资源分配给不同的需 求方,以最大化整体效益。
VS
详细描述
分配问题在实际生活中广泛存在,如物资 分配、任务分配等。通过图解法,可以将 分配问题转化为线性规划模型,并利用图 形直观地展示最优解的资源分配方案。在 分配问题中,通常需要考虑不同需求方的 重要性和优先级,以及资源的有限性等因 素,以实现整体效益的最大化。
运筹学线性规划案例
运筹学线性规划案例 生产组织与计划问题A B可用资源 设备 原料1 原料2 1 2 2 1 0 1 300台时 400kg 250kg单位利润50 100A, B 各生产多少.可获最大利润?In 资源限制 设备 1 1r 3oo 會对.厦轧A2 1 400千克 0 1 颂千克刃元wo 元Max z = 50 Xi + 100 x 2 s.t.Xl + x? < 300 2 X! + x £< 400 Xj < 250Xi > 0衍> 0得到最优解:x d = 50, X 2 = 250 约束条佚 J - %1/ i fI t / J A B 最优目标值z = 27500目标函数:Max z= 50x1 + 100x2 线性规划模型=约束条件:s.t. xi+ X2 < 3002 Xj+ 勺 W 400 x2 W 250X], x2 $ 0•建模过程1. 理解要解决的问题,了解解题的目标和条件;2. 定义决策变量(X】,X2,…,Xn),每一组值表示一个方案;3. 用决策变量的线性函数形式写出目标函数,确定最大化或最小化目标;4. 用一组决策变量的等式或不等式表示解决问题过程中必须遵循的约束条件• 一般形式目标函数:Max (Min) z = c】x^ + c? x?+…约束条件:s.t. dll X1 + 62X2+ …+dln Xn W ( =, D ) bl02]衍 + 022七+…+匕5石 W ( =?) b2dml X] + 如2 旳+ …+ dmn % W ( =?) b mXj , X],・••,X n 0(1) 分别取决策变量X】,X2为坐标向量建立直角坐标系。
在直角坐标系里,图上任意一点的坐标代表了决策变量的一组值,题中的每个约束条件都代表一个半平面。
(2) 对每个不等式(约束条件),先取其等式在坐标系中作直线,然后确定不等式所决定的半平面。
运筹学实例分析及lingo求解讲解
运筹学实例分析及lingo 求解一、线性规划某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。
各供货仓库到8个客户处的单位货物运输价见表试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。
解:设ijx 表示从第i 个仓库到第j 个客户的货物运量。
ij c表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。
目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束数学模型为:∑∑===6181)(min i j ijij x c x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥===≤∑∑==08,,2,1,6,2,1,,..6181ij j i ij i j ij x j d x i a x t s 编程如下:model : Sets :Wh/w1..w6/:ai; Vd/v1..v8/:dj;links(wh,vd):c,x;endsetsData:ai=60,55,51,43,41,52;dj=35,37,22,32,41,32,43,38;c=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;EnddataMin=@sum(links(i,j):c(i,j)*x(i,j));@for(wh(i):@sum(vd(j):x(i,j))<=ai(i));@for(vd(j):@sum(wh(i):x(i,j))=dj(j));endGlobal optimal solution found.Objective value: 664.0000Total solver iterations: 0Variable Value Reduced Cost AI( W1) 60.00000 0.000000 AI( W2) 55.00000 0.000000 AI( W3) 51.00000 0.000000 AI( W4) 43.00000 0.000000 AI( W5) 41.00000 0.000000 AI( W6) 52.00000 0.000000 DJ( V1) 35.00000 0.000000 DJ( V2) 37.00000 0.000000 DJ( V3) 22.00000 0.000000 DJ( V4) 32.00000 0.000000 DJ( V5) 41.00000 0.000000 DJ( V6) 32.00000 0.000000 DJ( V7) 43.00000 0.000000 DJ( V8) 38.00000 0.000000 C( W1, V1) 6.000000 0.000000 C( W1, V2) 2.000000 0.000000 C( W1, V3) 6.000000 0.000000 C( W1, V4) 7.000000 0.000000 C( W1, V5) 4.000000 0.000000 C( W1, V6) 2.000000 0.000000 C( W1, V7) 5.000000 0.000000C( W2, V1) 4.000000 0.000000 C( W2, V2) 9.000000 0.000000 C( W2, V3) 5.000000 0.000000 C( W2, V4) 3.000000 0.000000 C( W2, V5) 8.000000 0.000000 C( W2, V6) 5.000000 0.000000 C( W2, V7) 8.000000 0.000000 C( W2, V8) 2.000000 0.000000 C( W3, V1) 5.000000 0.000000 C( W3, V2) 2.000000 0.000000 C( W3, V3) 1.000000 0.000000 C( W3, V4) 9.000000 0.000000 C( W3, V5) 7.000000 0.000000 C( W3, V6) 4.000000 0.000000 C( W3, V7) 3.000000 0.000000 C( W3, V8) 3.000000 0.000000 C( W4, V1) 7.000000 0.000000 C( W4, V2) 6.000000 0.000000 C( W4, V3) 7.000000 0.000000 C( W4, V4) 3.000000 0.000000 C( W4, V5) 9.000000 0.000000 C( W4, V6) 2.000000 0.000000 C( W4, V7) 7.000000 0.000000 C( W4, V8) 1.000000 0.000000 C( W5, V1) 2.000000 0.000000 C( W5, V2) 3.000000 0.000000 C( W5, V3) 9.000000 0.000000 C( W5, V4) 5.000000 0.000000 C( W5, V5) 7.000000 0.000000 C( W5, V6) 2.000000 0.000000 C( W5, V7) 6.000000 0.000000 C( W5, V8) 5.000000 0.000000 C( W6, V1) 5.000000 0.000000 C( W6, V2) 5.000000 0.000000 C( W6, V3) 2.000000 0.000000 C( W6, V4) 2.000000 0.000000 C( W6, V5) 8.000000 0.000000 C( W6, V6) 1.000000 0.000000 C( W6, V7) 4.000000 0.000000 C( W6, V8) 3.000000 0.000000 X( W1, V1) 0.000000 5.000000 X( W1, V2) 19.00000 0.000000 X( W1, V3) 0.000000 5.000000X( W1, V5) 41.00000 0.000000 X( W1, V6) 0.000000 2.000000 X( W1, V7) 0.000000 2.000000 X( W1, V8) 0.000000 10.00000 X( W2, V1) 1.000000 0.000000 X( W2, V2) 0.000000 4.000000 X( W2, V3) 0.000000 1.000000 X( W2, V4) 32.00000 0.000000 X( W2, V5) 0.000000 1.000000 X( W2, V6) 0.000000 2.000000 X( W2, V7) 0.000000 2.000000 X( W2, V8) 0.000000 0.000000 X( W3, V1) 0.000000 4.000000 X( W3, V2) 11.00000 0.000000 X( W3, V3) 0.000000 0.000000 X( W3, V4) 0.000000 9.000000 X( W3, V5) 0.000000 3.000000 X( W3, V6) 0.000000 4.000000 X( W3, V7) 40.00000 0.000000 X( W3, V8) 0.000000 4.000000 X( W4, V1) 0.000000 4.000000 X( W4, V2) 0.000000 2.000000 X( W4, V3) 0.000000 4.000000 X( W4, V4) 0.000000 1.000000 X( W4, V5) 0.000000 3.000000 X( W4, V6) 5.000000 0.000000 X( W4, V7) 0.000000 2.000000 X( W4, V8) 38.00000 0.000000 X( W5, V1) 34.00000 0.000000 X( W5, V2) 7.000000 0.000000 X( W5, V3) 0.000000 7.000000 X( W5, V4) 0.000000 4.000000 X( W5, V5) 0.000000 2.000000 X( W5, V6) 0.000000 1.000000 X( W5, V7) 0.000000 2.000000 X( W5, V8) 0.000000 5.000000 X( W6, V1) 0.000000 3.000000 X( W6, V2) 0.000000 2.000000 X( W6, V3) 22.00000 0.000000 X( W6, V4) 0.000000 1.000000 X( W6, V5) 0.000000 3.000000 X( W6, V6) 27.00000 0.000000 X( W6, V7) 3.000000 0.000000Row Slack or Surplus Dual Price 1 664.0000 -1.000000 2 0.000000 3.000000 3 22.00000 0.000000 4 0.000000 3.000000 5 0.000000 1.000000 6 0.000000 2.000000 7 0.000000 2.000000 8 0.000000 -4.000000 9 0.000000 -5.000000 10 0.000000 -4.000000 11 0.000000 -3.000000 12 0.000000 -7.000000 13 0.000000 -3.000000 14 0.000000 -6.000000 15 0.000000 -2.000000由以上结果可以清楚的看到由各仓库到各客户处的货物调运数量,由此得出的符合条件的最佳运货方案,而使运费最低,最低为664。
运筹学之线性规划引论
2x2 24 x1,x2 0
例2 合理配料问题
原料 A B C 每单位成本
1
4 10
2
2
6 12
5
3
1 71
6
4
2 53
8
每单位添 加剂中维生 12 14 8 素最低含量
求:最低成本的原料混合方案
解:设每单位添加剂中原料i的用量为xj(j =1,2,3,4)
4x1 + 6x2 + x3+2x4 12
s.t
x1 + x2 + 7x3+5x4 14
2x2 + x3 + 3x4 8
xj 0 (j =1,…,4)
例3、合理下料问题
2.9m 钢筋架子100个,每个需用 2.1m 各1,原料长7.4m
1.5m 求:如何下料,使得残余料头最少。 解:首先列出各种可能的下料方案;
X1+2X2 30
3X1+2X2 60
2x2 24 另外,产品数不能为负,即:
x1,x2 0
同时,我们有一个追求的目标---最大利润,即:
Max Z= 40x1 +50x2
综合上述讨论,在生产资源的消耗以及利润与产品产量成 线性关系的假设下,把目标函数和约束条件放在一起,可 以建立如下的数学模型:
目标函数 约束条件
Max s.t
Z= 40x1 +50x2
j =1,2,3
Min Z= 2x11 + x12+3x13+2x21 +2x22 +4x23 +3x31 +4x32 +2x33
运筹学课件 第二章线性规划
2020/11/23
广东工业大学管理学院
10
配料问题:由若干种不同价格、不同成分含量的原料,用 不同的配比混合调配出一些不同规格的产品,在原料的供 应量限制和保证产品成分含量的前提下,如何进行配料来 获取最大利润或使总成本最低。
投资问题:如何从不同的投资项目中选出一个投资方案, 使得投资的回报达到最大。
甲
乙
丙
A B C 加工费
x11 60%以上 x12 20%以下 x13 0.50
x21 15%以上 x22 60%以下 x23 0.40
x31 x32 50%以下 x33 0.30
售价
3.40
2.85
2.25
原料成本 2.00 1.50 1.00
限制用量 2000 2500 1200
设该厂每月生产甲品牌糖果(x11 x12 x13)千克,其中用原料A x11千克,用原料B x12千克,用原料C x13千克; 生产乙品牌糖果(x21 x22 x23)千克,其中用原料A x21千克,用原料B x22千克,用原料C x23千克; 生产丙品牌糖果(x31 x32 x33)千克,其中用原料A x31千克,用原料B x32千克,用原料C x33千克。
设一共植了y棵树,男生中有x1人挖坑, x2人栽树, x3人浇水; 女生中有x4人挖坑, x5人栽树, x6人浇水.
max z y
20x1 10x4 y 0 30x2 20x5 y 0
s.t.
25x3
x1
x2
15x6 x3
y 30
0
x4
x5
x6
20
x1, x2 , x3 , x4 , x5 , x6 , y 0
松弛变量
xs 2 (2x1 3x2 x3)
线性规划问题
时,我们得到一族平行直线(图5.1)。
图5.1
对于例5.1,显然等位线越趋 于右上方,其上的点具有越 大的目标函数值。不难看出, 本例的最优解为x*=(2,6)T ,最 优目标值z*=26 。
为此,我们将采
定义5.2 设R为n维空用间另中一的途一径个来凸定集,R中的点x被称为R的 一个极点,若不存在x1 、义x它2 。∈ R及λ∈(0, 1),使得
x =λ x1 +(1-λ)x2 。
定义5.1说明凸集中任意两点的连线必在此凸集中;而定义
5.2说明,若x是凸集R的一个极点,则x不能位于R中任意两
记为max;反之,当希望使目标函数最小时,记为min。(5.1)
中的几个不等式是问题的约束条件,记为S.t(即Subject
to)。由于(5.1)式中的目标函数及约束条件均为
线性函数,故被称为线性规划问题。总之,线性规划
问题是在一组线性约束条件的限止下,求一线性目标
函数最大或最小的问题。
二、线性规划的标准形式
可行域R的“顶点”。
上述论断可以推广到一般的线性规划问题,区别只在于空间
的维数。在一般的n维空间中,满足一线性等式aix=bi的点集
被称为一个超平面,而满足一线性不等式aix≤bi (或
aix≥bi )的点集被称为一个半空间(其中ai为一n维行向量,
bi为一实数)。若干个半空间的交集被称为多胞形,有界的
从上面的图解过程可以看出并不难证明以下断言:
(1)可行域R可能会出现多种情况。R可能是空集也可能是非 空集合,当R非空时,它必定是若干个半平面的交集( 除非 遇到空间维数的退化)。R既可能是有界区域,也可能是无界 区域。(2)在R非空时,线性规划既可以存在有限最优解,
运筹学案例——QSB解线性规划应用题
问题描述:某电视机工厂生产四种型号的特用电视机:Ⅰ型——轻便黑白,Ⅱ型——正规黑白,Ⅲ型——轻便彩色,Ⅳ型——正规彩色。
各型号每台所需组装时间、调试时间、销售收入以及该厂组装调试能力如表2.47所示。
表2.47但现在显像管紧缺,每月最多只能进货180只,其中彩色显像管不超过100只。
令1x 、2x 、3x 、4x 一次表示各型号每月计划产量。
现工厂需拟定使目标总销售收入z 为最大的生产计划。
(1)写出该问题的数字模型,对于约束条件依下列次序:组装时间、调试时间、显像管数、彩色显像管数,并引入松弛变量,使之为等式。
(2)用单纯形法求解得终表如图2.48所示。
表2.48BCBXbB 1-4 6 8 10 0 0 0 01x 2x3x 4x5x6x7x8x0 8x50 -0.2 0 0.2 0 0.1 -0.50 1 6 2x 125 0.51 00 0.25 -0.750 0 0 7x5 0.3 0 0.2 0 -0.15 0.25 1 0 104x 500.2 0 0.8 1 -0.1 0.5 0 0jσ-10 -0.5-0.5试分别回答:(1)最优生产是什么?是否还有其他最优生产计划?为什么? (2)组装时间的影子价格是多少?(3)若外厂可调剂增加80小时的调试时间,但每小时需付0.4(百元),这样Ⅰ Ⅱ Ⅲ Ⅳ 工厂能力(h )组装时间 调试时间 8 2 10 2 12 4 15 5 2000 500 售 价(百元)46810的调剂值得吗?能增加多少收入?(4)若Ⅰ型机售价由4(百元)增加到4.5(百元),最优计划会改变吗?如果增加到5.5(百元)呢?说明理由。
(5)写出本问题的对偶模型,并指出其最优解。
解:建立模型:由该问题,可建立如下模型:设Ⅰ型、Ⅱ型、Ⅲ型、Ⅳ型分别生产1x 台、2x 台、3x 台、4x 台,则可列出目标函数及线性约束条件: MaxZ=41x +62x +83x +104x81x +102x +123x +154x ≤200021x +22x +43x +54x ≤5001x +2x +3x +4x ≤1803x +4x ≤100ix ≥0 (i=1、2、3、4)将该模型进行标准化,则引入松弛变量5x 、6x 、7x 、8x ,则变为:MaxZ=41x +62x +83x +104x81x +102x +123x +154x +5x ≤200021x +22x +43x +54x +6x ≤5001x +2x +3x +4x +7x ≤1803x +4x +8x ≤100ix ≥0 (i=1、2、3、4、……7、8)第1步:启动子程序“Linear and Integer Programming ”。
运筹学第二章线性规划的对偶理论
(5.5) (5.6)
4.3 对偶问题的基本性质
证: 设B是一可行基,于是A=(B,N)
max z=CBXB+ CNXN BXB+BXN +Xξ=b X,XB,Xξ ≥0
其中Yξ=(Yξ1, Yξ2)
min ω =Yb YB-Yξ1=CB YN-Yξ2=CN Y, Yξ1 Yξ2 ≥0
(5.5) (5.6)
x1﹐x2 ≥0
关系?
对原模型设: 1 2
A= 4 0 b=(8,16,12)T C=(2,3) 04
X=(x1,x2)T Y=(y1,y2 ,y3 ) 则可得:
4.1 对偶问题的提出
min ω=8 y1+16y2 +12y3
y1+4y2
≥2
2 y1 +4y3≥3
与
y1 , y2 ,y3≥0 12
max z=2x1+3x2 x1+ 2x2 ≤8
4x1
≤16
4x2 ≤12
x1﹐x2 ≥0
有何关 系?
对愿模型设: A= 4 0 04
b=(8,16,12)T C=(2,3)
X=(x1,x2)T
Y=(y1,y2 ,y3 ) 则可得:
max z=CX AX≤b (5.1) 和
min ω =Yb YA ≥ C (5.2)
120
A=
1 -3
0 2
1 1
1 -1 1
b=(2,3,-5,1)T C=(5,4, 6)
确定约束条件
YA
C
x1 ≥0 ﹐x2≤0, x3 无约束
解:因原问题有3个变 于是 量,4个约束条件, 所以对偶问题4个 变量,3个约束条
运筹学第4章 线性规划在工商管理中的应用
解:设 xijk 表示第 i 种产品,在第 j 种工序上的第 k 种设备上加工的数量。 建立如下的数学模型:
s.t. 5x111 + 10x211
≤ 6000 ( 设备 A1 )
7x112 + 9x212 + 12x312 ≤ 10000 ( 设备 A2 )
6x121 + 8x221
≤ 4000 ( 设备 B1 )
8000小时
每件机械加工工时/小时
6
4
8
12000小时
每件装配工时/小时
3
2
2
10000小时
自行生产铸件每件成本/元
3
5
4
外包协作铸件每件成本/元
5
6
—
机械加工每件成本/元
2
1
3
装配每件成本/元
3
2
2
每件产品售价/元
23
18
16
问:公司为了获得最大利润,甲、乙、丙三种产品各生产多
少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协
xijk ≥ 0 , i = 1,2,3; j = 1,2; k = 1,2,3 ,且为整数
10
§2生产计划的问题
目标函数为计算利润最大化,利润的计算公式为:
利润
3
(销售单价
原料单价)
该产品件数
i1
5
(每台时的设备费用该设备实际使用的总台时)
j 1
这样得到目标函数:
Max f=(1.25-0.25)(x111+x112)+(2-0.35)x221+(2.80-0.5)x312 – 300/6000(5x111+10x211)-321/10000(7x112+9x212+12x312)250/4000(6x121+8x221)-783/7000(4x122+11x322)-200/4000(7x123).
运筹学线性规划
运筹学建模步骤: 识别问题 定义决策变量
建立约束条件 建立目标函数
整理课件
2.2 线性规划模型的一般形式和标准形式
2.2.1 线性规划的一般模型
为了讨论一般的线性规划问题的求解。我们先给出线性规 划模型的一般形式如下:
max(或min)z CX
n
s.t. j1
Pj x j
(或 ,或)b
X 0
其中
x1
a1j b1
Xx2,Cc1 c2 cn,Pj a2j,bb2
xn
amj bm
整理课件
用矩阵的记号可以将线性规划模型一般形式写成:
max(或min)z CX
AX (或,或)b s.t.X 0
其中 X, C, b 同上,而矩阵 A 是由各约束条件的系数(技术
养分
饲料
A
B
C
M
0.5
0.2
0.3
D
价格
0
300
N
0.1
0.3
0.4
0.2
200
每头日需 10
5
8
7
答案:设购买M饲料x1,N饲料x2
Min Z=300 x1 +200x2 0.5 x1 +0.1x2≥10
0.2x1 +0.3x2 ≥5
s.t.
0.3x1 +0.4x2 ≥8
0.2x2 ≥7
x1 , x2≥0 整理课件
x1 2 x2 5
s.t.
2
4
x1 x1
x2 4 3x2 9
运筹学例题解析
运筹学例题解析(共6页) -本页仅作为预览文档封面,使用时请删除本页-(一)线性规划建模与求解B.样题:活力公司准备在5小时内生产甲、乙两种产品。
甲、乙两种产品每生产1单位分别消耗2小时、1小时。
又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。
已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。
请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大要求:1、建立该问题的线性规划模型。
2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。
如果不存在最优解,也请说明理由。
解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1、x2单位 。
(2)目标函数: max z=2 x 1+x 2(3)约束条件如下:12211225..3,0+≤⎧⎪≥⎨⎪≥⎩x x s t x x x x2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线z=2 x 1+x 2与约束条件2 x 1+x 2≤5的边界平行 。
甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。
(二)图论问题的建模与求解样题A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。
但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。
试制定一个5年的更新计划,使总支出最少。
已知设备在各年的购买费与维修费如表2所示。
要求:(1)建立某种图论模型;(2)求出最少总支出金额。
解:(1)建立图论——最短路问题模型。
①设点Vi 表示第i年年初,虚设一个点V6,表示第五年年底;②弧(Vi , Vj)表示第i年初购进一台设备一直使用到第j年初(即第i-1年年底)再卖掉并获得残值收入;③弧(Vi , Vj)上的权数表示第i年初购进一台设备,一直使用到第j年初所需支付的购买、维修及抵扣残值收入以后的全部费用(单位:万元)。
运筹学线性规划案例
运筹学线性规划案例线性规划是运筹学中的一个重要分支,它主要研究如何利用数学模型来解决最优化问题。
在实际应用中,线性规划可以帮助企业做出最佳的决策,使资源得到最大化利用。
本文将通过一个实际案例来介绍线性规划的应用,以便读者更好地理解和掌握这一方法。
假设某公司生产两种产品A和B,它们分别需要机器加工和人工装配。
公司拥有的机器和人工资源分别为每周80小时和60人天。
产品A每单位需要机器加工2小时,人工装配3人天;产品B每单位需要机器加工3小时,人工装配2人天。
每单位产品A的利润为2000元,产品B的利润为3000元。
现在的问题是,如何安排生产计划,才能使得利润最大化呢?首先,我们可以将该问题建立成数学模型。
假设x1和x2分别表示生产产品A 和B的单位数,则该问题可以表示为:Max Z=2000x1+3000x2。
约束条件为:2x1+3x2≤80。
3x1+2x2≤60。
x1≥0,x2≥0。
接下来,我们可以通过线性规划的方法来求解最优解。
在这里,我们不妨使用单纯形法来进行求解。
首先,我们将约束条件转化成标准形式,得到:2x1+3x2+s1=80。
3x1+2x2+s2=60。
x1≥0,x2≥0。
然后,我们构造初始单纯形表,并进行单纯形法的迭代计算。
最终得到最优解为x1=20,x2=10,此时利润最大为80000元。
通过这个简单的案例,我们可以看到线性规划在实际中的应用。
通过建立数学模型和运用线性规划方法,我们可以很好地解决类似的最优化问题,使得资源得到最大化利用,从而帮助企业做出更加科学合理的决策。
总之,线性规划作为运筹学中的重要方法,具有广泛的应用前景。
通过不断地学习和实践,我们可以更好地掌握线性规划的原理和方法,为实际问题的解决提供更加科学的支持。
希望本文的案例能够帮助读者更好地理解线性规划的应用,从而在实际工作中能够更好地运用这一方法,取得更好的效果。
《运筹学》第四版线性规划模型
决策变量的意义
决策变量的具体含义应该与实际 问题相关,例如生产计划、资源 分配等。
确定目标函数
目标函数
01
线性规划的目标函数是用来衡量问题优化的标准,通
常是一个或多个决策变量的线性函数。
目标函数的优化方向
02 根据问题的实际需求,目标函数可以是最大化或最小
化。
目标函数的数学表达式
03
目标函数通常由决策变量和相应的系数组成,表示为
a21x1+a22x2+...+a2nxn=b2,...。
线性规划模型的表示形式
标准形式
标准形式的线性规划模型通常由目标 函数和约束条件组成,表示为 max/min f(x) s.t. a11x1+a12x2+...+a1nxn<=b1, a21x1+a22x2+...+a2nxn=b2,...。
详细描述
在资源分配问题中,线性规划模型用于确定 最佳的资源分配方案。通过构建包含资源种 类、需求量、效益等变量的线性规划模型, 可以找到在满足资源需求和效益约束下的最 优资源分配方案。这有助于企业或组织实现 资源的合理配置和效益的最大化。
05
线性规划模型的扩展与展望
多目标线性规划
多目标线性规划是线性规划的一个重要扩展,它考虑了多个相互冲突的目 标函数,并寻求在所有目标之间找到最优的平衡。
THANK YOU
非标准形式
如果线性规划模型的目标函数或约束 条件不符合标准形式,可以通过引入 松弛变量或剩余变量将其转化为标准 形式。
03
线性规划模型的求解方法
单纯形法
单纯形法是一种迭代算法,用于求解 线性规划问题。
在每次迭代中,算法会检查当前解是 否满足最优条件,如果不满足,则通 过一定的规则转换到另一个解,直到 找到最优解或确定无解。
运筹学线性规划方案实验报告
运筹学线性规划方案实验报告一早起床,我就知道今天要写一份运筹学线性规划方案实验报告。
这个题目听起来就有点头疼,不过没关系,我已经有10年的方案写作经验了,这就好比家常便饭,慢慢来,一点一点梳理。
得给这个实验报告起个响亮的名字,我已经想好了——“最优解寻迹之旅”。
咱们就直接进入主题吧。
1.实验背景这次实验的背景是我国一家生产多种产品的企业。
这家企业生产的产品有A、B、C三种,分别需要经过甲、乙、丙三个车间进行加工。
每个车间都有一定的生产能力和生产成本,而企业的目标是最大化利润。
这就需要我们运用线性规划的方法,找出最优的生产方案。
2.实验目的本次实验的目的就是通过线性规划方法,为企业制定出最优的生产方案,使得企业在现有的生产条件下,实现利润最大化。
3.实验方法线性规划,听起来高大上,其实原理很简单。
就是用一组线性方程,来描述各种约束条件,然后找到一个目标函数,使得这个目标函数在满足约束条件的情况下达到最大值或最小值。
甲车间:A产品需要1小时,B产品需要2小时,C产品需要3小时,总时间为8小时;乙车间:A产品需要2小时,B产品需要1小时,C产品需要2小时,总时间为10小时;丙车间:A产品需要3小时,B产品需要2小时,C产品需要1小时,总时间为12小时。
然后,我们需要确定目标函数。
企业的目标是最大化利润,所以我们的目标函数就是:f(A,B,C)=10A+15B+20C其中,A、B、C分别表示三种产品的产量。
就是求解这个线性规划问题。
我们可以使用单纯形法、内点法等算法求解。
这里,我们选择使用单纯形法。
4.实验步骤(1)列出约束条件方程组;(2)确定目标函数;(3)使用单纯形法求解线性规划问题;(4)分析求解结果,确定最优生产方案。
5.实验结果A产品产量:4件B产品产量:3件C产品产量:2件将这个结果代入目标函数,我们可以得到最大利润为:f(4,3,2)=104+153+202=110所以,最优生产方案是生产4件A产品、3件B产品和2件C产品,最大利润为110。
运筹学_线性规划1
x1 x 2 x3 10 3 x 2 x x 8 1 2 3 s.t. x1 3 x 2 x3 1 x1 , x 2 0, x3 符号不受限制
Байду номын сангаас
标 准 化
maxZ 2x1 3x2 ( x3 x4 ) 0 x5 0 x6
I 设备A(h) 设备B(h) 调试工序(h) 利润(千元) 0 6 1 2
II 5 2 1 1
课堂练习
一家家电公司准备将一种新型电视机在三家商场进行销 售,每一个商场的批发价和推销费及产品的利润如表所示。 由于该电视机的性能良好,各商场都纷纷争购,但公司每 月的生产能力有限,只能生产1000台,故公司规定:商场 1至少经销100台,至多200台,商场2至少经销300台,商 场3至少经销200台。公司计划在一个月内的广告预算费为 8000元,推销人员最高可用工时数为1500。同时,公司只 根据经销数进行生产,试问公司下个月的市场对策?
④ 右端非负。
标准型的紧缩形式:
max Z c j x j
j 1 n
标 准 型
n aij x j bi s.t. j 1 x 0 j
i 1,2,, m j 1,2,, n
标准型的矩阵形式:
max Z CX
AX b s.t. X 0
例2-3 某饲料公司生产一种鸡饲料,每份饲料
问 题 的 导 出
为100公斤,饲料中的营养成份要求、配料及 其成本数据如下:
配料 营养成分 单位 蛋白质 配料 钙 含量 粗纤维 单位配料成本 大豆粉 玉米粉 石灰石 0.50 0.002 0.08 2.50 0.09 0.001 0.02 0.926 0 0.38 0 0.164 含量要求 ≥22% ≥0.8%且≤1.2% ≤5%
运筹学 线性规划在管理中的应用案例
第五章线性规划在管理中的应用某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。
管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。
可用的机器设备是限制新产品产量的主要因素,具体数据如下表:司的利润最大化。
1、判别问题的线性规划数学模型类型。
2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。
3、建立该问题的线性规划数学模型。
4、用线性规划求解模型进行求解。
5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。
6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。
解:1、本问题是资源分配型的线性规划数学模型。
2、该问题的决策目标是公司总的利润最大化,总利润为:+ +决策的限制条件:8x1+ 4x2+ 6x3≤500 铣床限制条件4x1+ 3x2≤350 车床限制条件3x1 + x3≤150 磨床限制条件即总绩效测试(目标函数)为:max z= + +3、本问题的线性规划数学模型max z= + +S.T. 8x1+ 4x2+ 6x3≤5004x1+ 3x2≤3503x1 + x3≤150x1≥0、x2≥0、x3≥04、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。
5、灵敏度分析目标函数最优值为 : 30变量最优解相差值x1 50 0x2 25 0x3 0 .083约束松弛/剩余变量对偶价格1 0 .052 75 03 0 .033目标函数系数范围 :变量下限当前值上限x1 .4 .5 无上限x2 .1 .2 .25x3 无下限 .25 .333常数项数范围 :约束下限当前值上限1 400 500 6002 275 350 无上限3 150(1)最优生产方案:新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。
运筹学线性规划实验报告
《管理运筹学》实验报告5.输出结果如下5.课后习题: 一、P31习题1某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元.约束条件:问题:(1)甲、乙两种柜的日产量是多少?这时最大利润是多少?答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。
.0,0,6448,120126;240200 z max ≥≥≤+≤++=y x y x y x y x(2)图中的对偶价格13.333的含义是什么?答: 对偶价格13.333的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加13.33元。
(3)对图中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息。
答:当约束条件1的常数项在48~192范围内变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为15.56;当约束条件2的常数项在40~180范围内变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为13.333。
(4)若甲组合柜的利润变为300,最优解不变?为什么?答:目标函数的最优值会变,因为甲组合柜的利润增加,所以总利润和对偶价格增加;甲、乙的工艺耗时不变,所以甲、乙的生产安排不变。
二、学号题约束条件:学号尾数:56 则:约束条件:无约束条件(学号)学号43214321432143214321 0 0,309991285376)(53432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-+≥-+-+=-++-+++=无约束条件43214321432143214321 0 0,3099912445376413432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-≥-+-=-++-+++=⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⨯-≥⨯-⨯-⨯-⨯-⨯-7606165060~5154050~414)30(40~313)20(30~21210 20~11 10~1)(学号)(学号)(学号学号学号)(学号不变学号规则3.运算过程实验结果报告与实验总结:输出结果分析:答:由输出结果可得:最优解为352元,具体排班情况为:11点到12点的时段安排8个临时工;13点到14点的时段再安排1个临时工;14点到15点的时段安排1个临时工;16点到17点时段安排5个临时工;18点到19点安排7个临时工。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:运筹学导论
实验名称:线性规划问题实例分析专业名称:信息管理与信息系统指导教师:刘珊
团队成员:邓欣(20112111)
蒋青青(20114298)
吴婷婷(20112124)
邱子群(20112102)
熊游(20112110)
余文媛(20112125)
日期:2013-10-25
成绩:___________
1.案例描述
南部联盟农场是由以色列三个农场组成的联合组织。
该组织做出了一个关于农场农作物的种植计划,如下:
每一个农场的农业产出受限于两个量,即可使用的灌溉土地量和用于灌溉的水量。
数据见下表:
适合本地区种植的农作物包括糖用甜菜、棉花和高粱。
这三种作物的差异在于它们每亩的期望净收益和水的消耗量不同。
另外农业部门已经制定了南部联盟农场作物总亩数的最大配额,见下表:
作物的任何组合可以在任何农场种植,技术部门的任务是找出一个种植方案使南部联盟农场的净收益最大化。
2.建立模型
决策变量为Xi(i=1,2,……,9),表示每个农场每种作物的种植量。
MAX Z=1000(X1+X2+X3)+750(X4+X5+X6)+250(X7+X8+X9)
约束条件:
(1)每一个农场使用的土地
X1+X4+X7≤400
X2+X5+X8≤600
X3+X6+X9≤300 (2)每一个农场的水量分布
3X1+2X4+X7≤600
3X2+2X5+X8≤800
3X3+2X6+X9≤375 (3)每一种作物的总种植量
X1+X2+X3≤600
X4+X5+X6≤500
X7+X8+X9≤325 非负约束X i≥0 , i=1,2, (9)
3.计算机求解过程步骤1.生成表格
步骤2.输入数据
步骤3.求解结果
输出分析:
最优解为(0, 133.33,125, 300, 200, 0, 0, 0,0)最优值为Z=633333.33
4.结论
农场种植最优种植方案如下:
农场的最大净收益是633333.33美元。