超级电容器和锂离子电池新型材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学好:092016010028 姓名:龙佳渔班级:09求是化学
超级电容器和锂离子电池新型材料
摘要:采用LiCoO2+AC(活性炭)作为超级电容器的正极材料、AC 为负极材料,采用锂离子电池电解液LB-315 组装成超级电容器,研究了以上锂离子电池材料对超级电容器电化学性能的影响。研究结果表明,LiCoO2+AC 电极中LiCoO2 与AC 最佳质量比为4︰1,其在电流密度为3 mA/cm2 进行充放电性能实验时,首次放电比容量为235.0 F/g,经过1 000 次循环后,衰减到204.1 F/g,具有较好的循环性能。AC/LiCoO2+AC 超级电容器较AC/AC 超级电容器的自放电性能有所改善。
关键词:超级电容器;活性炭;锂离子电池材料
随着人们环境保护意识的日渐增强,对绿色能源的渴求越来越迫切。锂离子电池以其工作电压高,体积小、质量轻、比能量高、无记忆效应、无污染、自放电小,循环寿命长等优点,成为目前所有电池产品中最有前途的体系之一。目前商品锂离子电池所用的锂盐为LiPF6。LiPF6易水解且热稳定性不好,与大气的水分或溶剂的残余水接触时,会立即形成氢氟酸HF,对电池的性能有不利的影响;而且,LiPF6通常与碳酸乙烯酯(EC)合用配成电解液才能在负极形成有效SEI膜,但是EC的熔点较高(37℃),这限制了电池的低温使用性能。
双草酸硼酸锂(LiBOB)是一种新型的锂盐,具有很好的成膜性能和热稳定性,是一种很有潜力替代现有商品化锂盐LiPF6的物质。本文创造性地采用固相反应法合成了LiBOB,并对反应过程进行了动力学和热力学分析;研究了所得LiBOB的基本性质,将其配制成电解液,研究了LiBOB在各种正极材料和石墨负极材料中的应用情况;考察了LiBOB的独特成膜性能,研究LiBOB-PC基电解液体系在锂离子电池中的应用性能;测定了不同LiBOB电解液的电导率,并引入了质量三角形模型对LiBOB电解液的电导率进行预报计算;采用密度泛函理论分析了LiBOB的分子结构与其物理化学性能之间的关系。此外,还研究了亚硫酸酯类物质在锂离子电池中的应用。
已有的LiBOB合成方法都是在溶液体系中制备,其中采用草酸、氢氧化锂和硼酸在水相中制备LiBOB较具优势,但是,此种合成方式比较复杂,反应过程不好控制。在此基础上,本研究提出了一种崭新的LiBOB合成方法 固相反应法,TG/DTA曲线表明固相反应合成
LiBOB经历五个不同的温度段,结合原料草酸、氢氧化锂和硼酸的热重曲线和XRD分析,推测了各温度段发生的化学反应。结合不同温度下合成产物的红外光谱图和XRD谱图,进一步验证了TG/DTA的分析结果。分别采用非等温多重速率扫描法和XRD法分析了整个固相反应合成的速控步骤,分析表明,草酸和草酸氢锂在80~140℃左右释放出结晶水,并且发生熔化,有利于反应物的扩散和充分接触,是合成高质量LiBOB的关键,同时也采用密度泛函理论对LiBOB的合成反应进行了热力学分析。通过上述分析,最终得到固相反应合成LiBOB的最佳工艺条件为:将草酸、硼酸、氢氧化锂以摩尔比2:1:1混合均匀,在80~140℃加热3小时;然后在240~280℃之间加热6小时。将固相反应法制备的LiBOB与有机溶液反应法制备的LiBOB进行比较,固相合成方法不仅更简单、环保,适用于工业化生产,而且能够得到性能更佳的产品。合成得到的LiBOB具有很好的热稳定性,能够稳定存在到300℃,远高于常用锂盐LiPF6。LiBOB在电解液中的分解电压大于4.5V,电化学稳定性高于LiPF6和LiClO4,适合作为锂离子电池电解质盐使用。
将LiBOB电解液使用在LiCoO2、LiNi1/3Co1/3Mn1/3O2及LiMn2O4正极材料中,电池均具有很好的性能。LiBOB尤其适用于LiMn2O4作正极的电池体系,常用锂盐LiPF6在高温下不稳定,很容易分解产生腐蚀性极强的物质HF,导致LiMn2O4正极材料中Mn的溶解,使容量迅速衰减。LiBOB分子结构中不含有F元素,而且具有很好的热稳定性和很独特的成膜性能,更适用于LiMn2O4体系。本文研究了LiBOB电解液在LiMn2O4电池中的常温和高温应用性能,并与LiPF6电解液进行了比较。结果表明,30℃时,LiBOB电解液的倍率性能与LiPF6电解液差不多,60℃时,LiBOB电解液的倍率性能高于LiPF6电解液,此外,0.8 mol L-1 LiBOB EC/EMC/DEC (1:1:1) 电解液在30℃和60℃都具有很高的循环性能,电池循环100次,容量保持率分别为91.7%和90.5%,电池性能优于LiPF6电解液。
此外,还研究了LiBOB电解液与石墨负极材料配合使用的情况,使用LiBOB电解液,在电池的首次放电曲线上,可以观察到在电压为1.7V 左右处出现一个小平台,在随后的循环中,这个平台消失。若采用LiPF6作电解质锂盐,将不会出现这个小平台。说明这个平台的出现与LiBOB 密切相关。电池性能测试表明,在常温小电流充放电和高温(60℃和80℃)下,电池具有较高的容量和很好的循环性能,但是在常温大电流充放电的情况下,电池的性能不佳。为了提高LiBOB电解液在Li/石墨电池中的倍率性能,配制了LiBOB与LiPF6组成的混合电解液,测定了
混合电解液在不同温度下的电导率,并研究了其在Li/石墨电池中的应用性能。LiBOB电解液在Li/石墨电池中的应用性能不仅与LiBOB电解液的电导率有关,与其它因素也密切相关。一种可能的原因是LiBOB 的分子体积远大于LiPF6,因此LiBOB电解液的粘度相对较大,在常温下对于极片和隔膜的浸润性不好,因此电池的容量性能不佳。另一个可能的原因是LiBOB参与了负极表面SEI膜的形成,使用在Li/石墨电池中时,在锂片和石墨表面均形成了钝化膜,导致电池的极化增大,电池的放电容量和倍率性能都不佳。为了进一步证实这种可能性,我们又研究了LiBOB电解液在LiCoO2/石墨全电池中的应用性能。将LiBOB电解液用于LiCoO2/石墨全电池中,放电容量和循环性能都有很大改观,50次循环后,容量保持率能够稳定在95.7%,高于使用LiPF6电解液的电池。
通常碳酸丙烯酯(PC)在电池充放电过程中会随Li+共同嵌入石墨负极材料,导致材料剥落,造成电池容量和循环寿命缩减,因此无法被广泛使用在锂离子电池电解液中。LiBOB具有独特的成膜性能,可以将LiBOB-PC基电解液使用在石墨负极中,研究表明,0.5 mol·L-1LiBOB PC/DEC(2:3)电解液在Li/石墨电池中的首轮效率最高,充电容量最大,循环稳定性最好,在低温(0℃)下,比0.7 mol·L-1LiBOB EC/DEC(2:3)电解液的应用性能好。
LiBOB电解液与LiPF6电解液电导率比较表明,在同样的温度下,LiBOB电解液的电导率均低于LiPF6电解液。不同的溶剂组成,LiBOB 电解液的电导率不同,而且相对大小也会发生变化。因此,为了得到具有最佳电导率的LiBOB电解液体系,有必要系统地研究LiBOB在常用碳酸酯类溶剂中的电导率,寻找适合LiBOB的最佳电解液体系。LiBOB 电解液电导率实验测定表明,具有最大电导率的LiBOB电解液在不同温度下有着不同的组成。LiBOB EC/DEC和LiBOB PC/DEC两种电解液体系的电导率变化规律相同,在低温和室温下,LiBOB PC/DEC和LiBOB EC/DEC体系的电导率相差不多。而在高温下,LiBOB PC/DEC 电解液体系的电导率整体水平低于LiBOB EC/DEC电解液体系。用质量三角形模型对LiBOB EC/DEC和LiBOB PC/DEC电解液体系电导率进行计算,其结果与实验测定结果一致,表明质量三角形模型适用于LiBOB电解液电导率的预测。质量三角形模型对LiBOB EC/EMC电解液电导率的计算表明,25℃下,具有最高电导率的电解液其质量百分浓度组成为w[LiBOB]=0.9%~14.8%,w[EC]=27%~39%,电导率为 6.6 mS·cm-1。60℃下,具有最高电导率的电解液组成为