Lecture5 最小Bmse估计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12
Linear Bayesian Estimators
• Previous optimal estimators are too computationally intensive to implement
• Mean • Median • Mode
• For jointly Gaussian signals, all the above estimators coincide and are linear • When we are not able to make the Gaussian assumption
… …
|
MAP Estimator
arg max arg max ln | arg max ln
Observe the difference/similarity with respect to the MLE
5
10/14/2016
Example: Exponential PDF
MAP gives:
• MMSE • linear estimator
6
10/14/2016
LMMSE
• data set:
0, 1 ,…, 1
• random parameter to estimate: • Linear estimator:
0 1 ⋯ 1
LMMSE
• Bmse
7
10/14/2016
LMMSE
1 Mode (location of the maximum) of the posterior PDF
Mean, Median, Mode
4
10/14/2016
MMSE Estimator
• If is a vector parameter: px1, we can estimate the first parameter by treating the other parameters as nuisance parameters.
Sequential LMMSE Estimation
• DC Level in WGN
∼ ∼ 1 0, 0, ̅ 1
: 1
10
10/14/2016
Sequential LMMSE Estimation
• Question:
• how to update this LMMSE estimator as a new data sample is available, i.e. ?
Sequential LMMSE Estimation
10 1 10 1|0 0 1 Δ 1 1 1 0 1 1 1 1 1 0 1 0 : innovation
HW
• Chapter 11
• 11.7, 11.11, 11.12
• Chapter 12
• 12.2, 12. 14, 12.19, 12.20
,
1
10/14/2016
Minimum Bmse Estimator
minimize
Risk Functions
2
10/14/2016
Bayes Risk
, |
Absolute Cost Function
0
Median of the posterior PDF
3
10/14/2016
Hit‐or‐Miss Cost Function
• S‐LMMSE:
• Estimator Update:
• MSE Update:
Sequential LMMSE Estimation
Independent orthogonal in the vector space {data set 1} & {data set 2}
11
10/14/2016
Orthogonality Principle
0, 0,1, … , 1
,
0, … ,
1
9
10/14/2016
Estimation with Independent Data
Independent orthogonal in the vector space {data set 1} & {data set 2}
10/14/2016
Detection & Estimation Lecture 5
Bayesian II Xiliang Luo
Prior Knowledge
• Knowing that the unknown parameter must lie in a known interval, we may assign a uniform PDF and model the true value as a realization of a random variable • Bayesian MSE
Geometric View
, 0 ,…, 1 are all vectors in the vector space of all zero‐mean r.v. The inner product of x and y is defined as: , ⋅ Then the length of a vector is: || ||: Two vectors are orthogonal when they are uncorrelated
Hale Waihona Puke Baidu
8
10/14/2016
Geometric View
LMMSE for the parameter is to find a linear combination of the data vectors to minimize the length of the error vector! Orthogonality principle: 0, 1 ,…, 1
相关文档
最新文档