河北省保定市定州市2019-2020学年九年级(上)期末数学试卷
2019-2020学年河北省保定市定州市九年级(上)期末数学试卷含解析
![2019-2020学年河北省保定市定州市九年级(上)期末数学试卷含解析](https://img.taocdn.com/s3/m/b146c45c5022aaea988f0f73.png)
2019-2020学年河北省保定市定州市九年级(上)期末数学试卷一、选择题(本大题共15个小题,每题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)一元二次方程x2﹣3x﹣4=0的一次项系数是()A.1B.﹣3C.3D.﹣42.(3分)点P(4,﹣3)关于原点的对称点是()A.(4,3)B.(﹣3,4)C.(﹣4,3)D.(3,﹣4)3.(3分)下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔4.(3分)下列四个点中,在反比例函数y=的图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,3)D.(﹣2,﹣3)5.(3分)若,则的值是()A.1B.2C.3D.46.(3分)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°7.(3分)给出下列函数,其中y随x的增大而减小的函数是()①y=2x;②y=﹣2x+1;③y=(x<0);④y=x2(x<1).A.①③④B.②③④C.②④D.②③8.(3分)如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则∠B的大小为()A.30°B.40°C.50°D.60°9.(3分)如图,点O是△ABC内一点、分别连接OA、OB、OC并延长到点D、E、F,使AD=2OA,BE=2OB,CF=2OC,连接DE,EF,FD.若△ABC的面积是3,则阴影部分的面积是()A.6B.15C.24D.2710.(3分)在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆与y轴所在直线的位置关系是()A.相离B.相切C.相交D.无法确定11.(3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣C.4D.﹣112.(3分)如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1D.213.(3分)如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A.105°B.115°C.125°D.135°14.(3分)如图,正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数y=2x2﹣4的图象上,则图中阴影部分的面积之和为()A.6B.8C.10D.1215.(3分)如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④c=﹣3a,其中正确的命题是()A.①②B.②③C.①③D.①③④二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)16.(3分)某商品原售价300元,经过连续两次降价后售价为260元,设平均每次降价的百分率为x,则满足x的方程是.17.(3分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.18.(3分)如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是.19.(3分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.三、解答下列各题(本大题共7个小题,共63分,解答应写出文宇说明、证明过程或演算步骤)20.(8分)已知关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.21.(8分)不透明的袋子中装有4个完全相同的小球,它们的标号分别为:1、2、3、4.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取出的小球标号相同”的概率;(2)随机摸出两个小球,用列表或画树状图的方法求出“取出的两个小球标号之和为奇数”的概率.22.(8分)如图,已知点A(a,3)是一次函数y1=x+1与反比例函数y2=的图象的交点.(1)求反比例函数的解析式;(2)在y轴的右侧,当y1>y2时,直接写出x的取值范围;(3)求点A与两坐标轴围成的矩形OBAC的面积.23.(8分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?24.(8分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;25.(11分)如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作DE⊥AP交AP于E点.(1)求证:DE为⊙O的切线;(2)若DE=3,AC=8,求直径AB的长.26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.2019-2020学年河北省保定市定州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共15个小题,每题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:一次项是:未知数次数是1的项,故一次项是﹣3x,系数是:﹣3,故选:B.2.【解答】解:点P(4,﹣3)关于原点的对称点是(﹣4,3),故选:C.3.【解答】解:水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、瓮中捉鳖是必然事件,故选项C不符合题意;D、守株待兔是随机事件,故选项D符合题意;故选:D.4.【解答】解:∵﹣3×(﹣2)=6,3×2=6,﹣2×3=﹣6,﹣2×(﹣3)=6,∴点(﹣2,3)在反比例函数y=的图象上.故选:C.5.【解答】解:设=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入,故选:B.6.【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.7.【解答】解:①∵y=2x中k=2>0,∴y随x的增大而增大,故本小题错误;②∵y=﹣2x+1中k=﹣2<0,∴y随x的增大而减小,故本小题正确;③∵y=(x<0)中k=2>0,∴x<0时,y随x的增大而减小,故本小题正确;④∵y=x2(x<1)中x<1,∴当0<x<1时,y随x的增大而增大,故本小题错误.故选:D.8.【解答】解:根据旋转的性质,可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=×(180°﹣100°)=40°.故选:B.9.【解答】解:∵AD=2OA,BE=2OB,CF=2OC,∴===,∴△ABC∽△DEF,∴==,∵△ABC的面积是3,∴S△DEF=27,∴S阴影=S△DEF﹣S△ABC=24.故选:C.10.【解答】解:依题意得:圆心到y轴的距离为:3<半径4,所以圆与y轴相交,故选:C.11.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故选:A.12.【解答】解:∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴OF=AD=1,故选:C.13.【解答】解:∵△ABC∽△EDF,∴∠BAC=∠DEF,又∠DEF=90°+45°=135°,所以∠BAC=135°,故选:D.14.【解答】解:∵四边形ABCD为正方形,抛物线y=2x2﹣4和正方形都是轴对称图形,且y轴为它们的公共对称轴,∴OD=OC,S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),∵点B在二次函数y=2x2﹣4的图象上,∴2n=2n2﹣4,解得,n1=2,n2=﹣1(舍负),∴点B的坐标为(2,4),∴S阴影=S矩形BCOE=2×4=8.故选:B.15.【解答】解:观察图象可知:①当x=1时,y=0,即a+b+c=0,所以①正确;②对称轴x=﹣1,即﹣=﹣1,b=2a,∴②错误;③∵抛物线与x轴的一个交点为(1,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0)∴ax2+bx+c=0的两根分别为﹣3和1,∴③正确;④∵当x=1时,y=0,即a+b+c=0,对称轴x=﹣1,即﹣=﹣1,b=2a,∴c=﹣3a,∴④正确.所以正确的命题是①③④.故选:D.二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)16.【解答】解:第一次降价后的价格为300(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为300(1﹣x)×(1﹣x),则列出的方程是300(1﹣x)2=260,故答案为:300(1﹣x)2=260.17.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.18.【解答】解:连结OA、OB.设∠AOB=n°.∵的长为2π,∴=2π,∴n=40,∴∠AOB=40°,∴∠ACB=∠AOB=20°.故答案为20°.19.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故答案为4.三、解答下列各题(本大题共7个小题,共63分,解答应写出文宇说明、证明过程或演算步骤)20.【解答】解:(1)由题意得,b2﹣4ac>0即42﹣4k•2>0k<2,又∵一元二次方程k≠0∴k<2且k≠0;(2)∵k<2且k取最大整数∴k=1,当k=1时,x2﹣4x+2=0解得,x1=2+,x2=2﹣.21.【解答】解:(1)画树状图如下:共有16种等可能的结果数,其中两次取的球标号相同的结果数为4,所以“两次取的球标号相同”的概率==;(2)画树状图如下:共有12种等可能的结果数,其中两次取出的球标号和为奇数的结果数为8,所以“两次取出的球标号和为奇数”的概率=.22.【解答】解:(1)将A(a,3)代入一次函数y1=x+1得a+1=3,解得a=2,∴A(2,3),将A(2,3)代入反比例函数y2=得=3,解得k=6,∴y2=;(2)∵A(2,3),y1=x+1,y2=,∴在y轴的右侧,当y1>y2时,x的取值范围是x>2;(3)∵k=6,∴点A与两坐标轴围成的矩形OBAC的面积是6.23.【解答】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x﹣400整理得w=﹣(x﹣25)2+225∵﹣1<0∴当x=25时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.24.【解答】证明:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB,且∠APB=∠BPC=135°,∴△P AB∽△PBC;(2)∵△P AB∽△PBC∴在Rt△ABC中,AB=AC,∴AB=BC,∴PB=PC,P A=PB,∴P A=2PC.25.【解答】(1)证明:连接OD.∵OC=OD,∴∠1=∠3.∵CD平分∠PCO,∴∠1=∠2.∴∠2=∠3.∵DE⊥AP,∴∠2+∠EDC=90°.∴∠3+∠EDC=90°.即∠ODE=90°.∴OD⊥DE.∴DE为⊙O的切线.(2)过点O作OF⊥AP于F.由垂径定理得,AF=CF.∵AC=8,∴AF=4.∵OD⊥DE,DE⊥AP,∴四边形ODEF为矩形.∴OF=DE.∵DE=3,∴OF=3.在Rt△AOF中,OA2=OF2+AF2=42+32=25.∴OA=5.∴AB=2OA=10.26.【解答】解:(1)∵点B坐标为(4,0),抛物线的对称轴方程为x=1.∴A(﹣2,0),把点A(﹣2,0)、B(4,0)、点C(0,3),分别代入y=ax2+bx+c(a≠0),得,解得,所以该抛物线的解析式为:y=﹣x2+x+3;(2)设运动时间为t秒,则AM=3t,BN=t.∴MB=6﹣3t.由题意得,点C的坐标为(0,3).在Rt△BOC中,BC==5.如图1,过点N作NH⊥AB于点H.∴NH∥CO,∴△BHN∽△BOC,∴,即=,∴HN=t.∴S△MBN=MB•HN=(6﹣3t)•t=﹣t2+t=﹣(t﹣1)2+,当△MBN存在时,0<t<2,∴当t=1时,S△MBN最大=.答:运动1秒使△MBN的面积最大,最大面积是;(3)如图2,在Rt△OBC中,cos∠B==.设运动时间为t秒,则AM=3t,BN=t.∴MB=6﹣3t.当∠MNB=90°时,cos∠B==,即=,化简,得17t=24,解得t=,当∠BMN=90°时,cos∠B===(在图2中,当∠BM'N'=90°时,cos∠B=)化简,得19t=30,解得t=,综上所述:t=或t=时,△MBN为直角三角形.。
河北省保定市2020年(春秋版)九年级上学期数学期末考试试卷C卷
![河北省保定市2020年(春秋版)九年级上学期数学期末考试试卷C卷](https://img.taocdn.com/s3/m/442bd1985fbfc77da369b121.png)
河北省保定市2020年(春秋版)九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2016九上·西湖期末) 二次函数y=3x2﹣1图象的顶点坐标是()A . (0,﹣1)B . (1,0)C . (﹣1,0)D . (0,1)2. (2分) (2019九上·宁波期中) 在Rt△ABC中,∠C=90°,AC=3cm, AB=5cm,若以C为圆心,4cm为半径画一个圆,则下列结论中,正确的是()A . 点A在圆C内,点B在圆C外B . 点A在圆C外,点B在圆C内C . 点A在圆C上,点B在圆C外D . 点A在圆C内,点B在圆C上3. (2分) (2020八上·昌平期末) 为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:﹣6,﹣3,x,2,﹣1,3.若这组数据的中位数是﹣1,则下列结论错误的是()A . 方差是8B . 极差是9C . 众数是﹣1D . 平均数是﹣14. (2分)(2019·广西模拟) 袋中有5个红球、4个白球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是白球的概率为()A .B .C .D .5. (2分)(2018·毕节模拟) 如图,四边形ABCD内接于⊙O,它的对角线把四个内角分成八个角,其中相等的角有()A . 2对B . 4对C . 6对D . 8对6. (2分) (2018九上·鼎城期中) 若x1 , x2是一元二次方程x2-2x-3=0的两个根,则x1·x2的值是()A . 2B . -2C . 4D . -37. (2分) (2017·诸城模拟) 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A . 10πB . 15πC . 20πD . 30π8. (2分)已知二次函数y=ax2﹣2x+2(a>0),那么它的图象一定不经过().A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共8题;共17分)9. (1分) (2018九上·耒阳期中) 如果(x-4)2=9,那么 ________。
河北省保定市定州市2019-2020学年九年级上学期期末数学试题(word无答案)
![河北省保定市定州市2019-2020学年九年级上学期期末数学试题(word无答案)](https://img.taocdn.com/s3/m/74f91e944a7302768e9939a2.png)
河北省保定市定州市2019-2020学年九年级上学期期末数学试题(word无答案)一、单选题(★) 1 . 一元二次方程 x 2﹣3 x﹣4=0的一次项系数是()A.1B.﹣3C.3D.﹣4(★) 2 . 点关于原点的对称点是A.B.C.D.(★) 3 . 下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔(★) 4 . 下列四个点中,在反比例函数 y=的图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,3)D.(﹣2,﹣3)(★★) 5 . 若,则的值是()A.1B.2C.3D.4(★) 6 . 如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°(★) 7 . 给出下列函数,其中 y随 x的增大而减小的函数是()① y=2 x;② y=﹣2 x+1;③ y=( x<0);④ y= x 2( x<1).A.①③④B.②③④C.②④D.②③(★) 8 . 如图,将△ ABC绕点 A逆时针旋转100°,得到△ ADE.若点 D在线段 BC的延长线上,则∠ B的大小为()A.30°B.40°C.50°D.60°(★★) 9 . 如图,点O是△ABC内一点、分别连接OA、OB、OC并延长到点D、E、F,使AD=2OA,BE=2OB,CF=2OC,连接DE,EF,FD.若△ABC的面积是3,则阴影部分的面积是()A.6B.15C.24 D. 27(★) 10 . 在平面直角坐标系 xOy中,以点(3,4)为圆心,4为半径的圆与 y轴( )A.相交B.相切C.相离D.无法确定(★★) 11 . 已知x 1,x 2是关于x的方程x 2+ax-2b=0的两个实数根,且x 1+x 2=-2,x 1·x 2=1,则b a的值是( )A.B.-C.4D.-1(★★) 12 . 如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O 于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1D.2(★) 13 . 如图,在正方形网格上有两个相似三角形△ ABC和△ DEF,则∠ BAC的度数为()A.105°B.115°C.125°D.135°(★) 14 . 如图,正方形 ABCD的顶点 C、 D在 x轴上, A、 B恰好在二次函数 y=2 x 2﹣4的图象上,则图中阴影部分的面积之和为()A.6B.8C.10D.12(★) 15 . 如图是二次函数 y= ax 2+ bx+ c(a≠0)的图象的一部分,给出下列命题:① a+ b+ c=0;② b>2 a;③ ax 2+ bx+ c=0的两根分别为﹣3和1;④ c=﹣3 a,其中正确的命题是()A.①②B.②③C.①③D.①③④二、填空题(★) 16 . 某商品原售价300元,经过连续两次降价后售价为260元,设平均每次降价的百分率为x,则满足x的方程是 ______ .(★) 17 . 如图,抛物线 y= ax 2与直线 y= bx+ c的两个交点坐标分别为 A(﹣2,4), B(1,1),则方程 ax 2= bx+ c的解是_____.(★) 18 . 如图,点A、B、C在半径为9的⊙O上,的长为,则∠ACB的大小是___ .(★★) 19 . 如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是_____;三、解答题(★) 20 . 已知关于 x的一元二次方程 kx 2﹣4 x+2=0有两个不相等的实数根.(1)求实数 k的取值范围;(2)写出满足条件的 k的最大整数值,并求此时方程的根.(★★) 21 . 不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率;(2)随机摸出两个小球,直接写出“两次取出的球标号和为奇数”的概率.(★★) 22 . 如图,已知点A(a,3)是一次函数y 1=x+1与反比例函数y 2=的图象的交点.(1)求反比例函数的解析式;(2)在y轴的右侧,当y 1>y 2时,直接写出x的取值范围;(3)求点A 与两坐标轴围成的矩形OBAC 的面积.(★★) 23 . 某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价 x (元)与该士特产的日销售量 y (袋)之间的关系如表:x (元)152030…y (袋)252010…若日销售量 y是销售价x的一次函数,试求:(1)日销售量 y (袋)与销售价 x (元)的函数关系式; (2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?(★★★★) 24 . 如图,中, , , 为 内部一点,且.(1)求证: ;(2)求证:.(★★) 25 . 如图,AB 为⊙O 的直径,射线AP 交⊙O 于C 点,∠PCO 的平分线交⊙O 于D 点,过点D 作 交AP 于E 点.(1)求证:DE 为⊙O 的切线;(2)若DE=3,AC=8,求直径AB 的长.(★★) 26 . 如图,在平面直角坐标系中,抛物线 (a≠0)与y 轴交与点C (0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.。
河北省2019-2020学年九年级上学期数学期末考试试卷(II)卷(模拟)
![河北省2019-2020学年九年级上学期数学期末考试试卷(II)卷(模拟)](https://img.taocdn.com/s3/m/9aa523935901020206409c12.png)
河北省2019-2020学年九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·宣州期中) 已知一元二次方程x2﹣4x+m2=0有一个根为1,则另一根为()A . 5B . ﹣3C . 3D . 以上都不对2. (2分)(2013·绍兴) 由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A .B .C .D .3. (2分)(2014·衢州) 如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是()A . 9mB . 6mC . mD . 3 m4. (2分)若反比例函数的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过A . 第一、二、四象限B . 第一、三、四象限C . 第二、三、四象限D . 第一、二、三象限5. (2分) (2020九上·诸暨期末) 抛物线的对称轴为直线()A .B .C .D .6. (2分) (2020九上·昌平期末) 点(-sin60°,cos60°)关于y轴对称的点的坐标是()A . (,)B . (- ,)C . (- ,- )D . (- ,- )7. (2分)如图,一段公路的转弯处是一段圆弧(),则的展直长度为()A . 3πB . 6πC . 9πD . 12π8. (2分)(2016·黄石) 以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A . b≥B . b≥1或b≤﹣1C . b≥2D . 1≤b≤29. (2分) (2018九上·杭州月考) 某网店销售一款李宁牌运动服,每件进价元,若按每件元出售,每天可卖出件,根据市场调查结果,若每件降价元,则每天可多卖出件,要使每天获得的利润最大,则每件需要降价的钱数为()A . 3元B . 4元C . 5元D . 8元10. (2分) (2017九上·平房期末) 将二次函数y=x2的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A . y=(x﹣2)2+1B . y=(x+2)2+1C . y=(x﹣2)2﹣1D . y=(x+2)2﹣1二、填空题 (共5题;共5分)11. (1分)(2017·金乡模拟) 如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=4 ,AC=5,AD=4,则⊙O的直径AE=________.12. (1分)(2019·高新模拟) 如图,已知双曲线(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△A OC的面积为________.13. (1分)(2017·南通) 四边形ABCD内接于圆,若∠A=110°,则∠C=________度.14. (1分)(2018·镇江模拟) 已知DB是⊙C的直径,延长DB到点A,使得,PD为⊙C的切线,PD=CD,连接AP,若,则⊙C的半径长为________.15. (1分)(2019·合肥模拟) 如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A''处,当AE⊥AB时,则A'A=________三、解答题 (共8题;共64分)16. (5分)(2017·巴中) 计算:2sin60°﹣(π﹣3.14)0+|1﹣ |+()﹣1 .17. (10分)(2018·云南) 将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.18. (10分)(2018·宜宾) 如图,已知反比例函数的图象经过点,一次函数的图象经过反比例函数图象上的点 .(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与轴、轴交于两点,与反比例函数图象的另一个交点为,连结 .求的面积.19. (10分) (2016九下·长兴开学考) 如图,在平面直角坐标系中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求a,b的值;(2)连结OM,求∠AOM的大小.20. (5分)如图,在Rt△ABC中,,D是AB的中点,过D点作AB的垂线交AC于点E,若BC=6,sinA=,求DE的长.21. (10分) (2019九上·博白期中) 元旦期间,某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若房价定为200元时,求宾馆每天的利润;(2)房价定为多少时,宾馆每天的利润最大?最大利润是多少?22. (7分)(2019·宜昌) 在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(-2,4),B(-2,-2),C(4,-2),D(4,4).(1)填空:正方形的面积为________;当双曲线与正方形ABCD有四个交点时,的取值范围是:________;(2)已知抛物线L:顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线与边DC交于点N.①点是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别求运动过程中点Q 在最高位置和最低位置时的坐标;②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求的值;③求证:抛物线L与直线的交点M始终位于轴下方.23. (7分) (2017八下·江苏期中) 如图,在平面直角坐标系中,直线y=﹣分别与x轴、y轴交于点A、B,且点A的坐标为(8,0),四边形ABCD是正方形.(1)填空:b=________;(2)点D的坐标为________;(3)点M是线段AB上的一个动点(点A、B除外),在x轴上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共64分) 16-1、17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、。
2024届河北省定州市九年级数学第一学期期末统考模拟试题含解析
![2024届河北省定州市九年级数学第一学期期末统考模拟试题含解析](https://img.taocdn.com/s3/m/d46db4c105a1b0717fd5360cba1aa81144318f90.png)
2024届河北省定州市九年级数学第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.若△ABC∽△DEF,且S△ABC:S△DEF=3:4,则△ABC与△DEF的周长比为A.3:4 B.4:3C.3:2 D.2:32.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.CB=DB C.∠ACD=∠ADC D.OM=MD3.把中考体检调查学生的身高作为样本,样本数据落在1.6~2.0(单位:米)之间的频率为0.28,于是可估计2000名体检中学生中,身高在1.6~2.0米之间的学生有()A.56 B.560 C.80 D.1504.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2 B.3C.2D.1 25.剪纸是中国特有的民间艺术.以下四个剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列图形中,中心对称图形有( )A .4个B .3个C .2个D .1个7.如图坐标系中,O (0,0),A (3,33),B (6,0),将△OAB 沿直线CD 折叠,使点A 恰好落在线段OB 上的点E 处,若OE =65,则AC :AD 的值是( )A .1:2B .2:3C .6:7D .7:88.下列事件中,为必然事件的是( )A .购买一张彩票,中奖B .打开电视,正在播放广告C .任意购买一张电影票,座位号恰好是“7排8号”D .一个袋中只装有5个黑球,从中摸出一个球是黑球9.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.64万件,设该快递公司这两个月投递总件数的月平均增长率为x ,则下列方程正确的是( )A .6(1+x )=8.64B .6(1+2x )=8.64C .6(1+x )2=8.64D .6+6(1+x )+6(1+x )2=8.6410.若点1(1,)A y -,2(2,)B y ,3(3,)C y 在反比例函数6y x =的图像上,则123,,y y y 的大小关系是( ) A .321y y y << B .213y y y << C .132y y y <<D .123y y y << 11.如图,菱形ABCD 的边长为2,∠A=60°,以点B 为圆心的圆与AD 、DC 相切,与AB 、CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为( )A .32π+B .3π+C .32π- D .232π+12.如图,在正方形ABCD 中,AB =5,点M 在CD 的边上,且DM =2,△AEM 与△ADM 关于AM 所在的直线对称,将△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,连接EF ,则线段EF 的长为( )A .34B .29C .27D .33二、填空题(每题4分,共24分)13.两个函数y ax b =+和c y x=(abc ≠0)的图象如图所示,请直接写出关于x 的不等式c ax b x +>的解集_______________.14.已知:23a b =,则22a b a b-+ 的值是_______. 15.如图,在平面直角坐标系xOy 中,四边形ODEF 和四边形ABCD 都是正方形,点F 在x 轴的正半轴上,点C 在边DE 上,反比例函数(k 0,x 0)k y x=≠>的图象过点B 、E .若1AB =,则k 的值为_____.16.设m,n分别为一元二次方程x2+2x-2 021=0的两个实数根,则m2+3m+n=______. 17.如果两个相似三角形的相似比为1:4,那么它们的面积比为_____.18.如图,坐标系中正方形网格的单位长度为1,抛物线y1=-12x2+3向下平移2个单位后得抛物线y2,则阴影部分的面积S=_____________.三、解答题(共78分)19.(8分)已知正方形中,为对角线上一点,过点作交于点,连接,为的中点,连接.(1)如图1,求证:;(2)将图1中的绕点逆时针旋转45°,如图2,取的中点,连接.问(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.(3)将图1中的绕点逆时计旋转任意角度,如图3,取的中点,连接.问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)20.(8分)天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A 处开始,沿A ﹣B ﹣C 路线对索道进行检修维护.如图:已知500AB =米,800BC =米,AB 与水平线1AA 的夹角是30︒,BC 与水平线1BB 的夹角是60︒.求:本次检修中,检修人员上升的垂直高度1CA 是多少米?(结果精确到1米,参考数据:3 1.732≈)21.(8分)如图,在平面直角坐标系中,抛物线2323333y x x =--x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点()4,E n 在抛物线上.(1)求直线AE 的解析式.(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当PCE ∆的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是线段CP 上的一点,点N 是线段CD 上的一点,求KM MN NK ++的最小值.(3)点G 是线段CE 的中点,将抛物线2323333y x x =--与x 轴正方向平移得到新抛物线y ',y '经过点D ,y '的顶点为点F ,在新抛物线y '的对称轴上,是否存在点Q ,使得FGQ ∆为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.22.(10分)为了响应国家“大众创业、万众创新”的双创政策,大学生小王与同学合伙向市政府申请了10万元的无息创业贷款,他们用这笔贷款,注册了一家网店,招收了6名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为3500元,该网店每月还需支付其它费用0.9万元.开工后的第一个月,小王他们将该电子产品的销售单价定为6元,结果当月销售了1.8万件. (1)小王他们第一个月可以偿还多少万元的无息贷款?(2)从第二个月开始,他们打算上调该电子产品的销售单价,经过市场调研他们得出:如果单价每上涨1元,月销售量将在现有基础上减少1000件,且物价局规定该电子产品的销售单价不得超过成本价的250%.小王他们计划在第二个月偿还3.4万元的无息贷款,他们应该将该电子产品的销售单价定为多少元?23.(10分)如图,A ,B ,C 三点的坐标分别为A (1,0),B (4,3),C (5,0),试在原图上画出以点A 为位似中心,把△ABC 各边长缩小为原来的一半的图形,并写出各顶点的坐标.24.(10分)先化简,再求值,26934222m m mmm m+++⎛⎫÷++⎪--⎝⎭,其中m满足:m2﹣4=1.25.(12分)如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为35︒,吊灯底端B 的仰角为30,从C点沿水平方向前进6米到达点D,测得吊灯底端B的仰角为60︒.请根据以上数据求出吊灯AB 的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,2≈1.41,3≈1.73)26.武汉市某中学进行九年级理化实验考查,有A和B两个考查实验,规定每位学生只参加一个实验的考查,并由学生自己抽签决定具体的考查实验,小孟、小柯、小刘都要参加本次考查.(1)用列表或画树状图的方法求小孟、小柯都参加实验A考查的概率;(2)他们三人中至少有两人参加实验B的概率(直接写出结果).参考答案一、选择题(每题4分,共48分)1、C【分析】根据相似三角形面积比等于相似比的平方,周长的比等于相似比解答.【题目详解】解:∵△ABC∽△DEF,且S△ABC:S△DEF=3:4,∴△ABC与△DEF32,∴△ABC与△DEF3 2.故选C【题目点拨】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方,周长的比等于相似比.2、D【解题分析】∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;∵B为CD的中点,即CB=DB,选项B成立;在△ACM和△ADM中,∵AM=AM,∠AMC=∠AMD=90°,CM=DM,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立.而OM与MD不一定相等,选项D不成立.故选D.3、B【分析】由题意根据频率的意义,每组的频率=该组的频数:样本容量,即频数=频率×样本容量.数据落在1.6~2.0(单位:米)之间的频率为0.28,于是2 000名体检中学生中,身高在1.6~2.0米之间的学生数即可求解.【题目详解】解:0.28×2000=1.故选:B.【题目点拨】本题考查频率的意义与计算以及频率的意义,注意掌握每组的频率=该组的频数 样本容量.4、B【分析】连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.【题目详解】连接OA,∵∠ABC=30°,∴∠AOC=60°,∵PA是圆的切线,∴∠PAO=90°,∵tan∠AOC =PA OA,∴PA= tan60°×1=3.故选B.【题目点拨】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.5、B【解题分析】根据轴对称图形的定义以及中心对称图形的定义分别判断即可得出答案.【题目详解】解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;B、此图形是轴对称图形,也是中心对称图形,故此选项正确;C、此图形不是轴对称图形,也不是中心对称图形,故此选项错误;D、此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:B.【题目点拨】此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.6、B【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行解答.【题目详解】第一、二、三个图形是中心对称图形,第四个图形是轴对称图形,不是中心对称图形.综上所述,是中心对称图形的有3个.故答案选B.【题目点拨】本题考查了中心对称图形,解题的关键是熟练的掌握中心对称图形的定义.7、B【分析】过A作AF⊥OB于F,如图所示:根据已知条件得到AF=13,OF=1,OB=6,求得∠AOB=60°,推出△AOB 是等边三角形,得到∠AOB=∠ABO=60°,根据折叠的性质得到∠CED=∠OAB=60°,求得∠OCE=∠DEB,根据相似三角形的性质得到BE=OB﹣OE=6﹣65=245,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,于是得到结论.【题目详解】过A作AF⊥OB于F,如图所示:∵A(1,3),B(6,0),∴AF=3,OF=1,OB=6,∴BF=1,∴OF=BF,∴AO=AB,∵tan∠AOB=AFOF=,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∵∠OCE+∠COE=∠OCE+60°=∠CED+∠DEB=60°+∠DEB,∴∠OCE=∠DEB,∴△CEO∽△EDB,∴OEBD=CEED=COBE,∵OE=65,∴BE=OB﹣OE=6﹣65=245,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,则656ab b=-,6245a ab-=,∴6b=10a﹣5ab①,24a=10b﹣5ab②,②﹣①得:24a﹣6b=10b﹣10a,∴23ab=,即AC:AD=2:1.故选:B.【题目点拨】本题考查了翻折变换-折叠问题,相似三角形的判定和性质,等边三角形的判定和性质,证得△AOB是等边三角形是解题的关键.8、D【分析】根据必然事件的概念对各选项分析判断即可.【题目详解】解:A、购买一张彩票,有可能中奖,也有可能不中奖,是随机事件,故A不合题意;B 、打开电视,可能正在播放广告,也可能在播放其他节目,是随机事件,故B 不合题意;C 、购买电影票时,可能恰好是“7排8号”,也可能是其他位置,是随机事件,故C 不合题意;D 、从只装有5个黑球的袋子中摸出一个球,摸出的肯定是黑球,是必然事件,故D 符合题意; 故选D . 【题目点拨】本题主要考查确定事件;在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫做必然发生的事件,简称必然事件. 9、C【分析】设该快递公司这两个月投递总件数的月平均增长率为x ,根据今年8月份与10月份完成投递的快递总件数,即可得出关于x 的一元二次方程,此题得解.【题目详解】解:设该快递公司这两个月投递总件数的月平均增长率为x , 根据题意得:6(1+x )2=8.1. 故选:C . 【题目点拨】此题主要考查一元二次方程的应用,解题的关键是熟知增长率的问题. 10、C【解题分析】根据点A 、B 、C 分别在反比例函数上,可解得1y 、2y 、3y 的值,然后通过比较大小即可解答. 【题目详解】解:将A 、B 、C 的横坐标代入反比函数6y x=上, 得:y 1=-6,y 2=3,y 3=2, 所以,132y y y <<; 故选C . 【题目点拨】本题考查了反比例函数的计算,熟练掌握是解题的关键. 11、A【题目详解】解:设AD 与圆的切点为G ,连接BG , ∴BG ⊥AD ,∵∠A=60°,BG ⊥AD ,∴∠ABG=30°,在直角△ABG 中,,AG=1,∴圆B ,∴S△ABG=1132⨯⨯=32,在菱形ABCD中,∵∠A=60°,则∠ABC=120°,∴∠EBF=120°,∴S阴影=2(S△ABG﹣S扇形ABG)+S扇形FBE=23303120(3)2()2360360ππ⨯⨯-+=32π+.故选A.考点:1.扇形面积的计算;2.菱形的性质;3.切线的性质;4.综合题.12、A【分析】连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD=AB=1,CM=2,利用勾股定理即可得到,Rt△BCM中,BM=34,进而得出EF的长.【题目详解】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF =BM .∵四边形ABCD 是正方形, ∴BC =CD =AB =1. ∵DM =2, ∴CM =2.∴在Rt △BCM 中,BM ==∴EF 故选:A . 【题目点拨】本题考查正方形的性质、三角形的判定和性质,关键在于做好辅助线,熟记性质.二、填空题(每题4分,共24分) 13、30x -<<或1x >;【分析】由题意可知关于x 的不等式cax b x+>的解集实际上就是一次函数的值大于反比例函数的值时自变量x 的取值范围,由于反比例函数的图象有两个分支,因此可以分开来考虑. 【题目详解】解:关于x 的不等式cax b x+>的解集实际上就是一次函数的值大于反比例函数的值时自变量x 的取值范围,观察图象的交点坐标可得:30x -<<或1x >. 【题目点拨】本题考查一次函数的图象和性质、反比例函数的图象和性质以及一次函数、反比例函数与一次不等式的关系,理解不等式与一次函数和反比例函数的关系式解决问题的关键. 14、12-【分析】根据已知等式设a=2k,b=3k,代入式子可求出答案.【题目详解】解:由23a b =,可设a=2k ,b=3k ,(k ≠0), 故:222341222382a b k k k b b k k k --⨯-===-++⨯, 故答案:12-.【题目点拨】此题主要考查比例的性质,a 、b 都用k 表示是解题的关键.15【分析】设正方形ODEF 的边长为a ,则E ()a a ,,B ()11a +,,再代入反比例函数ky x=求出k 的值即可. 【题目详解】设正方形ODEF 的边长为a ,则E ()a a ,,B ()11a +,, ∵点B 、E 均在反比例函数ky x=的图象上, ∴11k a a k a ⎧=⎪⎪⎨⎪+=⎪⎩解得:12a +=或12a =(舍去),当a =时,221322k a ⎛+=== ⎝⎭.【题目点拨】本题是反比例函数与几何的综合,考查了反比例函数图象上点的坐标特点,正方形的性质,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 16、1.【分析】根据一元二次方程的解结合根与系数的关系即可得出m 2+2m=2021、m+n=-2,将其代入m 2+3m+n 中即可求出结论.【题目详解】∵m ,n 分别为一元二次方程x 2+2x-2018=0的两个实数根, ∴m 2+2m=2021,m+n=-2,∴m 2+3m+n=m 2+2m+(m+n )=1+(-2)=1. 故答案为1. 【题目点拨】本题考查了根与系数的关系以及一元二次方程的解,根据一元二次方程的解结合根与系数的关系即可得出m 2+2m=1、m+n=-2是解题的关键. 17、1:1【解题分析】根据相似三角形的性质:相似三角形的面积比等于相似比的平方即可解得. 【题目详解】∵两个相似三角形的相似比为1:4, ∴它们的面积比为1:1. 故答案是:1:1.【题目点拨】考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.18、1【解题分析】根据已知得出阴影部分即为平行四边形的面积.【题目详解】解:根据题意知,图中阴影部分的面积即为平行四边形的面积:2×2=1.故答案是:1.【题目点拨】本题考查了二次函数图象与几何变换.解题关键是把阴影部分的面积整理为规则图形的面积.三、解答题(共78分)19、 (1)见解析;(2)见解析;(3)见解析.【解题分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC,得出△MEC是等腰直角三角形,就可以得出结论.【题目详解】(1)在中,为的中点,∴.同理,在中,.∴.(2)如图②,(1)中结论仍然成立,即EG=CG.理由:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.∴∠AMG=∠DMG=90°.∵四边形ABCD是正方形,∴AD=CD=BC=AB,∠ADG=∠CDG.∠DAB=∠ABC=∠BCD=∠ADC=90°.在△DAG和△DCG中,,∴△DAG≌△DCG(SAS),∴AG=CG.∵G为DF的中点,∴GD=GF.∵EF⊥BE,∴∠BEF=90°,∴∠BEF=∠BAD,∴AD∥EF,∴∠N=∠DMG=90°.在△DMG和△FNG中,,∴△DMG≌△FNG(ASA),∴MG=NG.∵∠DA∠AMG=∠N=90°,∴四边形AENM是矩形,∴AM=EN,在△AMG和△ENG中,,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG;(3)如图③,(1)中的结论仍然成立.理由:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN⊥AB于N.∵MF∥CD,∴∠FMG=∠DCG,∠MFD=∠CDG.∠AQF=∠ADC=90°∵FN⊥AB,∴∠FNH=∠ANF=90°.∵G为FD中点,∴GD=GF.在△MFG和△CDG中,∴△CDG≌△MFG(AAS),∴CD=FM.MG=CG.∴MF=AB.∵EF⊥BE,∴∠BEF=90°.∵∠NHF+∠HNF+∠NFH=∠BEF+∠EHB+∠EBH=180°,∴∠NFH=∠EBH.∵∠A=∠ANF=∠AMF=90°,∴四边形ANFQ是矩形,∴∠MFN=90°.∴∠MFN=∠CBN,∴∠MFN+∠NFE=∠CBN+∠EBH,∴∠MFE=∠CBE.在△EFM和△EBC中,∴△EFM≌△EBC(SAS),∴ME=CE.,∠FEM=∠BEC,∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形,∵G为CM中点,∴EG=CG,EG⊥CG.【题目点拨】考查了正方形的性质的运用,矩形的判定就性质的运用,旋转的性质的运用,直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键. 20、检修人员上升的垂直高度1CA 为943米.【解题分析】如图,过点B 作1BH AA ⊥于点H ,在Rt ΔABH 中先求出BH 的长,继而求出A 1B 1的长,一次方程的应用等知识,弄清是法运算,最后选择使原式有意义有在1Rt ΔBB C 中,根据三角函数求出B 1C 的长,即可求得结论. 【题目详解】如图,过点B 作1BH AA ⊥于点H . 在Rt ΔABH 中,AB 500=,BAH 30∠︒=,11BH AB 50025022∴==⨯=(米), 11A B BH 250∴==(米),在1Rt ΔBB C 中,BC 800=,1CBB 60∠︒=,11B C 3sin CBB sin60BC ∠︒∴===, 133B C BC 800400322∴===, ∴检修人员上升的垂直高度1111CA CB A B 4003250943=+=≈(米)答:检修人员上升的垂直高度1CA 为943米.【题目点拨】本题考查了解直角三角形的应用,添加辅助线,构建直角三角形是解题的关键. 21、(1)33y x =(2)3;(3)存在,点Q 的坐标为43221-+或43221--或(3,23)或23(3,. 【解题分析】 【分析】(1)求出点A 、B 、 E 的坐标,设直线AE 的解析式为y kx b =+ ,将点A 和点E 的坐标代入即可;(2)先求出直线CE 解析式,过点P 作//yPF轴,交CE 与点F ,设点P 的坐标为(,3322333)xxx--,则点F 2333(,)x x - ,从而可表示出△E PC 的面积,利用二次函数性质可求出x 的值,从而得到点 P 的坐标,作点K 关于CD 和CP 的对称点G 、H ,连接G 、 H 交CD 和CP 与N 、M ,当点O 、N 、 M 、H 在一条直线上时,KM+MN+NK 有最小值,最小值= GH ,利用勾股定理求出GH 即可;(3)由平移后的抛物线经过点D ,可得到点F 的坐标,利用中点坐标公式可求得点 G 的坐标,然后分为FG FQ GF GQ QG QF =、=、= 三种情况讨论求解即可.【题目详解】解:(1)2232333323)1)(3)3y x x x x x x =-=--=+- (1,0),(3,0)A B ∴-当4x =时,323531643y ==53E ∴ 设直线AE 的解析式为y kx b =+ ,将点A 和点E 的坐标代入得05343k b k b -+=⎧⎪⎨+=⎪⎩解得3333k b ⎧=⎪⎪⎨⎪=⎪⎩所以直线AE 的解析式为3333y x =+. (2)设直线CE 的解析式为3y mx =- ,将点E 的坐标代入得:53433m -=解得:233m =∴直线CE 的解析式为2333y x =-如图,过点P 作//y PF 轴,交 CE 与点F设点P 的坐标为2(3323x x x ,则点F 233(x x 则FP =22233233433(33333)3x x x x x --+=- 2234323831)2(4EPCx x x Sx ∴=⨯⨯= ∴当8332232()x ===⨯- 时,△EPC 的面积最大, 23234343333x x -==- (2,3)P ∴如图2所示:作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 与N 、MK 是CB 的中点,33(,2K ∴ 3tan KCP ∴∠= OD =1, OC =333tan OCD ∴∠= 30OCD KCP ∴∠∠︒==30KCD ∴∠︒=K 是BC 的中点,∠OCB =60°OC CK ∴=∴点O 与点K 关于CD 对称∴点G 与点O 重合∴点G(0,0)点H 与点K 关于CP 对称∴点H 的坐标为333(,22- KM MN NK MH MN GN +----∴当点O 、N 、 M 、H 在条直线上时,KM+MN+NK 有最小值,最小值=GH22333()()322GH ∴=+= KM MN NK ∴++的最小值为 3.(3)如图'y 经过点D ,'y 的顶点为点F ∴点43(3,)F 点G 为 CE 的中点,3)G ∴ 22532211()33FG ∴=+-= 当FG =FQ 时,点 (3,432213)Q -+或'43221Q -- 当GF =GQ 时,点 F 与点''Q 关于直线3y = 对称 ∴点''(3,23)Q当QG =QF 时,设点 1Q 的坐标为(3)a , 由两点间的距离公式可得:224331()3a a =+- ,解得235a =- ∴点1Q 的坐标为23(3, 综上所述,点Q 的坐标为43221)-+ 或43221-- 或(3,23) 或23(3,) 【题目点拨】本题考查了二次函数的图像与性质的应用,涉及的知识点主要有待定系数法求一次函数的解析式、三角函数、勾股定理、对称的坐标变换、两点间的距离公式、等腰三角形的性质及判定,综合性较强,灵活利用点坐标表示线段长是解题的关键.22、(1)0.6万元;(2)2元【分析】(1)根据利润=单件利润×数量﹣员工每人每月的工资×员工数﹣其它费用,即可求出结论;(2)设他们将该电子产品的销售单价定为x元,则月销售量为[12000﹣1000(x﹣6)]件,根据第二个月的利润为3.4万元,即可得出关于x的一元二次方程,即可求解.【题目详解】(1)(6﹣4)×12000﹣3500×6﹣9000=6000(元),6000元=0.6万元.答:小王他们第一个月可以偿还0.6万元的无息贷款.(2)设他们将该电子产品的销售单价定为x元,则月销售量为[12000﹣1000(x﹣6)]件,依题意,得:(x﹣4)[12000﹣1000(x﹣6)]﹣3500×6﹣9000=34000,整理,得:x2﹣22x+160=0,解得:x1=2,x2=1.∵4×250%=10,1>10,∴x=2.答:他们应该将该电子产品的销售单价定为2元.【题目点拨】本题主要考查一元二次方程的实际应用,根据“利润=单件利润×数量﹣员工每人每月的工资×员工数﹣其它费用”,列出方程,是解题的关键.23、各顶点坐标分别为A(1,0),B′(2.5,1.5),C′(3,0)或A(1,0),B″(-0.5,-1.5),C″(-1,0).【解题分析】根据题意,分别从AB,AC上截取它的一半找到对应点即可.【题目详解】如答图所示,△AB′C′,△AB″C″即是所求的三角形(画出一种即可).各顶点坐标分别为A(1,0),B′(2.5,1.5),C′(3,0)或A(1,0),B″(-0.5,-1.5),C″(-1,0).【题目点拨】本题考查了画位似图形.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.24、m3m+,﹣12【分析】先根据分式的混合运算顺序和运算法则化简原式,再求出符合条件的m的值,从而代入计算可得.【题目详解】解:原式=2(3)2mm+-÷232m mm+-=2(3)22(3) m mm m m+--+=m3 m+,∵m2﹣4=1且m≠2,∴m=﹣2,则原式=232-+-=﹣12.【题目点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.25、吊灯AB的长度约为1.1米.【分析】延长CD交AB的延长线于点E,构建直角三角形,分别在两个直角三角形△BDE和△AEC中利用正弦和正切函数求出AE长和BE长,即可求解.【题目详解】解:延长CD交AB的延长线于点E,则∠AEC=90°,∵∠BDE=60°,∠DCB=30°,∴∠CBD=60°﹣30°=30°,∴∠DCB=∠CBD,∴BD=CD=6(米)在Rt△BDE中,sin∠BDE=BE BD,∴BE=BD•sin∠BDE═6×sin60°=3≈5.19(米),DE=12BD=3(米),在Rt△AEC中,tan∠ACE=AE CE,∴AE=CE•tan∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),∴吊灯AB的长度约为1.1米.【题目点拨】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.26、(1)14;(2)12【分析】(1)先画出树状图,得出所有等情况数和小孟、小柯都参加实验A考查的情况数,再根据概率公式即可得出答案;(2)根据每人都有2种选法,得出共有8种等情况数,他们三人中至少有两人参加实验B的有4种,再根据概率公式即可得出答案.【题目详解】解:(1)画树状图如图所示:∵两人的参加实验考查共有四种等可能结果,而两人均参加实验A考查有1种,∴小孟、小柯都参加实验A考查的概率为14.(2)共有8种等情况数,他们三人中至少有两人参加实验B的有4种,所以他们三人中至少有两人参加实验B的概率是41 82 .故答案为:12.【题目点拨】本题考查了数据统计的知识,中考必考题型,重点需要掌握树状图的画法.。
2019年保定市定州市九年级上期末数学模拟试卷有答案(PDF版)
![2019年保定市定州市九年级上期末数学模拟试卷有答案(PDF版)](https://img.taocdn.com/s3/m/f38ebc824693daef5ef73d90.png)
2018-2019学年河北省保定市定州市九年级(上)期末数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4B.﹣4C.2D.±22.如果⊙O的半径为7cm,圆心O到直线l的距离为d,且d=5cm,那么⊙O和直线l的位置关系是()A.相交B.相切C.相离D.不确定3.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°4.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小5.如图,AB∥CD,OH分别与AB、CD交于点F、H,OG分别与AB、CD交于点E、G,若,OF=12,则OH的长为()A.39B.27C.12D.266.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.35°B.45°C.55°D.65°7.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B 作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4B.2C.3D.2.58.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8B.12C.16D.209.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S1 10.已知关于x的方程,若a为正实数,则下列判断正确的是()A.有三个不等实数根B.有两个不等实数根C.有一个实数根D.无实数根11.如图,OA在x轴上,OB在y轴上,OA=4,OB=3,点C在边OA上,AC=1,⊙P 的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k的值是()A.B.C.D.﹣212.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E 为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)二.填空题(共6小题,满分18分,每小题3分)13.对于反比例函数与二次函数y=﹣x2+3,请说出它们的两个相同点①,②;再说出它们的两个不同点①,②.14.如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m、与旗杆相距22m,则旗杆的高为.15.如图是一个可以自由转动的转盘,如表是一次活动中的一组统计数据:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701转动转盘一次,落在“铅笔”的概率约是(结果保留小数点后一位).16.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=8,那么BD的值为.17.如图,正比例函数y=kx(k>0)与反比例函数的图象相交于A,C两点,过A作x轴的垂线交x轴于B,连接BC,则△ABC的面积为.18.如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),若DE⊥B′C′,则∠α=°.三.解答题(共8小题,满分66分)19.如图,在△ABC中,D、E分别在AB与AC上,且AD=5,DB=7,AE=6,EC=4.求证:△ADE∽△ACB.20.如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与AB相切于点M,与CD相切于点N(1)求证:∠AOC=135°;(2)若NC=3,BC=2,求DM的长.21.如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B (﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.22.有4个完全一样的小球,上面分别标着数字,2,1,﹣3,﹣4.现随机摸出一个小球后不放回,将该小球上的数字记为m,再随机地摸出一个小球,将小球上的数字记为n.(1)请列表或画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.23.如图8×8正方形网格中,点A、B、C和O都为格点.(1)利用位似作图的方法,以点O为位似中心,可将格点三角形ABC扩大为原来的2倍.请你在网格中完成以上的作图(点A、B、C的对应点分别用A′、B′、C′表示);(2)当以点O为原点建立平面坐标系后,点C的坐标为(﹣1,2),则A′、B′、C′三点的坐标分别为:A′:B′:C′:.24.阅读下列材料:实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小带根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y 是时间x 的函数,其中y 表示血液中酒精含量(毫克/百毫升),x 表示饮酒后的时间(小时).下表记录了6小时内11个时间点血液中酒精含量y (毫克/百毫升)随饮酒后的时间x (小时)(x >0)的变化情况.饮酒后的时间x (小时) (123456)…血液中酒精含量y (毫克/百毫升)…150********…下面是小带的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y 随时间x 变化的函数图象;(2)观察表中数据及图象可发现此函数图象在直线两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完250毫升低度白酒,第二天早上7:00能否驾车去上班?请说明理由.25.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.26.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x秒.(1)当x为何值时,PQ∥BC;(2)是否存在某一时刻,使△APQ∽△CQB?若存在,求出此时AP的长;若不存在,请说理由;(3)当CQ=10时,求的值.参考答案一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:∵点M(a,2a)在反比例函数y=的图象上.∴2a=.∴解得:a=±2,故选:D.2.【解答】解:∵⊙O的半径为7cm,圆心O到直线l的距离为d,且d=5cm,∴5<7,∴直线l与⊙O的位置关系是相交,故选:A.3.【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.4.【解答】解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;故选:D.5.【解答】解:∵EF∥GH,∴==,∴=,∴FH=27,∴OH=OF+FH=12+27=39,故选:A.6.【解答】解:由题意可知:∠DOB=85°,∵△DCO≌△BAO,∴∠D=∠B=40°,∴∠AOB=180°﹣40°﹣110°=30°∴∠α=85°﹣30°=55°故选:C.7.【解答】解:连接DO,∵PD与⊙O相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴===,设PA=x,则=,解得:x=4,故PA=4.故选:A.8.【解答】解:根据题意得,=,解得,m=20.故选:D.9.【解答】解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.=;∴S扇形AOCS扇形BOC=.在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,=,S弓形==,∴S△OBC>>,∴S2<S1<S3.故选:B.10.【解答】解:方程可化为x2﹣4x+5=﹣a(+2),所以,方程的解的个数等于函数y=x2﹣4x+5与y=﹣a(+2)的交点的个数,函数y=x2﹣4x+5的图象经过第一、二象限,∵a是正实数,∴﹣a是负实数,∴y=﹣a(+2)的图象位于第二、四象限,两个函数图象一定有一个交点,∴方程有一个实数根.故选:C.11.【解答】解:作PM⊥AB于M,PN⊥x轴于N,如图,设⊙P的半径为r,∵⊙P与边AB,AO都相切,∴PM=PN=r,∵OA=4,OB=3,AC=1,∴AB==5,+S△P AC=S△ABC,∵S△P AB∴•5r+•r•1=•3•1,解得r=,∴BN=,∵OB=OC,∴△OBC为等腰直角三角形,∴∠OCB=45°,∴NC=NB=,∴ON=3﹣=,∴P点坐标为(,﹣),把P(,﹣)代入y=得k=×(﹣)=﹣.故选:A.12.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;故选:B.二.填空题(共6小题,满分18分,每小题3分)13.【解答】解:不唯一,如:相同点:①都过点(﹣1,2),②在第二象限,函数值都随着自变量的增大而增大;不同点:①图象的形状不同;②自变量的取值范围不同.14.【解答】解:如图,AD=8m,AB=30m,DE=3.2m;由于DE∥BC,则△ADE∽△ABC,得:,即,解得:BC=12m,故旗杆的高度为12m.15.【解答】解:转动转盘一次,落在“铅笔”的概率约是0.7.故答案为0.7.16.【解答】解:∵AB=BC,∠ABC=120°,∴∠C=30°,∴∠D=30°,∵AD为⊙O的直径,∴∠ABD=90°,∴AB=AD=4,∴BD==4,故答案为:4.17.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,=2S△AOB=2××|k|=1.依题意有S△ABC故答案为:1.18.【解答】解:DE与B′C′相交于O点,如图,∵五边形ABCDE为正五边形,∴∠B=∠BAE=∠E==108°,∵正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),∴∠BAB′=α,∠B′=∠B=108°,∵DE⊥B′C′,∴∠B′OE=90°,∴∠B′AE=360°﹣∠B′﹣∠E﹣∠B′OE=360°﹣108°﹣108°﹣90°=54°,∴∠BAB′=∠BAE﹣∠B′AE=108°﹣54°=54°,即∠α=54°.故答案为54.三.解答题(共8小题,满分66分)19.【解答】证明:∵AD=5,DB=7,AE=6,EC=4,∴AB=5+7=12,AC=6+4=10,∴====,∴=,又∵∠A=∠A,∴△ADE∽△ACB.20.【解答】解:(1)如图,作OE⊥AC于E,连接OM,ON.∵⊙O与AB相切于点M,与CD相切于点N,∴OM⊥AB,ON⊥CD,∵OA平分∠BAC,OE⊥AC,∴OM=OE,∴AC是⊙O的切线,∵ON=OE,ON⊥CD,OE⊥AC,∴OC平分∠ACD,∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠AOC=180°﹣(∠DAC+∠ACD)=180°﹣45°=135°.(2)∵AD,CD,AC是⊙O的切线,M,N,E是切点,∴AM=AE,DM=DN,CN=CE=3,设DM=DN=x,AM=AE=y,∵AB=AC,∴BD=3﹣x,在Rt△BDC中,∵BC2=BD2+CD2,∴20=(3﹣x)2+(3+x)2,∴x=1或﹣1(舍弃)∴DM=1.21.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),=S△AOC+S△BOC=×3×1+×3×4=7.5;∴S△AOB(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.22.【解答】解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3);(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第第二、三、四象限的有:(﹣3,﹣4),(﹣4,﹣3),∴所选出的m,n能使一次函数y=mx+n的图象经过第第二、三、四象限的概率==.23.【解答】解:(1)如图,△A′B′C′就是所求作的三角形;(4分)(2)A′:(4,﹣4),B′:(4,0)C′:(2,﹣4).(7分)24.【解答】解:(1)图象如图所示,(2)由函数图象知当x>时,y与x成反比例函数关系,设y=,将点(5,45)代入,得:k=225,∴y=;(3)不能.理由如下:把y=20代入反比例函数y=得x=11.25.∵晚上20:30经过11.25小时为第二天早上7:45,∴第二天早上7:45以后才可以驾车上路,∴第二天早上7:00不能驾车去上班.25.【解答】(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.26.【解答】解:(1)由题可得AP=4x,CQ=3x.∵BA=BC=20,AC=30,∴BP=20﹣4x,AQ=30﹣3x.若PQ∥BC,则有△APQ∽△ABC,∴=,∴=,解得:x=.∴当x=时,PQ∥BC;(2)存在.∵BA=BC,∴∠A=∠C.只需=.此时=,解得:x=,∴AP=4x=;(3)当CQ=10时,3x=10,∴x=,∴AP=4x=,∴===.。
2019-2020学年九年级数学上学期期末原创卷A卷(河北)(考试版)【测试范围:冀教版九上全册、九下全册】
![2019-2020学年九年级数学上学期期末原创卷A卷(河北)(考试版)【测试范围:冀教版九上全册、九下全册】](https://img.taocdn.com/s3/m/e26d4813bd64783e08122b0c.png)
数学试题第1页(共6页)数学试题第2页(共6页)绝密★启用前2019-2020学年上学期期末原创卷A 卷九年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版九上全册、九下全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.二次函数21(1)22y x =-+-的顶点坐标是A .(12)--,B .(12)-,C .(12),D .(12)-,2.将图①中的小正方体沿箭头方向平移到图②位置,下列说法正确的是A .图①的主视图和图②的主视图相同B .图①的主视图与图②的左视图相同C .图①的左视图与图②的左视图相同D .图①的俯视图与图②的俯视图相同3.已知x =1是一元二次方程x 2+mx +2=0的一个解,则m 的值是A .-3B .3C .0D .0或34.下列事件中:①在排球比赛中,强队战胜弱队;②掷骰子,五点朝上;③任取两个正整数,其和大于1;④长为4,8,11的三条线段能围成一个三角形,其中确定事件有A .1个B .2个C .3个D .4个5.如图,⊙O 的半径为5,△ABC 是⊙O 的内接三角形,连接OB 、OC .若∠BAC 与∠BOC 互补,则弦BC 的长为A .B .C .D .6.某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是A .53,53B .53,56C .56,53D .56,567.如图,在平面直角坐标系中,函数y =kx 与1y x =的图象交于A ,B 两点,过A 作y 轴的垂线,交函数2y x=(x >0)的图象于点C ,连接BC ,则△ABC 的面积为A .1B .2C .3D .48.将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是A .2(2)8y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--9.甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是队员平均成绩方差甲9.72.12乙9.60.56丙9.70.56丁9.6 1.34A .甲B .乙C .丙D .丁数学试题第3页(共6页)数学试题第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………10.如图,已知点M为平行四边形ABCD边AB的中点,线段CM交BD于点E,S△BEM=2,则图中阴影部分的面积为A.5B.4C.8D.611.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则cos∠BDE的值是A.3B.14C.13D.412.A、B、C、D四名同学随机分为两组,两个人一组去參加辩论赛,问A、B两人恰好分到一组的概率A.14B.13C.16D.1213.如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是A.DO∥AB B.△ADE是等腰三角形C.DE⊥AC D.DE是⊙O的切线14.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是A.12B.13C.49D.5915.如图,在半径为6的⊙O中,正六边形ABCDEF与正方形AGDH都内接于⊙O,则图中阴影部分的面积为A.27-3B.3C.54-3D.5416.抛物线y=-x2+bx+3的对称轴为直线x=-1.若关于x的一元二次方程-x2+bx+3-t=0(t为实数)在-2<x<3的范围内有实数根,则t的取值范围是A.-12<t≤3B.-12<t<4C.-12<t≤4D.-12<t<3第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分)17.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧 BC的长度为__________.18.如图,圆锥的底面半径OB长为5cm,母线AB长为15cm,则这个圆锥侧面展开图的圆心角α为__________度.19.如图是抛物线形拱桥,P处有一照明灯,水面OA宽4m,从O、A两处双测P处,仰角分别为α、β,且tanα=12,tanβ=32,以O为原点,OA所在直线为x轴建立直角坐标系.P点坐标为__________;若水面上升1m,水面宽为__________m.数学试题第5页(共6页)数学试题第6页(共6页)三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)关于x 的一元二次方程210x mx m -+-=.(1)求证:方程总有两个实数根;(2)若方程有一根大于3,求m 的取值范围.21.(本小题满分9分)如图,在一居民楼AB 和塔CD 之间有一棵树EF ,从楼顶A 处经过树顶E 点恰好看到塔的底部D 点,且俯角α为38°.从距离楼底B 点2米的P 处经过树顶E 点恰好看到塔的顶部C 点,且仰角β为28°.已知树高EF =8米,求塔CD 的高度.(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)22.(本小题满分9分)如图,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象相交于A 、B 两点且点A 的坐标为(3,1),点B 的坐标(-1,n ).(1)分别求两个函数的解析式;(2)求△AOB 的面积.23.(本小题满分9分)如图,在四边形ABCD 中,AC 平分∠DAB ,AC 2=AB ·AD ,∠ADC =90°,点E 为AB 的中点.(1)求证:△ADC ∽△ACB ;(2)若AD =2,AB =3,求ACAF的值.24.(本小题满分10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是多少;(2)如果小明将“求助”留在第二题使用,那么小明顺利通关的概率是多少.25.(本小题满分10分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作DF ⊥AC ;垂足为点F .(1)求证:DF 为⊙O 的切线;(2)若⊙O 的半径为2,∠CDF =22.5°,求阴影部分的面积.26.(本小题满分11分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y =mx +n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.。
保定市定州市九年级上册期末数学试卷(有答案)
![保定市定州市九年级上册期末数学试卷(有答案)](https://img.taocdn.com/s3/m/a29be76702020740bf1e9b25.png)
2019-2020学年河北省保定市定州市九年级(上)期末数学试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知反比例函数y=(k≠0)的图象经过点M(﹣2,2),则k的值是()A.﹣4B.﹣1C.1D.43.抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=24.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m5.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x﹣2)2=5B.(x+2)2=5C.(x+2)2=3D.(x﹣2)2=36.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.B.C.D.7.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°8.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.B.C.2倍D.3倍9.如图,正六边形ABCDEF内接于⊙O,M为EF的中点,连接DM,若⊙O的半径为2,则MD的长度为()A.B.C.2D.110.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.11.如图,把直角△ABC的斜边AC放在直线l上,按顺时针的方向在直线l上转动两次,使它转到△A2B1C2的位置,设AB=,∠BAC=30°,则顶点A运动到点A2的位置时,点A所经过的路线为()A.( +)πB.( +)πC.2πD.π12.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结沦:①无论x取何值,y2的值总是正数;②2a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二、填空题{本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.一元二次方程y2=2y的解为.14.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为.15.已知二次函数y=2x2﹣6x+m的图象与x轴没有交点,则m的值为.16.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为.17.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为.18.如图是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP的面积等于.三、解答下列各题(本题有8个小题,共66分)19.(6分)解方程:x2﹣6x+4=0(用配方法)20.(6分)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离B(树底)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,求树AB的高度.21.(8分)如图,小明同学用一把直尺和一块三角板测量一个光盘的直径,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,求此光盘的直径.22.(8分)四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.23.(8分)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若F是OC边上一点,且∠CBF=∠BED,求点F的坐标.24.(8分)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.25.(10分)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.26.(12分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.2019-2020学年河北省保定市定州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.已知反比例函数y=(k≠0)的图象经过点M(﹣2,2),则k的值是()A.﹣4B.﹣1C.1D.4【分析】把点(﹣2,2)代入反比例函数y=(k≠0)中,可直接求k的值.【解答】解:把点(﹣2,2)代入反比例函数y=(k≠0)中得2=所以,k=xy=﹣4,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,反比例函数的比例系数等于在函数图象上面的点的横纵坐标的乘积.3.抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=2【分析】先把一般式化为顶点式,然后根据二次函数的性质确定抛物线的对称轴方程.【解答】解:∵y=x2+2x+3=(x+1)2+2,∴抛物线的对称轴为直线x=﹣1.故选:B.【点评】本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a≠0),它的顶点坐标是(﹣,),对称轴为直线x=﹣.4.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得, =,解得:x=15.故选:C.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.5.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x﹣2)2=5B.(x+2)2=5C.(x+2)2=3D.(x﹣2)2=3【分析】移项后两边配上一次项系数一半的平方即可.【解答】解:∵x2+4x=﹣1,∴x2+4x+4=﹣1+4,即(x+2)2=3,故选:C.【点评】本题主要考查配方法解一元二次方程,掌握用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解,是解题的关键.6.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.B.C.D.【分析】首先利用列表法,列举出所有的可能,再看至少有一个骰子点数为3的情况占总情况的多少即可.【解答】解:列表如下123456 1(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知一共36种等可能结果,其中至少有一枚骰子的点数是3的有11种结果,所以至少有一枚骰子的点数是3的概率为,故选:B.【点评】此题主要考查了列表法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为3的情况数是关键.7.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.B.C.2倍D.3倍【分析】如图,作OE⊥AB于E,EO的延长线交CD于F.由△AOB∽△DOC,推出===(相似三角形的对应高的比等于相似比),由此即可解决问题.【解答】解:如图,作OE⊥AB于E,EO的延长线交CD于F.∵AB∥CD,∴FO⊥CD,△AOB∽△DOC,∴===(相似三角形的对应高的比等于相似比),∴CD=AB,故选:A.【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,记住相似三角形对应高的比等于相似比,属于中考常考题型.9.如图,正六边形ABCDEF内接于⊙O,M为EF的中点,连接DM,若⊙O的半径为2,则MD的长度为()A.B.C.2D.1【分析】连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.【解答】解:连接OM、OD、OF,如图所示:∵正六边形ABCDEF内接于⊙O,M为EF的中点,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin∠MFO=2×=,∴MD===;故选:A.【点评】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.10.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据一次函数的性质判断出a取值,再根据反比例函数的性质判断出a的取值,二者一致的即为正确答案.【解答】解:A、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a>0,相矛盾,故错误;B、由函数y=ax﹣a的图象可知a>0,﹣a>0,由函数y=(a≠0)的图象可知a<0,错误;C、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a<0,正确;D、由函数y=ax﹣a的图象可知m>0,﹣a<0,一次函数与y轴交与负半轴,相矛盾,故错误;故选:C.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.11.如图,把直角△ABC的斜边AC放在直线l上,按顺时针的方向在直线l上转动两次,使它转到△A2B1C2的位置,设AB=,∠BAC=30°,则顶点A运动到点A2的位置时,点A所经过的路线为()A.( +)πB.( +)πC.2πD.π【分析】A点所经过的弧长有两段,①以C为圆心,CA长为半径,∠ACA1为圆心角的弧长;②以B1为圆心,AB长为半径,∠A1B1A2为圆心角的弧长.分别求出两段弧长,然后相加即可得到所求的结论.【解答】解:在Rt△ABC中,AB=,∠BAC=30°,∴∠ACB=60°,AC=2;由分析知:点A经过的路程是由两段弧长所构成的:①A~A1段的弧长:L1==,②A1~A2段的弧长:L2==,∴点A所经过的路线为(+)π,故选:A.【点评】本题考查的是弧长的计算,30度角直角三角形的性质,旋转的性质,难点在于与动点知识相结合,但是只要将运动的过程分解清楚,就能顺利作答.12.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结沦:①无论x取何值,y2的值总是正数;②2a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④【分析】利用二次函数的性质得到y2的最小值为1,则可对①进行判断;把A点坐标代入y1=a(x+2)2﹣3中求出a,则可对②进行判断;分别计算x=0时两函数的对应值,再计算y2﹣y1的值,则可对③进行判断;利用抛物线的对称性计算出AB和AC,则可对④进行判断.【解答】解:∵y2=(x﹣3)2+1,∴y2的最小值为1,所以①正确;把A(1,3)代入y1=a(x+2)2﹣3得a(1+2)2﹣3=3,∴3a=2,所以②错误;当x=0时,y 1=(x+2)2﹣3=﹣,y 2=(x ﹣3)2+1=,∴y 2﹣y 1=+=,所以③错误; 抛物线y 1=a (x+2)2﹣3的对称轴为直线x=﹣2,抛物线y 2=(x ﹣3)2+1的对称轴为直线x=3,∴AB=2×3=6,AC=2×2=4,∴2AB=3AC ,所以④正确.故选:D .【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.二、填空题{本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.一元二次方程y 2=2y 的解为 y 1=0,y 2=2 .【分析】利用因式分解法解方程.【解答】解:y 2﹣2y=0,y (y ﹣2)=0,y=0或y ﹣2=0,所以y 1=0,y 2=2.故答案为y 1=0,y 2=2.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).14.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x 相同,则可列出方程为 4(1+x )2=5.8 .【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设每年的年增长率为x ,根据“由2010年的年收入4万元增加到2012年年收入5.8万元”,即可得出方程.【解答】解:设每年的年增长率为x,则2011年的年收入为4(1+x)万元,2012年的年收入为4(1+x)2万元,根据题意得:4(1+x)2=5.8.故答案为4(1+x)2=5.8.【点评】本题考查了由实际问题抽象出一元二次方程﹣﹣增长率问题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(增长为+,下降为﹣).15.已知二次函数y=2x2﹣6x+m的图象与x轴没有交点,则m的值为m>.【分析】由二次函数y=2x2﹣6x+m的图象与x轴没有交点,可知△<0,解不等式即可.【解答】解:∵二次函数y=2x2﹣6x+m的图象与x轴没有交点,∴△<0,∴(﹣6)2﹣4×2×m<0,解得:m>;故答案为:m>.【点评】本题考查了抛物线与x轴的交点,熟记:有两个交点,△>0;有一个交点,△=0;没有交点,△<0是解决问题的关键.16.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为10 .【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例可解得AB的长,而在▱ABCD中,CD=AB.【解答】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE:DA=DE:(DE+EA)=2:5∴AB=10∵在▱ABCD中AB=CD.∴CD=10.【点评】本题考查了相似三角形的判定和相似三角形的性质,以及平行四边形的性质,注意对应边的比不要搞错.17.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为 1 .【分析】根据题意扇形DAE的面积与扇形FBE的面积相等,则阴影部分的面积等于矩形面积的一半.【解答】解:∵AF=BF,AD=1,AB=2,∴AD=BF=1,∴扇形DAE的面积=扇形FBE的面积,∴阴影部分的面积=1×1=1.故答案为1.【点评】考查了扇形面积的求法以及拼图的能力.18.如图是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP的面积等于 5 .【分析】先设C(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数与的图象上,可得到A点坐标为(,b),B点坐标为(﹣,b),从而求出AB的长,然后根据三角形的面积公式计算即可.【解答】解:设C(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,∴当y=b,x=,即A点坐标为(,b),又∵点B在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即B点坐标为(﹣,b),∴AB=﹣(﹣)=,∴S△ABC=•AB•OC=••b=5.故答案为:5.【点评】本题考查的是反比例函数系数k的几何意义,即在反比例函数y=的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.三、解答下列各题(本题有8个小题,共66分)19.(6分)解方程:x2﹣6x+4=0(用配方法)【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣6x=﹣4,等式的两边同时加上一次项系数的一半的平方,得x2﹣6x+9=﹣4+9,即(x﹣3)2=5,∴x=±+3,∴x1=+3,x2=﹣+3.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20.(6分)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离B(树底)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,求树AB的高度.【分析】先过E作EF⊥BD于点E,再根据入射角等于反射角可知,∠1=∠2,故可得出∠DEC=∠AEB,由CD⊥BD,AB⊥BD可知∠CDE=∠ABE,进而可得出△CDE∽△ABE,再由相似三角形的对应边成比例即可求出大树AB的高度.【解答】解:过点E作EF⊥BD于点E,则∠1=∠2,∵∠DEF=∠BEF=90°,∴∠DEC=∠AEB,∵CD⊥BD,AB⊥BD,∴∠CDE=∠ABE=90°,∴△CDE∽△ABE,∴=,∵DE=3.2米,CD=1.6米,EB=8.4米,∴=,解得AB=4.2(米).答:树AB的高度为4.2米.【点评】本题考查的是相似三角形在实际生活中的应用、光的反射定律等知识,解答此题的关键知道入射角等于反射角,熟练掌握相似三角形的判定和性质,属于中考常考题型.21.(8分)如图,小明同学用一把直尺和一块三角板测量一个光盘的直径,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,求此光盘的直径.【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理求得OB,从而得出光盘的直径.【解答】解:如图,设光盘的圆心为O,三角板的另外两点为C,D,连接OB,OA,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的直径为6cm.【点评】本题考查了切线的性质,勾股定理,是基础知识要熟练掌握.22.(8分)四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.【分析】先利用树状图展示所有有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,再根据概率公式求出P(小亮获胜)和P(小明获胜),然后通过比较两概率的大小判断游戏的公平性.【解答】解:此游戏规则不公平.理由如下:画树状图得:共有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,所以P(小亮获胜)==;P(小明获胜)=1﹣=,因为>,所以这个游戏规则不公平.【点评】本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.23.(8分)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若F是OC边上一点,且∠CBF=∠BED,求点F的坐标.【分析】(1)根据题意可得中点D的坐标为(2,6),可求解析式,即可求k和点E的坐标;(2)由题意可证Rt△FBC∽Rt△DEB,可求CF的长,则可得OF的长,即可求点F的坐标.【解答】解:(1)在矩形OABC中,B(4,6),∴BC边中点D的坐标为(2,6),∵又曲线y=的图象经过点(2,6),∴k=12,∴解析式y=∵E点在AB上,∴E点的横坐标为4,∵反比例函数y=图象经过点E,∴E点纵坐标为3,∴E点坐标为(4,3);(2)由(1)得,BD=2,BE=3,BC=4,∵∠CBF=∠BED,∠BCF=∠DBE=90°∴Rt△FBC∽Rt△DEB,∴,即,∴CF=,∵OF=OC﹣CF∴OF=,即点F的坐标为(0,).【点评】本题考查了反比例函数综合题,反比例函数的性质,矩形的性质,相似三角形的性质和判定,熟练运用相似三角形的判定和性质是解决问题的关键.24.(8分)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.【分析】(1)欲证明PA为⊙O的切线,只需证明OA⊥AP;(2)通过相似三角形△ABC∽△PAO的对应边成比例来求线段AC的长度.21【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°.又∵OP∥BC,∴∠AOP=∠B,∴∠BAC+∠AOP=90°.∵∠P=∠BAC.∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA⊥AP.又∵OA是的⊙O的半径,∴PA为⊙O的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5,∴OA=OB=5.又∵OP=,∴在直角△APO中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°.∵∠BAC=∠P,∴△ABC∽△POA,∴=.∴=,解得AC=8.即AC的长度为8.【点评】本题考查的知识点有切线的判定与性质,三角形相似的判定与性质,得到两个22三角形中的两组对应角相等,进而得到两个三角形相似,是解答(2)题的关键.25.(10分)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x)元,今年生产的这种玩具每件的出厂价为(12+6x)元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10•0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12•0.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)﹣(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量,得到w=2(1+x)(2﹣x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【解答】解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0<x≤1);(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0<x≤1,∴w有最大值,∴当x=0.5时,w=4.5(万元).最大23答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.【点评】本题考查了二次函数的顶点式:y=a(x﹣k)2+h,(a≠0),当a<0,抛物线的开口向下,函数有最大值,当x=k,函数的最大值为h.也考查了代数式的表示和利润的含义以及配方法.26.(12分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.【分析】方法一:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标.(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP 三种情况分类讨论,然后分辨是否存在符合条件的P点.方法二:(3)用参数表示点M坐标,分类讨论三种情况,利用两点间距离公式便可求解.(4)列出点M的参数坐标,利用MO=MB求解.此问也可通过求出OB的垂直平分线与y 轴的交点得出M点.【解答】解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,24又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得:,解得,∴此抛物线的解析式为y=﹣x2+x;(3)存在;如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△P′OD中,∠P′DO=90°,sin ∠P′OD==,∴∠P′OD=60°,∴∠P′OB=∠P′OD+∠AOB=60°+120°=180°,即P′、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,25。
2023-2024学年河北省保定市定州市九年级(上)期末数学试卷+答案解析
![2023-2024学年河北省保定市定州市九年级(上)期末数学试卷+答案解析](https://img.taocdn.com/s3/m/94a2c260b5daa58da0116c175f0e7cd184251881.png)
2023-2024学年河北省保定市定州市九年级(上)期末数学试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列汽车标志中,可以看作是中心对称图形的是()A. B. C. D.2.方程的解是()A. B.C.,D.,3.下列说法正确的是()A.概率很小的事件不可能发生B.抛一枚硬币,第一次正面朝上,则正面朝上的概率为1C.必然事件发生的概率是1D.某种彩票中奖的概率是,买1000张这种彩票一定会中奖4.关于x的一元二次方程的一个根是0,则a的值是()A.0B.4C.D.4或5.一元二次方程根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根6.已知是反比例函数上一点,下列各点不在上的是()A. B. C. D.7.如图,已知点A,都在上,若,则的度数为()A.B.C.D.8.对于二次函数的图象,下列说法正确的是()A.开口向上B.当时,y有最小值是3C.对称轴是D.顶点坐标是9.若一个正六边形的周长为24,则该正六边形的边心距为()A. B.4 C. D.10.如图,AD、BC相交于点O,由下列条件不能判定与相似的是()A. B. C. D.11.受新冠肺炎疫情影响,某企业生产总值从某月份的300万元,连续两个月降至260万元,设平均降低率为x,则可列方程()A. B.C. D.12.如图,在▱ABCD中,E是BC的中点,DE,AC相交于点F,,则()A.3B.4C.5D.6二、填空题:本题共6小题,每小题3分,共18分。
13.若,则______.14.已知,是一元二次方程的两根,则______.15.在半径为2的圆中,求内接正三边形的边长为______.16.小强同学从,0,1,2,3,4这六个数中任选一个数,满足不等式的概率是______.17.往直径为52cm的圆柱形容器内装入一些水以后,截面如图,若水面宽,则水的最大深度为______18.抛物线上有、两点,则和的大小关系为:______填“>”“=”或“<”三、解答题:本题共7小题,共66分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年九年级(上)期末数学试卷
一.选择题(共15小题)
1.一元二次方程x2﹣3x﹣4=0的一次项系数是()
A.1 B.﹣3 C.3 D.﹣4
2.点P(4,﹣3)关于原点的对称点是()
A.(4,3)B.(﹣3,4)C.(﹣4,3)D.(3,﹣4)
3.下列成语表示随机事件的是()
A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔
4.下列四个点中,在反比例函数y=的图象上的是()
A.(﹣3,﹣2)B.(3,2)C.(﹣2,3)D.(﹣2,﹣3)5.若,则的值是()
A.1 B.2 C.3 D.4
6.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()
A.40°B.50°C.80°D.100°
7.给出下列函数,其中y随x的增大而减小的函数是()
①y=2x;
②y=﹣2x+1;
③y=(x<0);
④y=x2(x<1).
A.①③④B.②③④C.②④D.②③
8.如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则∠B的大小为()
A.30°B.40°C.50°D.60°
9.如图,点O是△ABC内一点、分别连接OA、OB、OC并延长到点D、E、F,使AD=2OA,BE=2OB,CF=2OC,连接DE,EF,FD.若△ABC的面积是3,则阴影部分的面积是()
A.6 B.15 C.24 D.27
10.在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆与y轴所在直线的位置关系是()
A.相离B.相切C.相交D.无法确定
11.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a 的值是()
A.B.﹣C.4 D.﹣1
12.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()
A.B.C.1 D.2
13.如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()
A.105°B.115°C.125°D.135°
14.如图,正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数y=2x2﹣4的图象上,则图中阴影部分的面积之和为()
A.6 B.8 C.10 D.12
15.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:
①a+b+c=0;
②b>2a;
③ax2+bx+c=0的两根分别为﹣3和1;
④c=﹣3a,
其中正确的命题是()
A.①②B.②③C.①③D.①③④
二.填空题(共4小题)
16.某商品原售价300元,经过连续两次降价后售价为260元,设平均每次降价的百分率为x,则满足x的方程是.
17.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.
18.如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是.
19.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.
三.解答题(共7小题)
20.已知关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根.(1)求实数k的取值范围;
(2)写出满足条件的k的最大整数值,并求此时方程的根.
21.不透明的袋子中装有4个完全相同的小球,它们的标号分别为:1、2、3、4.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取出的小球标号相同”的概率;
(2)随机摸出两个小球,用列表或画树状图的方法求出“取出的两个小球标号之和为奇数”的概率.
22.如图,已知点A(a,3)是一次函数y1=x+1与反比例函数y2=的图象的交点.(1)求反比例函数的解析式;
(2)在y轴的右侧,当y1>y2时,直接写出x的取值范围;
(3)求点A与两坐标轴围成的矩形OBAC的面积.
23.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:
x(元)15 20 30 …
y(袋)25 20 10 …
若日销售量y是销售价x的一次函数,试求:
(1)日销售量y(袋)与销售价x(元)的函数关系式;
(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?
24.如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;
(2)求证:PA=2PC;
25.如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D 作DE⊥AP交AP于E点.
(1)求证:DE为⊙O的切线;
(2)若DE=3,AC=8,求直径AB的长.
26.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N 从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.。