第17章 勾股定理单元目标检测(含答案)

合集下载

人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)

人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)

人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)(本试卷3个大题,25个小题。

满分150分,考试时间120分钟。

)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10个小题,每小题4分,共40分。

) 1.在ABC 中,AB=13,BC=5,AC=12,则ABC 的面积为( )A .60B .30C .65D .782.在ABC 中,A B C ∠∠∠、、的对边分别为a b c 、、.下列所给数据中,不能判断ABC 是直角三角形的是( )A .ABC ∠-∠=∠B .::3:4:5A BC ∠∠∠= C .222a c b -=D .9a b c =:::40:413.如图,在ABC 中,AD BC ⊥于点D ,BF 平分ABC ∠交AD 于点E ,交AC 于点F .171528AC AD BC ===,,则AE 的长等于( )A .5B .20C .203D .2534.如图,在Rt ABC △中90,6,8,ACB AC BC AD ∠=︒==平分CAB ∠交BC 于D 点,,E F 分别是,AD AC 上的动点,则CE EF +的最小值为( )A .403B .154C .245D .65.在正方形网格中,AOB ∠的位置如图所示,到AOB ∠两边距离相等的点应是( )A .M 点B .N 点C .P 点D .Q 点6.如图,在ABC 中,AB AC AD AB =⊥,交BC 于点D ,若30DAC ∠=︒,3cm =AD 则BC的长为( )A .9cmB .10cmC .6cmD .12cm7.如图,在Rt ABC △中90C ∠=︒,D 为AC 上一点.若10DA DB ==,ABD △的面积为40,则CD 的长是( )8.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,ABC 的面积为( )9.如图,在Rt ABC △中90ACB ∠=︒,AC=6,BC=8,AD 是BAC ∠的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是( )A .2.4B .4C .4.8D .510.赵爽是我国著名的数学家,“赵爽弦图”是他研究勾股定理的重要成果.古人有记载“勾三,股四,则弦五”的定理.如图,外围四个小长方形的宽相等,且邻长互相垂直,对长互相平行.若AB 的长是小长方形宽的2倍,内部小正方形面积为9,则最外围的大正方形的二、选填空题题(本题共10个小题,每小题4分,共40分。

人教版八年级下第十七章《勾股定理》单元检测题含答案

人教版八年级下第十七章《勾股定理》单元检测题含答案

《勾股定理》单元检测题一、选择题(每小题只有一个正确答案)1.在△ABC 中,, )A. ∠A=90°B. ∠B=90°C. ∠C=90°D. ∠A=∠B2.已知四个三角形分别满足下列条件:①三角形的三边之比为1:1: ;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半.其中直角三角形有( )个.A. 4B. 3C. 2D. 13.在下列四组数中,不是勾股数的一组数是( )A. 15817a b c ===,,B. 91215a b c ===,,C. 72425a b c ===,,D. 357a b c ===,,4.如图,一艘船以6海里/小时的速度从港口A 出发向东北方向航行,另一艘船以2.5海里/小时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,两船相距( )A. 13海里B. 10海里C. 6.5海里D. 5海里5.下列选项中,不能用来证明勾股定理的是( )A. B. C. D.6.如图,在ABC ∆中, 60AB AC BAC =∠=︒,,BC 边上的高8AD =,E 是AD 上的一个动点,F 是边AB 的中点,则EB EF +的最小值是( )A. 5B. 6C. 7D. 87.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?( )A. 0.4B. 0.6C. 0.7D. 0.88.如图,一只蚂蚁从棱长为1的正方体纸箱的A 点沿纸箱表面爬到B 点,那么它所爬行的最短路线的长是( )A. B. C.D. 29.已知a 、b 、c 是三角形的三边长,如果满足()26100a c -++-=,则三角形的形状是( )A. 底与腰不相等的等腰三角形B. 直角三角形C. 钝角三角形D. 等边三角形10.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( )A. ab=h 2B. a 2+b 2=2h 2C. 111a b h +=D. 222111a b h+= 二、填空题11.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是_______三角形.12.一种盛饮料的圆柱形杯子(如图),测得它的内部底面半径为2.5 cm ,高为12 cm ,吸管放进杯子里,杯口外面至少要露出4.6 cm ,则吸管的长度至少为____cm .13.如图所示的一块地,已知∠ADC =90°,AD =12m ,CD =9m ,AB =25m , BC =20m ,则这块地的面积为____________ .14.如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为_______.15.如图,OP =1,过P 作1PP OP ⊥且11PP =,根据勾股定理,得1OP =1P 作121PP OP ⊥且12PP =1,得2OP =;又过2P作232P P OP ⊥且231P P =,得OP 3=2;…依此继续,得2018OP =____, n OP =_________(n 为自然数,且n >0).三、解答题16.如图,已知正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF=14AD ,试判断△EFC 的形状.17.有一块空白地,如图,∠ADC=90°,CD =6 m ,AD =8 m ,AB =26 m ,BC =24 m .试求这块空白地的面积.18.龙梅和玉荣是草原上的好朋友,可是有一次经过一场争吵之后,两人不欢而散,龙梅的速度是12米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走的方向好像是和龙梅成直角,她的速度是23米/秒,如果她和龙梅同时停下来,而这时候她俩正好相距200米,那么她走的方向是否成直角?如果她们现在想讲和,那么原来的速度相向而行,多长时间后能相遇?.19.(2017黑龙江齐齐哈尔第23题)如图,在中,于,,,,分别是,的中点.(1)求证:,;(2)连接,若,求的长.20.已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3. 求:四边形ABCD的面积.参考答案1.A2.A3.D4.A5.D6.D7.D8.C9.B10.D11.直角12.17.613.96m21415.16.解:∵E为AB中点,∴BE=2.∴CE2=BE2+BC2=22+42=20.同理可求得,EF2=AE2+AF2=22+12=5,CF2=DF2+CD2=32+42=25.∵CE2+EF2=CF2,∴△EFC是以∠CEF为直角的直角三角形.17.96 m2.解:连接AC.∵∠ADC=90°,∴△ADC是直角三角形.∴AD2+CD2=AC2,即82+62=AC2,解得AC=10.又∵AC2+CB2=102+242=262=AB2,∴△ACB是直角三角形,∠ACB=90°∴S四边形ABCD=S Rt△ACB-S Rt△ACD=12×10×24-12×6×8=96(m2).故这块空白地的面积为96 m2.18.她们走的方向成直角,如果她们想讲和,按原来的速度相向而行,17137秒后能相遇.解析:龙梅走的路程:12×4×60=120(米),玉荣走的路程:23×4×60=160(米),∵1202+1602=2002,∴她们走的方向成直角,以原来的速度相向而行相遇的时间:200÷(12+23)=200÷76=12007=17137(秒);答:她们走的方向成直角,如果她们想讲和,按原来的速度相向而行,17137秒后能相遇.19.解析:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°,在△BDG和△ADC中,,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.20.18.解:作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA), ∴DE=AB=4,BE=AD=3.∵BC=6,∴EC=EB=3.∵DE2+CE2=32+42=25=CD2,∴△DEC为直角三角形.又∵EC=EB=3,∴△DBC为等腰三角形,DB=DC=5.在△BDA中AD2+AB2=32+42=25=BD2,∴△BDA是直角三角形.它们的面积分别为S△BDA=12×3×4=6;S△DBC=12×6×4=12.∴S四边形ABCD=S△BDA+S△DBC=6+12=18.。

人教版数学八年级下第十七章《勾股定理》单元检测题含答案分析详解

人教版数学八年级下第十七章《勾股定理》单元检测题含答案分析详解

《勾股定理》单元检测题一、选择题(每小题只有一个正确答案)1.设直角三角形的两条直角边分别为a 和b ,斜边长为c ,已知1213b c ==,,则a=( )A. 1B. 5C. 10D. 252.在下列四组数中,不是勾股数的一组数是( )A. 15817a b c ===,,B. 91215a b c ===,,C. 72425a b c ===,,D. 357a b c ===,,3.一个三角形的三边长为15,20,25,则此三角形最大边上的高为( )A. 10B. 12C. 24D. 484.如图,有一个由传感器控制的灯A 装在门上方离地高4.5 m 的墙上,任何东西只要移至距该灯5 m 及5 m 以内时,灯就会自动发光,请问一个身高1.5 m 的学生要走到离墙多远的地方灯刚好发光?( )A. 4 mB. 3 mC. 5 mD. 7 m5.下列选项中,不能用来证明勾股定理的是( )A. B. C. D.6.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为( )A. 22B. 32C. 62D. 827.如图,△ABC 中,AC =3,BC = 5,AD ⊥BC 交BC 于点D ,AD =125,延长BC 至E 使得CE =BC ,将△ABC 沿AC 翻折得到△AFC ,连接EF ,则线段EF 的长为( )A. 6B. 8C. 325D. 3238.如图,点P 是平面坐标系中一点,则点P 到原点的距离是( )A. 3B. 2C. 7D. 59.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2 , 则该半圆的半径为()A. (4+5c cmB. 9cmC. 45cm D. 62cm10.如图,长方体的底面边长分别为2cm和3cm,高为6cm. 如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要( )A. 11cm C. (8+)cm D. (7+二、填空题11.一个直角三角形的两条直角边长为6和8,则它的斜边上的高是________.12.如图所示,一段楼梯,高BC是3 m,斜边AC是5 m,如果在楼梯上铺地毯,那么至少需要地毯________.13.如图,在东西走向的铁路上有A、B两站(视为直线上的两点)相距36千米,在A、B的正北分别有C、D两个蔬菜基地,其中C到A站的距离为24千米,D到B站的距离为12千米,现要在铁路AB上建一个蔬菜加工厂E,使蔬菜基地C、D到E的距离相等,则E站应建在距A站_____千米的地方.14.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=________.15.如图,点A 、B 、O 是单位为1的正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧AmB 的中点,则△APB 的面积为_______.三、解答题16.如图,在四边形ABCD 中,AB =BC =1,CD ,DA =1,且∠B =90°.求:(1)∠BAD 的度数;(2)四边形ABCD 的面积(结果保留根号).17.如图是“赵爽弦图”,其中ABH 、BCG 、CDF 和DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,根据这个图形的面积关系,可以证明勾股定理.设AD c AE a DE b ===,,,取102c a b =-=,. ()1正方形EFGH 的面积为______,四个直角三角形的面积和为______;()2求2()a b +的值.18.如图,甲、乙两船从港口A 同时出发,甲船以30海里/时的速度向北偏东35°的方向航行,乙船以40海里/时的速度向另一方向航行,2小时后,甲船到达C 岛,乙船到达B 岛,若C,B 两岛相距100海里,则乙船航行的方向是南偏东多少度?19.如图,一架长2.5m 的梯子AB 斜靠在墙AC 上,∠C =90°,此时,梯子的底端B 离墙底C的距离BC为0.7m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?参考答案1.B2.D3.B4.A5.D6.B7.A8.A9.C10.B 11.4.812.7m13.1214.1.41516.(1)135°;(2解析:(1)∵AB=BC=1,且∠B=90°,∴∠BAC=45°,而,DA=1,∴CD2=AD2+AC2,∴△ACD是直角三角形,即∠DAC=90°,∴∠BAD=∠BAC+∠DAC=135°;(2)∵S四边形ABCD=S△ABC+S△ACD,而S△ABC=12AB×BC=12,S△ACD=12AD×,∴S四边形ABCD=S△ABC+S△ACD=12()17.4;96解:(1)∵HE=a﹣b=2,∴S正方形EFGH=HE2=4.∵AD=c=10,∴S正方形ABCD=AD2=100,∴四个直角三角形的面积和=S正方形ABCD﹣S正方形EFGH=100﹣4=96.故答案为:4;96;(2)由(1)可知四个直角三角形的面积和为96,∴4×12ab=96,解得:2ab=96.∵a2+b2=c2=100,∴(a+b)2=a2+b2+2ab=100+96=196.18.乙船航行的方向为南偏东55°.解析:由题意可知,在△ABC中,AC=30×2=60,AB=40×2=80,BC=100,∴AC2=3600,AB2=6400,BC2=10000,∴AC2+AB2=BC2,∴∠CAB=90°,又∵∠EAD=180°,∠EAC=35°,∴∠DAB=90°-∠CAE=90°-35°=55°,∴乙船航行的方向为南偏东55°.19.(1)此时梯顶A距地面的高度AC是2.4米;(2)梯子的底端B在水平方向滑动了1.3m.解析:(1)∵∠C=90°,AB=2.5,BC=0.7∴(米),答:此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,即1.52+B′C2=2.52,∴B′C=2(m)∴BB′=CB′﹣BC=2﹣0.7=1.3(m),答:梯子的底端B在水平方向滑动了1.3m.。

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)一 选择题(每小题3分 共30分)1. 如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. √2 √3 √5B. 1.5C. 32 42 52D. 1 22. 点A(−3,−4)到原点的距离为( )A. 3B. 4C. 5D. 73. 有一个直角三角形的两边长分别为3和4,则第三边的长为( )A. 5B. √7C. √5D. 5或√74.如果直角三角形两直角边的比为5∶12, 则斜边上的高与斜边的比为( ) A 60∶13B 5∶12C 12∶13D 60∶1695. 若一直角三角形两边长分别为12和5 则第三边长为( ) A .13 B .13或C .13或15D .156.一个圆桶底面直径为24cm ,高32cm ,则桶内所能容下的最长木棒为( )A .20cmB .50cmC .40cmD .45cm7.如图 小明准备测量一段水渠的深度 他把一根竹竿AB 竖直插到水底 此时竹竿AB 离岸边点C 处的距离米.竹竿高出水面的部分AD 长0.5米 如果把竹竿的顶端A 拉向岸边点C 处 竿顶和岸边的水面刚好相齐 则水渠的深度BD 为( )A .2米B .2.5米C .2.25米D .3米1.5CD8.如图, “赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形 已知大正方形面积为25 (x +y)2=49 用x y 表示直角三角形的两直角边(x >y) 下列选项中正确的是( )A. 小正方形面积为4B. x 2+y 2=5C. x 2−y 2=7D. xy =249.如图,在△ABC 中 ∠C =90° AC =4 BC =2.以AB 为一条边向三角形外部作正方形 则正方形的面积是( )A. 8B. 12C. 18D. 2010.如图 在Rt △ABC 中 ∠ACB =90° AC =3 BC =4 BE 平分∠ABC CD ⊥AB 于D BE 与CD 相交于F 则CF 的长是( )A. 1B. 43C. 53D. 2二 填空题(每题3分 共24分)11.若一个三角形的三边之比为5:12:13 且周长为60cm 则它的面积为_____cm 2. 12.如图所示 所有的四边形都是正方形 所有的三角形都是直角三角形 其中最大的正方形的边长为7cm 正方形A B C 的面积分别是28cm 210cm 214cm 则正方形D 的面积是___________2cm .13.在ABC中90C∠=︒AB=5 则222AB AC BC++=______.14.如图在△ABC中∠ABC=90° 分别以BC AB AC为边向外作正方形面积分别记为S1S2,S3若S2=4 S3=6则S1=__________.15.方程思想如图在Rt△ABC中∠C=90° BC=6cm AC=8cm 按图中所示方法将△BCD沿BD折叠使点C落在AB边的点C’处那么△ADC’的面积是_____cm2. 16.如图一架秋千静止时踏板离地的垂直高度DE=0.5m将它往前推送1.5m(水平距离BC=1.5m)时秋千的踏板离地的垂直高度BF=1m秋千的绳索始终拉直则绳索AD的长是m.17.如图小明利用升旗用的绳子测量学校旗杆BC的高度他发现绳子刚好比旗杆长11米若把绳子往外拉直绳子接触地面A点并与地面形成30°角时绳子末端D距A点还有1米那么旗杆BC的高度为米.18.在△ABC中AB=AC=5 BC=6.若点P在边AC上移动则BP的最小值是.三、解答题(满分46分,19题6分20 21 22 23 24题每题8分)19.小明将一副三角板如图所示摆放在一起发现只要知道其中一边的长就可以求出其它各边的长若已知CD=2求AC的长.20.如图折叠长方形的一边AD使点D落在边BC的点F处已知AB=8cm BC=10cm求(1)FC的长.(2)EF的长.21 (8分)如图已知∠ADC=90°AD=8 CD=6 AB=26 BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.如图 在长方形中 点在边上 把长方形沿直线折叠 点落在边上的点处。

人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)

人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)

人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.已知三角形的三条边分别为a,b,c,则下列不能判断三角形为直角三角形的是A. B. C. D.2.下列各组数是勾股数的是A. ,,B. 1,1,C. ,,D. 5,12,133.如图,中,,,,点P是BC边上的动点,则AP的长不可能是A. B. 4 C. D. 7(第3题图)(第4题图)4.如图,矩形ABCD中,,,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M为A. 2B.C.D.5.如图所示,正方形ABGF和正方形CDBE的面积分别是100和36,则以AD为直径的半圆的面积是A. B. C. D.(第5题图)(第6题图)6.如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是A. 5米B. 6米C. 7米D. 8米7.如图,在的网格中,每个小正方形的边长均为1,点A,B,C都在格点上.若BD是的高,则BD的长为A. B. C. D.(第7题图)(第9题图)8.下列命题中正确的是A. 在直角三角形中,两条边的平方和等于第三边的平方B. 如果一个三角形两边的平方差等于第三边的平方,那么这个三角形是直角三角形C. 在中,,,的对边分别为a,b,c,若,则D. 在中,若,,则9.如下图,在长方形ABCD中,,,将此长方形折叠,使点D与点B 重合,折痕为EF,则的面积为A. B. C. D.10.如下图,在中,,,,CD平分交AB于点D ,E是AC的中点,P是CD上一动点,则的最小值是A. B. 6 C. D.(第10题图)(第11题图)11.如图,透明的圆柱形容器容器厚度忽略不计的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且在离容器上部的点A处,则蚂蚁吃到饭粒需爬行的最短路程是A. B. C. D.12.勾股定理是几何中的一个重要定理,在我国古算书周髀算经中就有“若勾三、股四、则弦五”的记载。

第17章《勾股定理》单元测试卷含答案解析

第17章《勾股定理》单元测试卷含答案解析

第17章《勾股定理》单元测试卷含答案解析参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A. 4 B.8 C.10 D.12分析:利用勾股定理即可解答.解答:解:设斜边长为x,则一直角边长为x﹣2,依照勾股定理列出方程:62+(x﹣2)2=x2,解得x=10,故选C.点评:本题考查了利用勾股定明白得直角三角形的能力.2.(3分)小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是()A.小丰认为指的是屏幕的长度B.小丰的妈妈认为指的是屏幕的宽度C.小丰的爸爸认为指的是屏幕的周长D.售货员认为指的是屏幕对角线的长度考点:勾股定理的应用.分析:依照电视机的适应表示方法解答.解答:解:依照29英寸指的是荧屏对角线的长度可知售货员的说法是正确的.故选D.点评:本题考查了勾股定理的应用,解题时了解一个常识:通常所说的电视机的英寸指的是荧屏对角线的长度.3.(3分)如图中字母A所代表的正方形的面积为()A. 4 B.8 C.16 D.64考点:勾股定理.分析:依照勾股定理的几何意义解答.解答:解:依照勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,因此A=289﹣225=64.故选D.点评:能够运用勾股定理发觉并证明结论:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.运用结论能够迅速解题,节约时刻.4.(3分)将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形考点:相似三角形的性质.分析:依照三组对应边的比相等的三角形相似,依据相似三角形的性质就能够求解.解答:解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形.故选C.点评:本题要紧考查相似三角形的判定以及性质.5.(3分)一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D. 25cm考点:勾股定理.分析:设另一条直角边是a,斜边是c.依照另一条直角边与斜边长的和是49cm,以及勾股定理就能够列出方程组,即可求解.解答:解:设另一条直角边是a,斜边是c.依照题意,得,联立解方程组,得.故选D.点评:注意依照已知条件结合勾股定理列方程求解.解方程组的方法能够把①方程代入②方程得到c﹣a=1,再联立解方程组.6.(3分)适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个B.3个C.4个D. 5个考点:勾股定理的逆定理;三角形内角和定理.分析:运算出三角形的角利用定义判定或在明白边的情形下利用勾股定理的逆定理判定则可.解答:解:①,依照勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是;③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,依照勾股定理的逆定理是直角三角形,故是;⑤22+22≠42,依照勾股定理的逆定理不是直角三角形,故不是.故选A.点评:本题考查了直角三角形的定义和勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判定.7.(3分)在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形考点:勾股定理的逆定理;完全平方公式.分析:依照勾股定理的逆定理:假如三角形有两边的平方和等于第三边的平方,那么那个是直角三角形判定则可.假如有这种关系,那个确实是直角三角形.解答:解:∵(n2﹣1)2+(2n)2=(n2+1)2,∴三角形为直角三角形,故选D.点评:本题利用了勾股定理的逆定理判定直角三角形,即已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.8.(3分)直角三角形斜边的平方等于两条直角边乘积的2倍,那个三角形有一个锐角是()A.15° B.30° C.45°D.60°考点:勾股定理.分析:依照斜边的平方等于两条直角边乘积的2倍,以及勾股定理能够列出两个关系式,直截了当解答即可.解答:解:设直角三角形的两直角边是a、b,斜边是c.依照斜边的平方等于两条直角边乘积的2倍得到:2ab=c2,依照勾股定理得到:a2+b2=c2,因而a2+b2=2ab,即:a2+b2﹣2ab=0,(a﹣b)2=0∴a=b,则那个三角形是等腰直角三角形,因而那个三角形的锐角是45°.故选C.点评:已知直角三角形的边长问题,不要不记得三边的长,满足勾股定理.9.(3分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D. 12cm2考点:勾股定理;翻折变换(折叠问题).分析:依照折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就能够求解.解答:解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,依照勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.点评:本题考查了利用勾股定明白得直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.10.(3分)已知,如图,一轮船以16海里/时的速度从港口A动身向东北方向航行,另一轮船以12海里/时的速度同时从港口A动身向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D. 40海里考点:勾股定理的应用;方向角.分析:依照方位角可知两船所走的方向正好构成了直角.然后依照路程=速度×时刻,得两条船分别走了32,24.再依照勾股定理,即可求得两条船之间的距离.解答:解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32,12×2=24海里,依照勾股定理得:=40(海里).故选D.点评:熟练运用勾股定理进行运算,基础知识,比较简单.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2008•湖州)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分闻名的定理,那个定理称为勾股定理,该定理的结论其数学表达式是a2+b2=c2.考点:勾股定理的证明.专题:证明题.分析:通过图中三角形面积、正方形面积之间的关系,证明勾股定理.解答:解:用图(2)较简单,如图正方形的面积=(a+b)2,用三角形的面积与边长为c的正方形的面积表示为4×ab+c2,即(a+b)2=4×ab+c2化简得a2+b2=c2.那个定理称为勾股定理.故答案为:勾股定理、a2+b2=c2.点评:本题是用数形结合来证明勾股定理,锤炼了同学们的数形结合的思想方法.12.(3分)如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为10.考点:勾股定理;等腰三角形的性质.分析:依照等腰三角形的三线合一得BD=8,再依照勾股定理即可求出AB的长.解答:解:∵等腰△ABC的底边BC为16,底边上的高AD为6,∴BD=8,AB===10.点评:注意等腰三角形的三线合一,熟练运用勾股定理.13.(3分)如图,某人欲横渡一条河,由于水流的阻碍,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为480m.考点:勾股定理的应用.专题:应用题.分析:从实际问题中找出直角三角形,利用勾股定明白得答.解答:解:依照图中数据,运用勾股定理求得AB===480米.点评:考查了勾股定理的应用,是实际问题但比较简单.14.(3分)小华和小红都从同一点O动身,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为15米.考点:勾股定理的应用.专题:应用题.分析:依照题意画出图形依照勾股定明白得答.解答:解:如图,在Rt△AOB中,∠O=90°,AO=9m,OB=12m,依照勾股定理得AB====15m.点评:本题专门简单,只要依照题意画出图形即可解答,表达了数形结合的思想.15.(3分)一个三角形三边满足(a+b)2﹣c2=2ab,则那个三角形是直角三角形.考点:勾股定理的逆定理.分析:化简等式,可得a2+b2=c2,由勾股定理逆定理,进而可得其为直角三角形.解答:解:(a+b)2﹣c2=2ab,即a2+b2+2ab﹣c2=2ab,因此a2+b2=c2,则那个三角形为直角三角形.故答案为:直角.点评:考查了勾股定理逆定理的运用,是基础知识比较简单.16.(3分)木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,那个桌面合格(填”合格”或”不合格”).考点:勾股定理的应用.分析:只要算出桌面的长为60cm,宽为32cm,对角线为68cm是否符合勾股定理即可,依照勾股定理直截了当解答.解答:解:==68cm,故那个桌面合格.点评:本题考查的是勾股定理在实际中的应用,需要同学们结合实际把握勾股定理.17.(3分)直角三角形一直角边为12cm,斜边长为13cm,则它的面积为30cm2.考点:勾股定理.分析:依照勾股定理求得其另一直角边的长,再依照面积公式即可求得其面积.解答:解:∵直角三角形一直角边为12cm,斜边长为13cm,∴另一直角边==5cm,∴面积=×5×12=30cm2.点评:解决本题的关键是依照勾股定理求得另一直角边的长.18.(3分)如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是那个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25.考点:平面展开-最短路径问题.分析:先将图形平面展开,再用勾股定理依照两点之间线段最短进行解答.解答:解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.点评:本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要依照题意判定出长方形的长和宽即可解答.三、解答题(共46分)19.(6分)如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).考点:勾股定理的应用.专题:应用题.分析:依照题意画出图形,构造出直角三角形,利用勾股定理求解.解答:解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.点评:本题考查正确运用勾股定理.善于观看题目的信息是解题以及学好数学的关键.20.(6分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC2的值.考点:勾股定理.分析:∵AD⊥BC于D,∴可得到两个直角三角形△ABD和△ADC,可利用勾股定理求得AD长,进而求得AC2的值.解答:解:∵AD⊥BC于D,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD2=AB2﹣BD2=5∵DC=1,∴AC2=AD2+DC2=5+1=6.点评:本题需注意最后求的是AC2,因此在运算过程中都保持线段的平方即可.21.(8分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m2,其对角线长为10m,为建栅栏,要运算那个矩形鱼池的周长,你能关心小明算一算吗?考点:勾股定理的应用;二元一次方程组的应用;矩形的性质.专题:运算题.分析:依照矩形的面积公式得到长与宽的积,再依照勾股定理得到长与宽的平方和.联立解方程组求得长与宽的和可.解答:解:设矩形的长是a,宽是b,依照题意,得:,(2)+(1)×2,得(a+b)2=196,即a+b=14,因此矩形的周长是14×2=28m.点评:注意依照题意结合勾股定理联立解方程组,只需求得长与宽的和即可.22.(10分)如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km 的速度向北偏东60°的BF方向移动,距离台风中心200km的范畴内是受台风阻碍的区域.(1)A城是否受到这次台风的阻碍?什么缘故?(2)若A城受到这次台风阻碍,那么A城遭受这次台风阻碍有多长时刻?考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC >200则A城不受阻碍,否则受阻碍;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范畴内差不多上受台风阻碍,再依照速度与距离的关系则可求时刻.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,因此A城要受台风阻碍;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,因此△ADG是等腰三角形,因为AC⊥BF,因此AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风阻碍的时刻是:t=240÷40=6(小时).点评:此题要紧考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时刻的关系等,较为复杂.四、创新探究题23.一只蚂蚁假如沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.考点:平面展开-最短路径问题.分析:要求长方体中两点之间的最短路径,最直截了当的作法,确实是将正方体展开,然后利用两点之间线段最短解答.解答:解:如图:依照题意,如上图所示,最短路径有以下三种情形:(1)沿AA′,A′C′,C′B′,B′B剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25;(2)沿AC,CC′,C′B′,B′D′,D′A′,A′A剪开,得图(2)AB′2=AC2+B′C2=22+(4+1)2=4+25=29;(3)沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=12+(4+2)2=1+36=37;综上所述,最短路径应为(1)所示,因此AB′2=25,即AB′=5cm.点评:此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.。

人教版八年级下《第十七章勾股定理》单元检测题(包括答案)

人教版八年级下《第十七章勾股定理》单元检测题(包括答案)

第十七章《勾股定理》检测题一、选择题(每小题只有一个正确答案)1.如图所示:数轴上点A所表示的数为a,则a的值是()A. +1B. -12.如图,有两棵树高分别为6米、2米,它们相距5米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,一共飞了多少米?()A. 41B.C. 3D. 93.直角三角形的三边为a﹣b,a,a+b且a、b都为正整数,则三角形其中一边长可能为()A. 61B. 71C. 81D. 914.一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,两船相距()A. 36海里B. 60海里C. 84海里D. 48海里5.如图,P为等腰△ABC内一点,过点P分别作三条边BC、CA、AB的垂线,垂足分别为D、E、F,已知AB=AC=10,BC=12,且PD:PE:PF=1:3:3,则AP的长为()A. 43B.203C. 7D. 86.在△ABC中,AB=1,AC=2,BC=,则该三角形为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形7.如图1,一架梯子AB长为,斜靠在一面墙上,梯子底端B离墙,若梯子的顶端A下滑了(如图2),则梯子的底端在水平方向上滑动的距离为()A. B. 大于C. 介于和之间D. 介于和之间8.下列条件中,不能判断△ABC为直角三角形的是()A. BC=1.5,AC=2,AB=2.5B. BC∶AC∶AB=5∶12∶13C. ∠A+∠B=∠CD. ∠A∶∠B∶∠C=3∶4∶59.如图,圆柱的底面半径为3cm,圆柱高AB为2cm,BC是底面直径,一只蚂蚁从点A出发沿圆柱表面爬行到点C,则蚂蚁爬行的最短路线长()A. 5cmB. 8cmC. cmD. cm10.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2……按照此规律继续下去,则S2019的值为( )A. ()2015B. ()2016C. ()2015D. ()2016二、填空题11.已知直角三角形的两边的长分别是3和4,则第三边长为__.12.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.13.直角三角形纸片的两直角边AC=8,BC=6,现将△ABC如图折叠,折痕为DE,使点A与点B重合,则BE的长为__________.14.直角三角形的三边长为连续偶数,则这三个数分别为__________.15.如图,点A、C都在直线l上,AE⊥AB且AE=AB,BC⊥CD且BC=CD,点E、B、D到直线l的距离分别是6,3,4,计算图中由线段AB、BC、CD、DE、EA所围成的图形的面积是____.三、解答题16.如图,在△ABC 中,AB =AC =13,点D 在BC 上,AD =12,BD =5,试问AD 平分∠BAC 吗?为什么?17.我校要对如图所示的一块地进行绿化,已知4AD =米, 3CD =米, 13AD DC AB ⊥=,米, 12BC =米,求这块地的面积.18.如图所示,在△ 中, , ,在△ 中, 为 边上的高, ,△ 的面积 .(1)求出 边的长.(2)你能求出 的度数吗?请试一试.19.已知等腰Rt △ABC 中,∠BAC=90°.点D 从点B 出发沿射线BC 移动,以AD 为腰作等腰Rt △ADE ,∠DAE=90°.连接CE .(1)如图,求证:△ACE ≌△ABD ;(2)点D 运动时,∠BCE 的度数是否发生变化?若不变化,求它的度数;若变化,说明理由;(3)若,当CD=1时,请求出DE 的长.参考答案1.B2.B3.C4.B5.B6.B7.A8.D9.B10.C11.5或12.513.14.6、8、1015.5016.解析:AD 平分∠BAC ,理由为:∵在ABC 中, 13125AB AC AD BD ====,,,∴22213125=+,∴90ADB ∠=︒, 即AD BC ⊥,∴AD 平分∠BAC.17.24cm²解析:连接AC .由勾股定理可知5AC ===,又22222251213AC BC AB +=+==,ABC ∴是直角三角形,故所求面积ABC =的面积ACD -的面积()2115123424.22m ⨯⨯-⨯⨯= 18.(1)10㎝;(2)90°.解:(1)∵ , △ ,∴ ; (2)∵ , , ,即 , 由勾股定理逆定理可知, .19.解析:(1)∵△ABC 和△ADE 都是等腰Rt△,∴AB=AC,AD=AE ,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ACE 和△ABD 中,{ AC ABCAE BAD AE AD=∠=∠=,∴△ACE≌△ABD;(2)∵△ACE≌△ABD,∴∠ACE=∠ABD=45°,∴∠BCE=∠BCA+∠ACE=45°+45°=90°;∴∠BCE的度数不变,为90°;(3)①点D在线段BC上时,如图1,,∵CD=1,﹣1,∵△ACE≌△ABD,﹣1.∵∠BCE=90°,=;②点D在线段BC延长线上时,如图2,,∵CD=1,+1,∵△ACE≌△ABD,+1,∵∠BCE=90°,∴∠ECD=90°,=综上所述:DE.。

八年级数学下册《第十七章 勾股定理》单元测试卷带答案(人教版)

八年级数学下册《第十七章 勾股定理》单元测试卷带答案(人教版)

八年级数学下册《第十七章 勾股定理》单元测试卷带答案(人教版)班级 姓名 学号一、选择题:1.设一个直角三角形的两直角边分别是a ,b ,斜边是c .若用一把最大刻度是20cm 的直尺,可一次直接测得c 的长度,则a ,b 的长可能是( )A .a =12,b =16B .a =11,b =17C .a =10,b =18D .a =9,b =192.在△ABC 中,AC=9,BC=12,AB=15,则AB 边上的高是( )A .365B .1225C .94D 3.已知,一轮船以16海里/时的速度从港口A 出发向北偏东63?方向航行,另一轮船以8海里/时的速度同时从港口A 出发向南偏东27 方向航行,则离开港口1小时后,两船相距( )A .B .海里C .16海里D .24海里4.如图,一根木杆在离地面3m 处折断,木杆顶端落在离木杆底端4m 处,木杆折断之前的高度是( )A .5mB .6mC .7mD .8m5.如图,牧童在 A 处放牛,牧童家在 B 处, A , B 处距河岸 DC 的距离 AC 、 BD 的长分别为5km 和10km ,且 C , D 两点的距离为8km ,天黑前牧童从 A 处将牛牵到河边饮水再回家,那么牧童最少要走的距离为( ).A .15kmB .16kmC .17kmD .18km6.如图,点A ,B 是棱长为1的立方体的两个顶点,若将该立方体按图中所示展开,则在展开图中,A ,B 两点间的距离是( )AB C D7.如图,在Rt △ABC 中,∠ACB =90°,AE 为△ABC 的角平分线,且ED ⊥AB ,若AC =6,BC =8,则ED 的长( )A .2B .3C .4D .58.如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A .B .C .D .7二、填空题: 9.在Rt ABC 中90C ∠=︒,4AB =则222AB AC BC ++= .10.如果△ABC 的三边长a 、b 、c 满足关系式(a+2b ﹣60)2+|b ﹣18|+|c ﹣30|=0,则△ABC 的形状是 .11.将一根长为17cm 的筷子,置于内径为6cm 高为8cm 的圆柱形水杯中,设筷子露在杯子外面的长度为x cm ,则x 的取值范围是 .12.如图,等腰ABC 中,AB=AC ,AD 是底边上的高,若AB=5cm ,BC=6cm ,则AD= cm .13.Rt △ABC 中,∠B =90°,D 为BC 上的一点,若DC =DA =5,△ACD 的面积为10,则BD 的长为 .14.如图,在ABC 中,90301ABC A BC M N ︒︒∠=∠==,,,,分别是AB AC ,上的任意一点,求MN NB +的最小值为 .三、解答题:15.如图,小丽想知道自家门前小河的宽度,于是她测出如下数据:在河岸选取A点,A点对岸选取参照点C,测得∠A=30°;她沿河岸向前走了30米选取点B,并测得∠CBD=60°.根据数据能否测得小河宽度?若能请算出小河宽度,若不能请说明理由.16.某建筑物的金属支架如图所示,根据要求AB长为4m,C为AB的中点,点B到D的距离比立柱CD的长小0.5m,∠BCD=60°,求立柱CD长.17.在△ABC中,∠ACB=90°,P为BC中点,PD⊥AB于D,求证:AD2﹣BD2=AC2.18.一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙OB=7米,这个梯子的顶端距地面AO有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了BB´几米?19.如图,ABC 是等边三角形,D 是边AB 上一点,以CD 为边作E 等边CDE ,DE 交AC 于点F ,连接AE(1)求证:BCD ≌.ACE(2)若6BC =,2AE =求CD 的长.20.如图,已知在△ABC 中,∠B=90°,AB=8cm ,BC=6cm ,点P 开始从点A 开始沿△ABC 的边做逆时针运动,且速度为每秒1cm ,点Q 从点B 开始沿△ABC 的边做逆时针运动,且速度为每秒2cm ,他们同时出发,设运动时间我t 秒.(1)出发2秒后,求PQ 的长;(2)在运动过程中,△PQB 能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ 第一次把直角三角形周长分成相等的两部分?参考答案:1.A 2.A 3.B 4.D 5.C 6.C 7.B 8.A9.3210.直角三角形11.7≤x ≤912.413.314.1.515.解:能测出小河的宽度.原因如下:过C 作CE ⊥AD 于点E∵∠CBD=60°∴∠ABC=120°∴A=∠ACB=∠ECB=30°∴BC=AB=30,BE=15.根据勾股定理得: 22CB BE -223015-3 .综上,小河宽度为3米.16.解:连接BD ,作OB ⊥CD 于点O∵在直角三角形BCO 中,∠BCD=60°,AB 长为4m ,C 为AB 的中点∴OC= 112BC = m ,33 m在直角三角形BOD 中,设CD 为x ,OD=DC-OC=x-1,BD=CD-0.5=x-0.5,3可得: 222(0.5)(1)3)x x -=-+解得:x=3.75答:CD 的长为3.75m .17.解:证明:连接AP ,如图所示AD 2﹣BD 2=AP 2﹣PD 2﹣(BP 2﹣PD 2)=AC 2+CP 2﹣PD 2﹣BP 2+PD 2=AC 2+CP 2﹣BP2 ∵P 为BC 中点∴CP=BP∴CP 2﹣BP 2=0∴AD 2﹣BD 2=AC 2.18.(1)解:在Rt △AOB 中,AB=25米,OB=7米,OA 2222257AB OB =-=-= 24(米). 答:梯子的顶端距地面24米;(2)解:在Rt △AOB 中,A'O=24﹣4=20米,OB' 2222'''2520A B OA =--= 15(米),BB'=15﹣7=8米.答:梯子的底端在水平方向滑动了8米.19.(1)证明:ABC 与CDE 是等边三角形 AC BC ∴=,CD CE =和60ACB DCE ∠=∠=BCD ACE ∴∠=∠BCD ∴≌()ACE SAS(2)解:如图,作DG BC ⊥于点GBCD ≌ACE2.BD AE ∴==60B ∠=1BG ∴= 3DG =615CG BC BG ∴=-=-=222827.CD CG DG ∴=+==20.(1)解:∵出发2秒后AP=2cm∴BP=8-2=6(cm ),BQ=2×2=4(cm )在Rt △PQB 中,由勾股定理得:22PB BQ +=13cm ),即出发2秒后,PQ 的长为13(2)解:在运动过程中,△PQB 能形成等腰三角形AP=t ,BP=AB-AP=8-t ,BQ=2t由PB=BQ 得:8-t=2t解得t=83(秒),即出发83秒后第一次形成等腰三角形. (3)解:在Rt △ABC 中,由勾股定理得:22AB BC +=10=10(cm );∵AP=t ,BP=AB-AP=8-t ,BQ=2t ,QC=6-2t ,线段PQ 第一次把直角三角形周长分成相等的两部分 ∴AC+AP+QC=PB+BQ∴10+t+(6-2t)=8-t+2t解得t=4(cm ),即从出发4秒后,线段PQ 第一次把直角三角形周长分成相等的两部分。

人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)

人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)

人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)(本试卷三个大题,24个小题。

满分100分,考试时间120分钟。

) 学校 班级 姓名 学号一、选择题(本大题共有10个小题,每小题3分,共30分)1. 如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是( )A .5米B .6米C .7米D .8米2 . 在ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,则由下列条件:(1)A B C ∠∠=∠+;(2)123A B C ∠∠∠=::::;(3)222a c b =-;(4)::1:2:3a b c = 能判定ABC 为直角三角形的有( )A .1个B .2个C .3个D .4个3 . 开学之际,为了欢迎同学们,学校打算在主楼前的楼梯上铺地毯.如图,这是一段楼梯的侧面,它的高BC 是3米,斜边AB 是5米,则该段楼梯铺上地毯至少需要的长度为( )A .8米B .7米C .6米D .5米4. 如图,一圆柱高12cm ,底面半径为3cm ,一只蚂蚁从点A 沿圆柱表面爬到点B 处吃食物,要爬行的最短路程(π取3)是( )A.15cm B.21cm C.24cm D.28 cm5.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()A.2.7米 B.2.5米C.2米D.1.8米6 . 如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A.11cm B.12cm C.13cm D.14cm7 . 如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB边上的点E处,AD是折痕则△BDE的周长为()A.6 B.8 C.12 D.148. 如图,秋千静止时,踏板离地的垂直高度1m =BE ,将它往前推6m 至C 处时(即水平距离6m CD =),踏板离地的垂直高度4m CF =,它的绳索始终拉直,则绳索AC 的长是( )A .21m 2B .15m 2C .6mD .9m 2如图,“赵爽弦图”是吴国的赵爽创制的.以直角三角形的斜边为边长得到一个正方形,该正方形由4个全等的直角三角形再加上中间的小正方形组成,在一次游园活动中,数学小组制作了一面“赵爽弦图” 其中90ABC ∠=︒,AC=13cm ,AB=5cm ,则阴影部分的面积是( )2cm .A .169B .25C .49D .6410.勾股定理与黄金分割并称为几何学中的两大瑰宝勾股定理的发现可以称为是数学史上的里程碑,2000多年来,人们对它进行了大量的研究,至今已有几百种证法.利用图形中有关面积的等量关系可以证明勾股定理,利用如图①的直角三角形纸片拼成的②③④⑤四个图形中,可以证明勾股定理的图形有( )A .1个B .2个C .3个D .4个二、填空题(本大题共有8个小题,每小题3分,共24分)走“捷径”,仅仅少走了米.11.如图,某处有一块长方形草坪,有极少数人为了避开拐角AOB12.《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺,如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B',示意图如图,则水深为尺13 . 如图,数轴上的点C所表示的数为________14 . 如图,有一个圆柱体,它的高为20,底面周长为30,如果一只蚂蚁要从圆柱体下底面的A点沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为.15.荡秋千(图1)是中国古代北方少数民族创造的一种运动.有一天,赵彬在公园里游玩,如图2,他发现秋千静止时,踏板离地的垂直高度 0.5m DE =,将它往前推送 1.8m (水平距离 18m .=BC )时,秋千的踏板离地的垂直高度 1.1m BF CE ==,秋千的绳索始终拉得很直,则绳索AD 的长度是_______.如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧 两弧相交于点M 和N ,②作直线MN 交边AB 于点E ,若5,4AC BE ==,∠B=45°,则AB = .17. 如图,在ABC 中::3:4:5AB BC CA =,且周长为36cm ,点P 从点A 开始,沿AB 边向点B 以每秒1cm 的速度移动;点Q 从点B 开始,沿BC 边向点C 以每秒2cm 的速度移动.若同时出发,则过3秒时,BPQ 的面积为 2cm .18. 如图,在ABC 中90C ∠=︒,点D 为BC 边上一点,将ACD 沿AD 翻折得到AC D ',若点C '在AB 边上,68AC BC ==,则AD 的长为 .三、解答题(本大题共有6个小题,共46分)19.如图,四边形ABCD 中,∠B =90°,AB=3,BC=4,CD=13,AD=12,求四边形ABCD 的面积.20 . 如图,小丽发现,秋千静止时踏板离地面的垂直高度0.5m DE =,将它往前推送至点B ,测得秋千的踏板离地面的垂直高度 1.1m BF =,此时水平距离 1.8m BC EF ==,秋千的绳索始终拉的很直,求绳索AD 的长度.21 .如图,在5×5的方格纸中,每一个小正方形的边长都为1.(1)∠BCD 是不是直角?请说明理由.(2)求四边形ABCD 的面积.22.一架云梯长25米,如图,靠在一面墙上,梯子底端离墙7米.(1)这个梯子的顶端距离地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了多少米?23 .如图,在矩形ABCD中,BC=4,AB=10,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE.设点P运动的时间为t秒.(1)求BE的长;(2)当t为多少秒时,BPE是直角三角形?24.课本再现如图1,有一个圆柱,它的高为12cm,底面圆的周长为18cm.在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,蚂蚁沿圆柱侧面爬行的最短路程是多少?方法探究对于立体图形中求最短路程问题,应把立体图形展开成平面图形,再确定A,B两点的位置依据“两点之间线段最短”,结合勾股定理,解决相应的问题.如图2,在圆柱的侧面展开图中点A,B对应的位置如图所示,利用勾股定理求出蚂蚁爬行的最短路程是______cm.方法应用(2)如图3,直四棱柱的上下底面是正方形,底面边长为3cm,高为10cm.在其侧面从点A开始,绕侧面两周,嵌入装饰彩条至点B停止.求彩条的最短长度.(1)如图4,圆柱形玻璃杯底面周长为30cm ,高为35cm ,杯底厚1cm .在玻璃杯外壁距杯口2cm 的点A 处有一只蚂蚁,蚂蚁相对面的内壁底部B 处有一滴蜂蜜,蚂蚁沿杯口爬入内壁去吃蜂蜜,求蚂蚁爬行的最短路径长.(玻璃杯的壁厚忽略不计)参考答案与解析一、选择题(本大题共有10个小题,每小题3分,共30分)1.【答案】D 【分析】由题意得:在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【详解】∵垂直于地面的大树在离地面3米处折断,树的顶端落在离树杆底部4米处 ∴折断的部分长为2234+=5∴折断前高度为5+3=8(米).故选:D .2 .【答案】C 【分析】本题考查了勾股定理的逆定理,三角形内角和定理,熟练掌握勾股定理的逆定理,以及三角形内角和定理是解题的关键.利用勾股定理的逆定理,三角形内角和定理,进行计算逐一判断即可解答.【详解】解:(1)A B C ∠+∠=∠ 180A B C ∠+∠+∠=︒180C C ∴∠+∠=︒90C ∴∠=︒ABC ∴为直角三角形;(2)::1:2:3A B C ∠∠∠= 180A B C ∠+∠+∠=︒318090123C ∴∠=⨯︒=︒++ ABC ∴为直角三角形;(3)222a c b222a b c ∴+=ABC ∴为直角三角形;(4)::1:2:3a b c =∴设a k = 2b k = 3c k =(其中0)k ≠222a b c ∴+≠ABC ∴不是直角三角形故选:C3 .【答案】B 【分析】本题考查的是勾股定理的应用,以及利用平移可知地毯的长为AC BC +的和,解题的关键是能熟练掌握勾股定理以及数形结合的方法;先根据勾股定理求出AC 的长,进而可得出结论.【详解】解:ABC 是直角三角形 3m 5m BC AB ==,224m AC AB BC ∴-=∴如果在楼梯上铺地毯,那么至少需要地毯为7m AC BC +=故选:B .4.【答案】A 【分析】根据题意可把立体图形转化为平面图形进行求解,如图,然后根据勾股定理可进行求解.【详解】解:如图∵圆柱高12cm ,底面半径为3cm ∴2312cm,392BC AC ππ⨯==== ∴在Rt △ACB 中,由勾股定理得2215cm AB AC BC +=∴蚂蚁从点A 沿圆柱表面爬到点B 处吃食物,要爬行的最短路程为15cm ;故选A .5.【答案】A 【分析】先根据勾股定理求出梯子的长,进而根据勾股定理可得出小巷的宽度.【详解】由题意可得:2220.7 2.4 6.25AD =+=在Rt ABC 中90ABC ∠=︒ 1.5BC =米 222BC AB AC +=∴221.5 6.25AB +=∴2AB =±0AB >∴2AB =∴小巷的宽度为0.72 2.7+=(米).故选A .6 .【答案】C 【详解】解:∵侧面对角线BC 2=32+42=52∴CB =5(cm)∵AC =12(cm)∴AB 22125+(cm )∴空木箱能放的最大长度为13cm故选:C .7 .【答案】C 【分析】利用勾股定理求出AB=10,利用翻折不变性可得AE=AC=6,推出BE=4即可解决问题.【详解】在Rt △ABC 中∵AC =6,BC =8,∠C =90°∴AB 2268+10由翻折的性质可知:AE =AC =6,CD =DE∴BE =4∴△BDE 的周长=DE +BD +BE =CD +BD +E =BC +BE =8+4=12.故选:C .8.【答案】B 【分析】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.设绳索AC 的长是x m ,则AB x =m ,求出(3)m AD AB BE DE x =+-=-,然后在Rt ACD △中,由勾股定理得出方程,解方程即可.【详解】解:设绳索AC 的长是x m ,则AB x =m4m DE FC == 1m =BE14(3)m AD AB BE DE x x ∴=+-=+-=-在Rt ACD △中,由勾股定理得:222AC AD CD =+即222(3)6x x =-+ 解得:152x = 即绳索AC 的长是15m 2 故选:B .9.【答案】C 【分析】本题考查了勾股定理的应用,解题的关键是掌握直角三角形中两直角边的平方和等于斜边的平方.在Rt ABC △中,先根据勾股定理求出BC 的长,然后用大正方形的面积减去4个小三角形的面积即可求出阴影部分的面积.【详解】解:90ABC ∠=︒ 13cm AC = 5cm AB =2212(cm)BC AC AB ∴- 则阴影部分的面积是()211313451249cm 2⨯-⨯⨯⨯= 故选:C .10.【答案】C 【分析】利用面积与恒等式,②中矩形面积等于两个直角三角形面积之和,都为ab ,无法证明勾股定理; ③中梯形面积等于两个直角边分别为a ,b 的直角三角形与一个直角边为c 的等腰直角三角形面积之和;④中大正方形的面积等于4个小直角三角形面积与一个小正方形面积之和;⑤中大正方形的面积等于4个小直角三角形面积与一个小正方形面积之和,即可求解.【详解】解:根据题意得:②中矩形面积等于两个直角三角形面积之和,都为ab ,无法证明勾股定理;③中梯形面积等于两个直角边分别为a ,b 的直角三角形与一个直角边为c 的等腰直角三角形面积之和,即 ()221112222a b ab c +=⨯+ 整理得:222+=a b c ,可以证得勾股定理;④中大正方形的面积等于4个小直角三角形面积与一个小正方形面积之和,即()22142c ab b a =⨯+- 整理得:222+=a b c ,可以证得勾股定理;⑤中大正方形的面积等于4个小直角三角形面积与一个小正方形面积之和,即()22142a b ab c +=⨯+ 整理得:222+=a b c ,可以证得勾股定理;所以可以证明勾股定理的图形有③④⑤,共3个.故选:C四、填空题(本大题共有8个小题,每小题3分,共24分)11.【答案】4【分析】利用勾股定理求出AB 的长即可得到答案.【详解】解:∵在AOB 中6m 8m 90OA OB AOB ===︒,,∠ ∴2210m AB OA OB +=∴4m OA OB AB +-=∴仅仅少走了4米故答案为:4.12.【答案】12【分析】此题主要考查了勾股定理的应用.我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB '的长为10尺,则5B C '=尺,设出AB AB x '==尺,表示出水深AC ,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【详解】解:依题意画出图形,设芦苇长AB AB x ='=尺,则水深()1AC x =-尺因为10B E '=尺,所以5B C '=尺在Rt AB C '△中()22251x x +-=解之得13x =即水深12尺,芦苇长13尺.故答案为:12.13 .【答案】10AB 的长,再根据数形结合即可求解. 【详解】解:∵221310AB +=∴点C 所表示的数为10- 故答案为:10-14 .【答案】25【分析】要求最短路线,首先要把圆柱的侧面展开,利用两点之间线段最短,再利用勾股定理即可求解.【详解】解:将圆柱体侧面沿A 点所在直线展开,点A ,B 的最短距离为线段AB 的长由上图可知:30152AC == 20BC = ∴AB 为最短路径22201525+.则蚂蚁爬的最短路线长约为25.故答案为:25.15.【答案】3m 【分析】本题考查了勾股定理的应用,设绳索AD 的长度为m x ,则()0.6m AC x =-,在Rt ACB中,由勾股定理得出方程,解方程即可.由勾股定理得出方程是解题的关键.【详解】解:由题意得:90ACB ∠=︒在Rt ACB 中,由勾股定理得:222AC BC AB +=设绳索AD 的长度为m x ,则()()1.10.50.6m AC AD DE CE x x =+-=-+=-∴()2221.80.6x x =+-解得:3x =答:绳索AD 的长度是3m .16.【答案】 7 【分析】本题考查中垂线的性质,勾股定理.连接CE ,得到BE CE =,进而得到45BCE B ∠=∠=︒,推出90BEC ∠=︒,勾股定理求出AE 的长,再用AE BE +进行求解即可.【详解】解:连接CE ,由作图可知:MN 垂直平分BC∴BE CE =∴45BCE B ∠=∠=︒∴90BEC ∠=︒∴90AEC ∠=︒ ∴223AE AC CE -∴7AB AE BE =+=;故答案为:7.17.【答案】18 【分析】首先设AB 为3x cm ,BC 为4x cm ,AC 为5x cm ,利用方程求出三角形的三边,由勾股定理的逆定理得出三角形为直角三角形.再求出3秒后的,BP ,BQ 的长,利用三角形的面积公式计算求解.【详解】解:设AB 为3x cm ,BC 为4x cm ,AC 为5x cm∵周长为36cm则AB +BC +AC =36cm∴3x +4x +5x =36解得x =3∴AB =9cm ,BC =12cm ,AC =15cm∵AB 2+BC 2=AC 2∴△ABC 是直角三角形过3秒时,BP =9﹣3×1=6(cm ),BQ =2×3=6(cm )∴S △PBQ =12BP •BQ =12×(9﹣3)×6=18(cm 2).故答案为:18.18.【答案】35【分析】本题考查了翻折变换的性质,勾股定理等知识;熟练掌握翻折变换的性质,由勾股定理得出方程是解题的关键.由勾股定理求出10AB =,由折叠的性质得出CD DC '= 906C AC D AC AC ''∠=∠=︒==, 得出490BC AB AC BC D '''=-=∠=︒, 设BD x =,则8CD DC x '==-,在Rt BDC '中,由勾股定理得出方程,可求BD 长,由勾股定理可求AD 的长.【详解】解:由折叠可知:CD DC '= 906C AC D AC AC ''∠=∠=︒==,在Rt ABC △中,由勾股定理得:2210AB AC BC +=∴490BC AB AC BC D '''=-=∠=︒,设BD x =,则8CD DC x '==-,在Rt BDC '中,由勾股定理得:()22248x x =+-∴5x =∴53BD CD ==, ∴2236935AD AC CD =+=+=故答案为:35三、解答题(本大题共有6个小题,共46分)19.【答案】36【分析】连接AC ,首先根据勾股定理求出5AC =,然后根据勾股定理的逆定理得到ACD 是直角三角形,最后根据三角形面积公式求解即可.【详解】解:连接AC ,在ABC 中∵∠B =90° 3AB = 4BC = ∴2222435AC AB BC ++=1143622ABCS AB BC =⋅=⨯⨯= 在ACD 中 ∵13CD = 12AD = 5AC =∴222AD AC CD +=∴ACD 是直角三角形 ∴115123022ACD S AC AD =⋅=⨯⨯=. ∴四边形ABCD 的面积63036ABC ACD S S =+=+=.20.【答案】3m 【分析】设绳索AD 的长度为m x ,则(0.6)m AC x =-,在Rt ABC △中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD 长为m x ,则AB 为m x∵四边形BCEF 是矩形1.1m BF CE ∴==0.5m DE =0.6m CD ∴=则AC 为()0.6m x -在Rt ABC △中,由勾股定理得:222AC BC AB +=,即:()2220.6 1.8x x -+=解得:3x =∴绳索AD 的长度为3m .21 .【答案】(1)∠BCD =90°,理由见解析;(2)14.5.【分析】(1)连接BD ,由于每一个小正方形的边长都为1,根据勾股定理可分别求出△BCD 的三边长,根据勾股定理的逆定理即可判断出△BCD 的形状;(2)BCE ABH ADI DCFAHEJ DFJI ABCD S S S S S S S =-----正方形正方形四边形. 【详解】解:(1)∠BCD 是直角,理由如下:连接BD∵BC 2242+5CD 2221+5BD 2243+∴BC 2+CD 2=BD 2∴△BCD 为直角(2)S 四边形ABCD =S 正方形AHEJ -S △BCE -S △ABH -S △ADI -S △DCF -S 正方形DFJI所以S 四边形ABCD =5×5-12×4×2-12×2×1-1×1-12×4×1-12×5×1 =25-4-1-1-2-52=292.22.【答案】(1)这个梯子的顶端距离地面有24米高(2)梯子的底端在水平方向滑动了8米【分析】本题考查勾股定理的实际应用.(1)在Rt AOC 中,直接利用勾股定理进行求解即可;(2)在Rt BOD 中,利用勾股定理求出OB 的长,用OB 的长减去OA 的长,求解即可;掌握勾股定理,是解题的关键.【详解】(1)解:在Rt AOC 中25m AC = 7m AO = ∴2224m CO AC AO -=;答:这个梯子的顶端距离地面有24米高;(2)∵24420m OD CO CD =-=-=在Rt BOD 中25m BD AC == ∴2215m BO BD OD -=∴8m AB BO AO =-=.答:梯子的底端在水平方向滑动了8米.23 .【答案】(1)5;(2)当t =7或53秒时,△BPE 为直角三角形.【分析】(1)根据勾股定理计算即可; (2)分∠BPE =90°、∠BEP =90°两种情况,根据勾股定理计算.【详解】解:(1)由题意知,CD =AB =10,DE =7,BC =4CE =CD -DE =10﹣7=3在Rt △CBE 中,BE 2222435BC CE +=+;(2)①当以P 为直角顶点时,即∠BPE =90°AP =10﹣3=7,则t =7÷1=7(秒)②当以E 为直角顶点时,即∠BEP =90°,由勾股定理得BE 2+PE 2=BP 2设AP =t10BP t =- 2224(7)PE t =+-即52+42+(7﹣t )2=(10﹣t )2解得,t =53当t =7或53秒时,△BPE 为直角三角形. 24.【答案】(1)15;(2)26cm (3)39cm【分析】本题考查勾股定理、几何体的展开图.根据题意得出蚂蚁沿圆柱侧面爬行的最短路程是指展开后线段AB 的长求出AC ,BC ,根据勾股定理求出AB 即可.根据绕两圈到B ,则展开后相当于求出Rt ABC △的斜边长,并且24cm,10cm AC BC == 根据勾股定理求出即可.(3)将杯子侧面展开,建立A 关于MN 的对称点A ',根据两点之间线段最短可知A B '的长度即为所求.【详解】解:(1)根据题意得出:蚂蚁沿圆柱侧面爬行的最短路程是指展开后线段AB 的长 由题意得:9cm,12cm AC BC ==.在Rt ABC △中,由勾股定理得:()222212915cm AB AC BC ++所以,蚂蚁沿圆柱侧面爬行的最短路程是15cm故答案为:15.(2)如图所示∵从点A 开始经过4个侧面缠绕2圈到达点B∴展开后()3cm 824cm 10cm,AC BC =⨯==, 由勾股定理得:2222241026cm AB AC BC ++所以彩条的最短长度是26cm .(3)展开玻璃杯的侧面,如图作点A 关于MN 的对称点A ',连接A B ',作BC A A '⊥于点C ,则 15BC = 2A M AM '== 35134CM =-= 36CA CM A M ''=+=. 在Rt A BC '中,2222153639cm A B BC CA ''=++= 所以蚂蚁爬行的最短路径长为39cm.。

人教版八年级下册《第17章 勾股定理》单元测试试卷及答案(共五套)

人教版八年级下册《第17章 勾股定理》单元测试试卷及答案(共五套)

人教版八年级下册《第17章勾股定理》单元测试试卷(一)一、认真选一选,你一定很棒!(每题3分,共30分)1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2B.3C.4D.52,已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( ) A.1∶1∶2 B.1∶3∶2 C.1∶2∶3 D.1∶4∶13,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( )A.52B.3C.3+2D.334,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A.600米B. 800米C.1000米D.不能确定6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( ) A.L 1 B.L 2 C.L 3 D.L 47,如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线ABABC图25m BCAD图1BCED图3左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( ) A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定8,在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是( )A.5,4,3B.13,12,5C.10,8,6D.26,24,109,如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( ) A.1 B.2 C.3 D.210,直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( ) A.182 B.183 C.184 D.185 二、仔细填一填,你一定很准!(每题3分,共24分)11,根据下图中的数据,确定A =_______,B =_______,x =_______.12,直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 13,直角三角形的三边长为连续偶数,则这三个数分别为__________. 14,如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.15,如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________.16,在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm. 17,如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 .图5图418,甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距___海里.三、细心做一做,你一定会成功!(共66分)19,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据.图620,从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?21,如图7,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?22,(1)四年一度的国际数学家大会日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm ,宽为2cm 的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)23,清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:6S=m;第二步:m =k ;第三步:分别用3、4、5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.A B 小河东北 牧童小屋 图7图8图924,学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A 处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A 处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.参考答案:一、1,B ;2,B ;3,D ;4,A ;5,C .点拨:画出图形,东南方向与西南方向成直角;6,B .点拨:在Rt△ACD 中,AC =2AD ,设AD =x ,由AD 2+CD 2=AC 2,即x 2+52=(2x )2,x所以2x =5.7736;7,A ;8,D .点拨:设斜边为13x ,则一直角边长为5x ,12x ,所以 13x +5x +12x =60,x =2,即三角形分别为10、24、26;9,D .点拨:AE2;10,A . 二、11,15、144、40;12,1360;13,6、8、10;14,24;15,16;16,17;17,:76;18,30.三、19,设相邻两个结点的距离为m ,则此三角形三边的长分别为3m 、4m 、5m ,有(3m )2+(4m )2=(5m )2,所以以3m 、4m 、5m 为边长的三角形是直角三角形. 20,15m.北A图1021,如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线.在Rt△A ′DB 中,由勾股定理求得A ′B =17km.22,( 1)设直角三角形的两条边分别为a 、b (a >b ),则依题意有22513a b a b +=⎧⎨+=⎩由此得ab =6,(a -b )2=(a+b)2-4ab =1,所以a -b =1,故小正方形的面积为1.(2)如图:23,(1)当S =150时,k =m=1502566S ===5,所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k 倍,则三边为3k ,4k ,5k ,•而三角形为直角三角形且3k 、4k 为直角边.其面积S =12(3k )·(4k )=6k 2,所以k 2=6S,k =6S (取正值),即将面积除以6,然后开方,即可得到倍数.24,(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).ABDPNM人教版八年级下册《第17章勾股定理》单元测试试卷(二)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25 B .14 C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的,斜边长为10,则它的面积为( )A.10B.15C.20D.303. 如图,已知正方形的面积为144,正方形的面积为169,那么正方形的面积是( )A.313B.144C.169D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt△中,∠°,所以222c b a =+D.在Rt△中,∠°,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.5cm C.5.5 cmD.1 cm6.在Rt△ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A. B. C. D.7. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B. 3+1 C. 5-1 D. 5+1 8. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm. A.6 B.8 C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( )A.6B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A.B.3C.1D.二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________.15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm, cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC ,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C 2.B 3.A 4.A 5.A6.C7.C8.D9.D 10.A二、11.37012.直角;24 分析:解方程得x1=6,x2=8.∵+=36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.4 cm 分析:过点A作AE⊥BC于点E,AF⊥CD交CD的延长线于点F.易得△ABE≌△ADF,所以AE=AF,进一步证明四边形AECF是正方形,且正方形AECF与四边形ABCD的面积相等,则AE==2(cm),所以AC=AE=×2=4 (cm).14.略15.分析:如图,设这一束光与x轴交于点C,作点B关于x轴的对称点B',过B'作B'D⊥y轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.=·BC·AD≈×7×5.8=20.3≈20.所以S△ABC17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC== =10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C 作CE⊥AD 于点E,由题意得AB=30 m,∠CAD=30°,∠C BD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m. 在Rt△BCE 中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15 m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S △ABC =ab,S △C'A'D'=ab,S 直角梯形A'D'BA =(a+b)(a+b)=(a+b)2,S △ACA'=c 2. (2)由题意可知S △ACA'=S 直角梯形A'D'BA-S △ABC -S △C'A'D'=(a+b)2-ab-ab=(a 2+b 2),而S △ACA'=c 2.所以a 2+b 2=c 2.21.解:(1)MN 不会穿过原始森林保护区.理由如下: 过点C 作CH⊥AB 于点H. 设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°. 在Rt△ACH 中,AH=CH=x m,在Rt△HBC 中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN 不会穿过原始森林保护区.(2)设原计划完成这项工程需要y 天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.人教版八年级下册《第17章勾股定理》单元测试试卷(三)一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5. 设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为( )A. B. C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC 的形状,并说明理由.14.(12分)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分) 在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2c2时,△ABC 为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L.27.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S=×3h+×4h=×△ABC5×,解得h=,S=×3×=BD·,△ABD解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S=BP·BQ=×6×6=18(cm2).△PBQ答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵A D平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10,=AB·DE=×10×3=15.∴S△ADB15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得:BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边,∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形,∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.人教版八年级下册《第17章勾股定理》单元测试试卷(四)(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.△ABC,∠C=90°,a=9,b=12,则c=__________.2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为__________.4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________.5.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.6.等腰三角形的顶角为120° ,底边上的高为3,则它的周长为__________.7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.8.等腰三角形的两边长为2和4,则底边上的高为__________.9.若等腰直角三角形斜边长为2,则它的直角边长为_______.10.测得一个三角形花坛的三边长分别为5cm,12cm,•13cm,•则这个花坛的面积是_____.11.已知△ABC的三边a、b、c满足(a-5)2+(b-12)2+c2-26c+169=0,则△ABC 是三角三角形.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_____ .13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.14.若一个三角形的三边长分别为3,4,x ,则使此三角形是直角三角形的x 的值是___ _.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是( ) A .1,2,B .1,2,C .3,4,5D .6,8,1216.如图,△ABC 中AD ⊥BC 于D ,AB =3,BD =2,DC =1, 则AC 等于( ) A .6B .C .D .417.已知三角形的三边长之比为1∶1∶,则此三角形一定是( ) A .锐角三角形 B .钝角三角形 C .等边三角形D .等腰直角三角形18.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( ) A .4 cmB .8 cmC .10 cmD .12 cm三、解答题(共60分)19.(5分)如图,每个小正方形的边长是1. ①在图中画出一个面积是2的直角三角形; ②在图中画出一个面积是2的正方形.A B C D53652 第13题 第16题第19题②第19题①20.(5分)如图,一次“台风”过后,一根旗杆被台风从离地面米处吹断,倒下的旗杆的顶端落在离旗杆底部米处,那么这根旗杆被吹断裂前至少有多高?21.(5分)在某山区需要修建一条高速公路,在施工过程中要沿直线AB 打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD =150°,∠D =60°,BD =32 k m ,请根据上述数据,求出隧道BC 的长(精确到0.1 k m).22.(6分)如图,△ABC 中,AB =15 cm , AC =24 cm ,∠A =60°.求BC 的长.8.26.9 2.8米9.6米23.(6分)如图,△ABC 中,AB=13,BC=14,AC=15,求BC 边上的高AD .24.(6分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方米B 处,过了秒后,测得小汽车C 与车速检测仪A 间距离为米,这辆小汽车超速了吗?25.(6分)如图,△ABC 中,CD ⊥AB 于D . (1)图中有__________个直角三角形; A .0B .1C .2D .3(2)若AD =12,AC =13则CD =__________. (3)若CD 2=AD ·DB , 求证:△ABC 是直角三角形.26.(6分)小明把一根长为160 cm 的细铁丝剪成三段,将其做成一个等腰三角形风筝的边框ABC ,已知风筝的高AD =40 cm ,你知道小明是怎样弯折铁丝的吗?BC AD 703025027.(7分)去年某省将地处A、B两地的两所大学合成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修建一条笔直公路(即图中的线段),经测量在A地的北偏东60°方向,B地的西偏北方向处有一个半径为0.7千米的公园,问计划修建的这条公路会不会穿过公园?为什么?28.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a²+b²=c²,其它的三角形三边也有这样的关系吗?”.让我们来做一个实验:(1)在下列方框(1)中任意画出一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(2)在下列方框(2)中任意画出一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:.参考答案 一、填空题1.15 2.10 3.3cm 4.1∶∶2 5. 6.12+6 7. 96 8.910.30cm 2 11.直角 12.A A 不是直角三角形,B、C 、D 是直角三角形 13.2+2 14. 5或 二、选择题15.D 16.B 17.D 18.C 三、解答题19.略解 20.10米 21.7 k m 22.21 cm 23.5 24.超速了 25.(1)C ;(2)5;(3)略 26.AB =AC =50 cm ,BC =60 cm 27.不会穿过公园 28.(1)最后一格填“>”;(2)最后一格填“<”;(3)当三角形为锐角三角形时,三边满足 a ²+b ²>c ²;当三角形为钝角三角形时,三边满足 a ²+b ²<c ²新人教版八年级下册《第17章勾股定理》单元测试试卷(五)(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)33136031537 (1) (2)1.已知直角三角形的两边分别为3、4,则第三边为___ __.2.如图所示,某风景名胜区为了方便游人参观,计划从主峰A 处架设一条缆车线路到另一山峰C 处,若在A 处测得∠EAC =30°,两山峰的底部BD 相距900米,则缆车线路AC 的长为_______米.3.已知,如图所示,Rt△ABC 的周长为4+2,斜边AB 的长为2,则Rt△ABC •的面积为_____. 4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.•当电工师傅沿梯上去修路灯时,梯子下滑到了B ′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯______米.5.在△ABC 中,∠C=90°, AB =5,则++=_______. 6.已知三角形三边长为正整数,则此三角形是________三角形.7.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,•A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________.8.如图,是北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .332AB 2AC 2BC n n n n n n ,122,22,1222++++第2题 第3题第4题3220A第7题9.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 10.直角三角形的三边长为连续偶数,则这三个数分别为__________. 11.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有___米.12.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .13.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 . 14.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .二、选择题(共4小题,每题3分,共12分)15.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5B .25C .D .5或16.已知Rt△ABC 中,∠C=90°,若a +b =14cm ,c =10cm ,则Rt△ABC 的面积是 ( ) A .24cm 2B .36cm 2C .48cm 2D .60cm 217.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121B .120C .90D .不能确定18.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小7760 12014060BAC第8题第11题第12题第13题图红和小颖家的直线距离为 ( )A .600米 B. 800米 C. 1000米 D. 不能确定 三、解答题(共60分)19.(5分)如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,问这棵树有多高?20.(5分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?21.(5分)已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F•处,•如果AB =8cm ,BC =10cm ,求EC 的长.22.(6分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏.问登陆点A 与宝藏埋藏点B 之间的距离是多少?23.(6分)如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?24.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB =90°,AC =80米,BC =60米,若线段CD 是一条小渠,且D 点在边AB 上,已知水渠的造价为10元/米,问D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?25.(6分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河26.(6分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?” 请用学过的数学知识回答这个问题.27.(7分)如图,甲乙两船从港口A 同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C 岛,乙船到达B 岛.若C 、B 两岛相距60海里,问乙船的航速是多少?28.(8分)如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以 千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A 市是否会受到台风的影响?写出你的结论并给予说明; (2)如果A 市受这次台风影响,那么受台风影响的时间有多长?。

人教版数学八年级下册第17章《勾股定理》单元检测题含答案解析

人教版数学八年级下册第17章《勾股定理》单元检测题含答案解析

八年级数学第17章《勾股定理》单元检测题分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.下列四组线段中,可以构成直角三角形的是A. 1,2,3B. 4,5,6C. 9,12,15D. 1,,2.下列命题的逆命题是真命题的是A. 若,则B. 两个锐角分别对应相等的两个直角三角形全等C. 全等三角形的对应角相等D. 若三角形的三边长之比为,则该三角形是直角三角形3.如图,在数轴上点A,B所表示得数分别是,1,,,以点A为圆心,AC长为半径画弧,交数轴于点点D在点B的右侧,则点D所表示的数是A. B. C. D.4.一个直角三角形的两直角边长分别为5和12,则它斜边上的高长为A. 13B.C.D.5.如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是A.5米B. 6米C. 7米D. 8米(第5题图)(第6题图)6.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为若,大正方形的面积为25,则小正方形的边长为A. 9B. 6C. 4D. 37.如图,在中,,,,则的面积为.A.24B. 36C. 48D. 60(第7题图)8.如图,一架长的梯子AB靠在一竖直的墙上,这时梯子的底端A到墙根O的距离为,如果梯子的顶端B下滑至,那么梯子底端将滑动A. B. C. D.9.以下定理,其中有逆定理的是A. 对顶角相等B. 互为邻补角的角的平分线互相垂直C. 如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补D. 直角三角形的两条直角边长的平方和等于斜边长的平方10.如图,中,,,,将折叠,使B点与AC的中点D重合,折痕为EF,则线段BF的长是A. B. 2 C. D.11.如图,有两条公路OM,ON相交成,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,距拖拉机中心50米的范围内均会受到噪音影响,已知有两台相距40米的拖拉机正沿ON方向行驶,它们的速度均为10米秒,则这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间为A. 6秒B. 8秒C. 10秒D. 18秒12.如图,已知:,点、、在射线ON上,点、、在射线OM上,、、均为等边三角形,若,则的边长为A. B. C. D.二、填空题(本大题共6小题,共18分)13.已知一个直角三角形的两条边的长分别为3和5,则第三条边的长为______.14.已知x,y,z均为正数,且,若以x,y,z的长为边长画三角形,此三角形的形状为___________.15.如图是“赵爽弦图”,、、和是四个全等的直角三角形,四边形ABCD和四边形EFGH都是正方形如果,,那么AH等于.16.如图,等腰和中,,连接若,,则四边形ABCD的面积是___________17.如图是一株美丽的勾股树,所有的四边形都是正方形,所有的三角形都是直角三角形,其中A、B、C、D的面积之和为,最大的正方形边长为______cm.18.如图,圆柱形玻璃杯高为,底面周长为,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为________杯壁厚度不计.三、解答题(本大题共6小题,共66分)19.如图,在中,,于点D,,,求BD的长.20.如图,将四边形ABCD的土地绿化,测得,,,,且,若每平方米草皮120元,问共需多少钱?21.如图,在四边形ABCD中,,.求证:;过点B作,垂足为E,求证:.22.如图所示,永定路一侧有A、B两个送奶站,C为永定路上一供奶站,CA和CB为供奶路线,现已测得,,,.连接AB,求两个送奶站之间的距离;有一人从点C处出发沿永定路边向右行走,速度为,多长时间后这个人距B送奶站最近?并求出最近距离.23.如图,是等腰直角三角形,,D是斜边BC的中点,E、F分别是AB、AC边上的点,且。

人教版八年级下数学《第17章勾股定理》单元测试(含答案)

人教版八年级下数学《第17章勾股定理》单元测试(含答案)

人教版八年级下数学《第17章勾股定理》单元测试(含答案)第17 章勾股定理一、选择题1.以下列各组数为边长,能构成直角三角形的是()A. 5、6、7B. 10、8、4C. 7、24、25D. 9、15、172.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A. 14B. 4C. 14或4D. 以上都不对3.下列四组数中,其中有一组与其他三组规律不同,这一组是()A. 3,4,5B. 6,8,10C. 5,12,13D. 4,5,74.在△ABC中,若AC=15,BC=13,AB边上的高CD=12,则△ABC的周长为()A. 32B. 42C. 32或42D. 以上都不对5.如图,正方形ABCD的边长为9.将正方形折叠.使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是( )A. 3B. 4C. 5D. 66.如图,正方形小方格边长为1,则网格中的△ABC是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 以上答案都不对7.给出下列长度的四组线段:①1,2,2;②5,12,13;③6,7,8;④3m,4m,5m(m>0).其中能组成直角三角形的有()A. ①②B. ②④C. ②③D. ③④8.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑()A. 9分米B. 15分米C. 5分米D. 8分米9.下列各组数是三角形的三边,能组成直角三角形的一组数是()A. ,,B. 2,3,4C. 3,4,5D. 6,8,1210.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A. 8B. 4C. 6D. 无法计算11.在Rt△ABC中,∠ACB=90°,AC= ,BC=2,则AB的长为()A. B. C. D. 612.已知△ABC的三边长分别为a,b,c,且满足(a﹣5)2+|b﹣12|+ =0,则△ABC()A. 不是直角三角形B. 是以a为斜边的直角三角形C. 是以b为斜边的直角三角形D. 是以c为斜边的直角三角形二、填空题13.如图,Rt△ABC的周长为cm,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是________cm2.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=________ ,b=________ ,c=________15.一棵树因雪灾于A处折断,如图所示,测得树梢触地点B到树根C处的距离为4米,∠ABC约45°,树干AC 垂直于地面,那么此树在未折断之前的高度约为________米(答案可保留根号)16.平面直角坐标系内点P(﹣2,0),与点Q(0,3)之间的距离是________.17.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于________18.如图,O为矩形ABCD内的一点,满足OD=OC,若O点到边AB的距离为d,到边DC的距离为3d,且OB=2d,求该矩形对角线的长 ________19.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:________.(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为________和________,请用所学知识说明它们是一组勾股数.20.四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=90°,则△BDC为________三角形.21.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=________.三、解答题22.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.23.如图,在四边形ABCD中,已知AB=4cm,BC=3cm,AD=12cm,DC=13cm,∠B=90°,求四边形ABCD的面积。

人教版八年级数学下册《第17章勾股定理》单元检测卷含答案

 人教版八年级数学下册《第17章勾股定理》单元检测卷含答案

人教版八年级数学下册《第17章勾股定理》单元检测卷含答案一、选择题:1.下列长度的3条线段能构成直角三角形的是()①8,15,17;②4,5,6;③7.5,4,8.5;④24,25,7;⑤5,8,17.A.①②④B.②④⑤C.①③⑤D.①③④2.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形3.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.1254.若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6B.4C.4.8D.55.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形6.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a﹣b)=c2,则( )A.∠A为直角B.∠C为直角C.∠B为直角D.不是直角三角形7.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A.20B.22C.24D.268.如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为()米A.4米B.5米C.7米D.8米9.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是( )A.30B.40C.50D.6010.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米11.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.3:4B.5:8C.9:16D.1:212.如图,在△ABC中,∠ACB=90°,AC=40,CB=9,点M,N在AB上,且AM=AC,BN=BC,则MN的长为()A.6B.7C.8D.9二、填空题:13.已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为__________.14.三边为9、12、15的三角形,其面积为 .15.一个直角三角形的周长为60,一条直角边和斜边的长度之比为4:5,这个直角三角形三边长从小到大分别为_______.16.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.17.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB=.18.在△ABC中,AB=13,AC=20,BC边上的高为12,则△ABC的面积为.三、解答题:19.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a:b=3:4,c=75cm,求a、b;(2)若a:c=15:17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.20.如图,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.21.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.22.已知在△ABC中,a=m2-n2,b=2mn,c=m2+n2,其中m,n是正整数,且m>n.试判断:△ABC是否为直角三角形?23.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.24.如图,C为线段BD上一动点,分别过点B、D作AB BD,ED BD,连结AC、EC,已知线段AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.参考答案1.D2.B3.B4.D5.C6.A7.C9.A10.C11.B12.C13.答案为:2.4cm;14.3615.答案为:15,20,25;16.答案为:少走了4步.17.答案为:1.518.答案为:126或66.19. (1)a=45cm.B=60cm; (2)540; (3)a=30,c=34;(4)6; (5)12.20.解:如图,∵在直角△ABO中,∠B=90°,BO=3cm,AB=4cm,∴AO==5cm.则在直角△AFO中,由勾股定理得到:FO==13cm,∴图中半圆的面积=π×()2=π×=(cm2).答:图中半圆的面积是cm2.21.22.∵a=m2-n2,b=2mn,c=m2+n2,∴a2+b2=(m2-n2)2+4m2n2=m4+n4-2m2n2+4m2n2=m4+n4+2m2n2=(m2+n2)2=c2.∴△ABC是为直角三角形.23.24.。

人教版初2数学8年级下册 第17章(勾股定理)单元检测卷(含答案)

人教版初2数学8年级下册 第17章(勾股定理)单元检测卷(含答案)

八年级数学下册第十七章 勾股定理单元检测卷一、单选题1.如图,在Rt △ABC 中,∠BCA =90°,点D 是BC 上一点,AD =BD ,若AB =8,BD =5,则CD =( )A .2.1B .1.4C .3.2D .2.42.下列各组线段a 、b 、c 中不能组成直角三角形的是( )A .a =7,b =24,c =25B .a =4,b =5,c =6C .a =3,b =4,c =5D .a =9,b =12,c =153.如图,在四边形ABCD 中,2AB BC ==,DC =AD =,90ABC ∠=︒,则四边形ABCD的面积是( ).A .6B .8C .10D .124.如图,动点P 从点A 出发,沿着圆柱的侧面移动到BC 的中点S ,若8BC =,点P 移动的最短距离为5,则圆柱的底面周长为( )A .6B .4πC .8D .105.三个正方形的面积如图所示,则S 的值为( )A .3B .4C .9D .126.在如图的网格中,小正方形的边长均为1,A 、B 、C 三点均在正方形格点上,则下列结论错误的是( )A .S △ABC =10B .∠BAC =90°C .AB =D .点A 到直线BC 的距离是27.如图,在ABC 中,AB AC =,以点C 为圆心,CB 长为半径 画弧,交AB 于点B 和点D ,再分别以点,B D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若4,1AE BE ==,则EC 的长度是( )A .3B .5CD 8.如图,在ABC 中,AD BC ⊥于点D ,CF 平分ACB ∠交AD 于点E ,交AB 于点F ,15AB =,12AD =,14BC =,则DE 的长是( )A .3B .4C .5D .1039.在Rt ABC △中,90ACB ∠=︒,5cm =BC ,12cm AC =,三个内角的平分线交于点P ,则点P 到AB 的距离PH 为( )A .1cmB .2cmC .3013cmD .6013cm 10.如图,以△ABC 的边AB 、AC 为边向外作等边△ABD 与等边△ACE ,连接BE 交DC 于点F ,下列结论:①CD =BE ;②FA 平分∠DFE ;③∠BFC =120°;④AFE EFC S AF S FC∆∆=.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题11.如图,Rt ABC 中,90C ∠=︒,AB 的垂直平分线交BC 于点E ,若:5BE =,3CE =,则AC =_________.12.如图,在Rt ABC 中,90ACB ∠=︒,AE 为ABC 的角平分线,且ED AB ⊥于D ,若6,8AC BC ==,则DE 的长为_________.13.如图,在Rt △ABC 中,∠C =90°,AB =6,则正方形ADEC 与正方形BCFG 的面积之和为_____.14.如图,台阶A 处的蚂蚁要爬到B 处搬运食物,它爬的最短距离是_____.15.如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是_____.16.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ACB 的顶点A 在△ECD 的斜边DE 上,CD 交AB 于点F ,若AE ,AD =2,则△ACF 的面积为_____.三、解答题17.如图,已知等腰ABC 的底边13BC cm =,D 是腰BA 延长线上一点,连接CD ,且12BD cm =,5CD cm =.(1)判断BDC 的形状,并说明理由;(2)求ABC 的周长.18.如图,△ABC 中,AB 的垂直平分线DE 分别交AC 、AB 于点D 、E ,且222AD DC BC -=.(1)求证:∠C =90°;(2)若AC=16,CD:AD=3:5,求BC的长.19.如图,已知:AD是∠BAC的平分线,AB=BD,过点B作BE⊥AC,与AD交于点F.(1)求证:AC∥BD;(2)若AE=2,AB=3,BF,求△ABF中AB边上的高.20.如图,在△ABC中,∠ABC的角平分线与外角∠ACD的角平分线相交于点E.(1)设∠A=α,用含α的代数式表示∠E的度数;(2)若EC∥AB,AC=4,求线段CE的长;(3)在(2)的条件下,过点C作∠ACB的角平分线交BE于点F,若CF=3,求边AB的长.21.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连结AP,利用S△ABC=S△ABP+S△ACP,求PM+PN的值.(3)如图3,有一直角三角形纸片ABE,∠ACE=90°,AC=4,EC=6.点D在斜边AE上,连结CD,将△ADC 沿CD折叠,点A的对应点A′落在EC边上,求折叠后纸片重叠部分的面积.22.(背景)在△ABC中,分别以边AB、AC为底,向△ABC外侧作等腰直角三角形ABD和等腰直角三角形ACE,∠ADB=∠AEC=90°.(研究)点M为BC的中点,连接DM,EM,研究线段DM与EM的位置关系与数量关系.(1)如图(1),当∠BAC=90°时,延长EM到点F,使得MF=ME,连接BF.此时易证△EMC≌△FMB,D、B、F三点在一条直线上.进一步分析可以得到△DEF是等腰直角三角形,因此得到线段DM与EM的位置关系是 ,数量关系是 ;(2)如图(2),当∠BAC≠90°时,请继续探究线段DM与EM的位置关系与数量关系,并证明你的结论;(3)(应用)如图(3),当点C,B,D在同一直线上时,连接DE,若AB=,AC=4,求DE的长.参考答案1.B2.B3.B4.A5.C6.A7.A8.D9.B10.A11.412.313.3614.2515.2516.317.(1)直角三角形;(2)325 12cm18.(2)8.19.(2)△ABF中AB20.(1)12α;(2)4;(3)562521.(1)CD的长为125;(2)12013PM PN+=;(3)245.22.(1)DM⊥EM,DM=EM;(2)DM⊥EM,DM=EM;见解析;(3)DE。

人教版八年级下《第17章勾股定理》单元测试(有答案)(数学)

人教版八年级下《第17章勾股定理》单元测试(有答案)(数学)

《第17章勾股定理》一、选择题1.下面三组数中是勾股数的一组是()A.6,7,8 B.21,28,35 C.1.5,2,2.5 D.5,8,132.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm3.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.504.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14 B.14或4 C.8 D.4或85.等腰三角形底边上的高为8,周长为32,则三角形的面积为()A.56 B.48 C.40 D.326.直角三角形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长为()A.120 B.121 C.132 D.1237.如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A.450a元B.225a元 C.150a元 D.300a元8.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()A.10cm B.12cm C.19cm D.20cm14.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .二、填空题9.在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB= .10.在△ABC中,∠C=90°,若c=10,a:b=3:4,则ab= .11.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需米.12.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2= .13.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是,不同之处:.三、解答题15.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2,图3中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)16.如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD的面积.17.如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为cm.18.如果△ABC的三边长分别为a、b、c,并且满足a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状.《第17章勾股定理》参考答案与试题解析一、选择题1.下面三组数中是勾股数的一组是()A.6,7,8 B.21,28,35 C.1.5,2,2.5 D.5,8,13【考点】勾股数.【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,据此求解即可.【解答】解:A、62+72≠82,不能构成勾股数,故错误;B、212+282=352,能构成勾股数,故正确;C、1.5和2.5不是整数,所以不能构成勾股数,故错误;D、52+82≠132,不能构成勾股数,故错误.故选B.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm【考点】勾股定理.【分析】设另一条直角边是a,斜边是c.根据另一条直角边与斜边长的和是49cm,以及勾股定理就可以列出方程组,即可求解.【解答】解:设另一条直角边是a,斜边是c.根据题意,得,联立解方程组,得.故选D.【点评】注意根据已知条件结合勾股定理列方程求解.解方程组的方法可以把①方程代入②方程得到c﹣a=1,再联立解方程组.3.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.50【考点】勾股定理.【分析】先画图,再根据勾股定理易求BC2+AC2的值,再加上AB2即可.【解答】解:如右图所示,在Rt△ABC中,BC2+AC2=AB2,∵AB=5,∴BC2+AC2=25,∴AB2+AC2+BC2=25+25=50.故选D.【点评】本题考查了勾股定理,解题的关键是找准直角边和斜边.4.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14 B.14或4 C.8 D.4或8【考点】勾股定理.【专题】分类讨论.【分析】根据勾股定理先求出BD、CD的长,再求BC就很容易了.【解答】解:此图中有两个直角三角形,利用勾股定理可得:CD2=152﹣122=81,∴CD=9,同理得BD2=132﹣122=25∴BD=5∴BC=14,此图还有另一种画法.即当是此种情况时,BC=9﹣5=4故选B.【点评】此题主要考查了直角三角形中勾股定理的应用.即直角三角形两直角边的平方和等于斜边的平方.5.等腰三角形底边上的高为8,周长为32,则三角形的面积为()A.56 B.48 C.40 D.32【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,进而利用勾股定理得出DC的长,进而求出BC的长,即可得出答案.【解答】解:过点A做AD⊥BC于点D,∵等腰三角形底边上的高为8,周长为32,∴AD=8,设DC=BD=x,则AB=(32﹣2x)=16﹣x,∴AC2=AD2+DC2,即(16﹣x)2=82+x2,解得:x=6,故BC=12,则△ABC的面积为:×AD×BC=×8×12=48.故选:B.【点评】此题主要考查了勾股定理以及等腰三角形的性质,得出DC的长是解题关键.6.直角三角形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长为()A.120 B.121 C.132 D.123【考点】勾股定理.【专题】计算题.【分析】设另一条直角边为x,斜边为y,由勾股定理得出y2﹣x2=112,推出(y+x)(y﹣x)=121,根据121=11×11=121×1,推出x+y=121,y﹣x=1,求出x、y的值,即可求出答案.【解答】解:设另一条直角边为x,斜边为y,∵由勾股定理得:y2﹣x2=112,∴(y+x)(y﹣x)=121=11×11=121×1,∵x、y为整数,y>x,∴x+y>y﹣x,即只能x+y=121,y﹣x=1,解得:x=60,y=61,∴三角形的周长是11+60+61=132,故选C.【点评】本题考查了勾股定理的应用,关键是得出x+y=121和y﹣x=1,题目比较好,但有一定的难度.7.如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A.450a元B.225a元 C.150a元 D.300a元【考点】解直角三角形的应用.【专题】压轴题.【分析】求出三角形地的面积即可求解.如图所示,作BD⊥CA于D点.在Rt△ABD中,利用正弦函数定义求BD,即△ABC的高.运用三角形面积公式计算面积求解.【解答】解:如图所示,作BD⊥CA于D点.∵∠BAC=150°,∴∠DAB=30°,∵AB=20米,∴BD=20sin30°=10米,∴S△ABC=×30×10=150(米2).已知这种草皮每平方米a元,所以一共需要150a元.故选C.【点评】本题考查了通过作辅助线构建直角三角形,从而解斜三角形的能力.8.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()A.10cm B.12cm C.19cm D.20cm【考点】平面展开﹣最短路径问题.【分析】根据两点之间,线段最短.首先把A和B展开到一个平面内,即展开圆柱的半个侧面,得到一个矩形,然后根据勾股定理,求得蚂蚁爬行的最短路程即展开矩形的对角线的长度.【解答】解:展开圆柱的半个侧面,得到一个矩形:矩形的长是圆柱底面周长的一半即2π=6,矩形的宽是圆柱的高即8.根据勾股定理得:蚂蚁爬行的最短路程即展开矩形的对角线长即10.故选A.【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.本题注意只需展开圆柱的半个侧面.14.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= 4 .【考点】勾股定理;全等三角形的判定与性质.【专题】规律型.【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.【点评】运用了全等三角形的判定以及性质、勾股定理.注意发现两个小正方形的面积和正好是之间的正方形的面积.二、填空题9.在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB= 5 .【考点】勾股定理.【分析】根据勾股定理直接解答即可.【解答】解:因为在Rt△ABC中,AB2=AC2+BC2,即AB==5.【点评】本题考查了勾股定理解及直角三角形的能力.10.在△ABC中,∠C=90°,若c=10,a:b=3:4,则ab= 48 .【考点】勾股定理.【分析】首先根据勾股定理以及a:b=3:4,知斜边占5份.又c=10,所以一份是2,则a=6,b=8.所以ab=48.【解答】解:设a=3x,b=4x,则c==5x,又c=10,所以x=2,即a=6,b=8,所以ab=48.故答案为:48.【点评】熟练运用勾股定理,此类题首先计算一份的值,再进一步进行计算.11.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需2+2米.【考点】勾股定理的应用.【专题】压轴题.【分析】地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,因此根据勾股定理求出直角三角形两直角边即可.【解答】解:已知直角三角形的高是2米,根据三角函数得到:水平的直角边是=2,则地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,则地毯的长是(2+2)米.【点评】正确计算地毯的长度是解决本题的关键.12.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2= 7 .【考点】勾股定理.【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=,OC=,OD=∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.13.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是 A ,不同之处:A不是直角三角形,B,C,D是直角三角形.【考点】勾股定理.【专题】网格型.【分析】可以设正方形小格的边长是1.根据勾股定理计算各个三角形的三边,看三边的平方是否满足两条较短边的平方和等于最长边的平方.【解答】解:(1)在A图中三角形的三个边的长为、、,由勾股定理的逆定理可知5+10≠17,故A不是直角三角形;(2)在B图中三角形的三个边的长为2,4,,由勾股定理的逆定理可知22+42=()2,所以B是直角三角形;(3)根据(2)的计算方法,同理可求得C,D也是直角三角形.【点评】综合运用了勾股定理及其逆定理.三、解答题15.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2,图3中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)【考点】作图—应用与设计作图.【专题】网格型;开放型.【分析】(1)画一个边长3,4,5的三角形即可;(2)利用勾股定理,找长为无理数的线段,画三角形即可.【解答】解:【点评】本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.16.如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD的面积.【考点】勾股定理的逆定理.【专题】几何图形问题.【分析】连接BD,根据勾股定理的逆定理,判断出△ABD和△DBC是直角三角形,然后根据三角形面积公式求出两个三角形的面积,将其相加即可得到四边形ABCD的面积.【解答】解:连接BD,在△ABD中,∠A是直角,AB=3,AD=4,∴BD===5,△BCD 中,BC=12,DC=13,DB=5,52+122=132,即BC 2+BD 2=DC 2,∴△BCD 是直角三角形,∴S 四边形ABCD =S △ABD +S △BDC=AD•AB +BD•BC=×4×3+×5×12=6+30=36.【点评】此题要将求四边形面积的问题转化为求两个直角三角形面积和的问题,既考查了对勾股定理逆定理的掌握情况,又体现了转化思想在解题时的应用.17.如图所示,折叠长方形的一边AD ,使点D 落在边BC 的点F 处,已知AB=8cm ,BC=10cm ,则EC 的长为 3 cm .【考点】勾股定理;翻折变换(折叠问题).【分析】能够根据轴对称的性质得到相关的线段之间的关系.再根据勾股定理进行计算.【解答】解:∵D ,F 关于AE 对称,所以△AED 和△AEF 全等,∴AF=AD=BC=10,DE=EF ,设EC=x ,则DE=8﹣x .∴EF=8﹣x ,在Rt △ABF 中,BF==6,∴FC=BC ﹣BF=4.在Rt △CEF 中,由勾股定理得:CE 2+FC 2=EF 2,即:x 2+42=(8﹣x )2,解得x=3.∴EC 的长为3cm .【点评】特别注意轴对称的性质以及熟练运用勾股定理.18.如果△ABC的三边长分别为a、b、c,并且满足a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状.【考点】勾股定理的逆定理;非负数的性质:偶次方;完全平方公式.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.把a2+b2+c2+338=10a+24b+26c化简后判断则可.【解答】解:a2+b2+c2+338=10a+24b+26ca2﹣10a+25+b2﹣24b+144+c2﹣26c+169=0即(a﹣5)2+(b﹣12)2+(c﹣13)2=0∴a﹣5=0,b﹣12=0,c﹣13=0∴a=5,b=12,c=13∵52+122=169=132∴a2+b2=c2∴△ABC是直角三角形.【点评】本题考查了式子的变形和因式分解,然后再根据勾股定理的逆定理判断三角形的形状.。

人教版八年级数学下册第17章《勾股定理》单元检测试题含答案

人教版八年级数学下册第17章《勾股定理》单元检测试题含答案

人教版八年级数学下册第17章《勾股定理》单元检测试题含答案一、选择题1.已知a 、b 、c 是△ABC 的三边长,且满足a 3+ab 2+bc 2=b 3+a 2b +ac 2,则△ABC 的形状是( )A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形2.以下列各组数为边长,能组成直角三角形的是( )A.8,15,17B.4,5,6C.5,8,10D.8,39,403.如图所示为一个6×6的网格,在△ABC 、△A ′B ′C ′、△A ″B ″C ″三个三角形中,直角三角形有( )A.3个B.2个C.1个D.以上都不对4.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为( )5.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13米C.14米D.15米6.在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是( )A.5,4,3B.13,12,5C.10,8,6D.26,24,107.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是( )A.2+10B.2+210C.12D.18 8.如图在长方形ABCD 中,AB =6,BC =8,若将长方形折叠,使点B 与点D 重合,则折痕EF 的长为( ) A.152 B.154 C.5 D.6 二、填空题 9.如图,在Rt △ABC 中,∠C =90°,若BC =3,AC =4,则AB 的长是___. E C D B A F OE D CBA② 3 4 A ″ C ′ B ′ A ′ CB AC ″ B ″10.如图在5×5的网格(小正方形的边长为1)中有一个三角形ABC ,则三角形ABC 的周长是___.11.在直角三角形中,满足条件的三边长可以是___(写出一组即可)12.如图,已知在Rt △ABC 中,AB =4,分别以AC 、BC S 1,S 2,则S 1+S 2=___.13.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC ,则△ABC 中BC 边上的高是___.14.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1),图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1+S 2+S 3=10,则S 2的值是___.15.已知三角形相邻两边长分别为20cm 和30cm ,第三边上的高为10cm ,则此三角形的面积为___cm 2.16.如图如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…己知正方形ABCD 的面积S 1为1,按上述方法所作的正方形的面积依次为S 2,S 3,…S n (n 为正整数),那么第8个正方形的面积S 8=___.BC A F E DC I J GC BA图2 图1 S 2 S 1 C三、解答题17.喜欢爬山的同学都知道,很多名山上都有便于游人观光的索道,如图所示,山的高度AC 为800 m ,从山上A 与山下B 处各建一索道口,且BC =1 500 m ,一游客从山下索道口坐缆车到山顶,知缆车每分钟走50 m ,那么大约多长时间后该游客才能到达山顶?说明理由.18.已知:如图,在Rt △ABC 中,∠C =90°,AC =3,点D 为BC 边上一点,且BD=2AD ,∠ADC =60°.求△ABC 的周长(结果保留根号).19.在△ABC 中,AB =AC =4,点P 在BC 边上运动,猜想AP 2+PB ·PC 的值是否随点P 位置的变化而变化,并说明你的猜想.20.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点,且CE =14CB ,试说明AF ⊥FE 的理由.21.如图,在一次实践活动中,小兵从A 地出发,沿北偏东45°的方向行进了53千米到达B 地,然后再沿北偏西45°方向行进了千米到达目的地C .(1)求A ,C 两地之间的距离.(2)试确定目的地C 在点A 的什么方向(提示:在直角三角形中,30°角所对的直角边为斜边的一半)?22.如图,在△ABC 中,AD ⊥BC ,垂足为D ,∠B =60°,∠C =45°.(1)求∠BAC 的度数. (2)若AC =2,求AD 的长.23.如图是用硬纸板做成的四个全等的直角三角形,两直角边长分别是a ,b ,斜边长为c 和一个边长为c 的正方形,请你将它们拼成一个能证明勾股定理的图形.45°东 B C A 北 M N DC B AD C BA F E D CB A(1)画出拼成的这个图形的示意图.(2)证明勾股定理.参考答案:一、1.C.点拨:由a 3+ab 2+bc 2=b 3+a 2b +ac 2变形得a 3-a 2b +ab 2-b 3+bc 2-ac 2=0,即a 2(a -b )+ b 2(a -b )- c 2(a -b )=(a -b )(a 2+b 2-c 2)=0,所以a -b =0或a 2+ b 2-c 2=0,即a =b ,或a 2+b 2=c 2,所以这个三角形的形状为等腰三角形或直角三角形,故应选C ;2.A.点拨:对于选项D :因为 82≠(40+39)×(40-39),所以以8,39,40为边长不能组成直角三角形,故应选A ;3.B.点拨:设每一个小正方形的边长为1.于是,由勾股定理,得AB 2=10,BC 2=5,CA 2=5,A ′B ′2=10,B ′C ′2=5,C ′A ′2=13,A ″B ″2=18,B ″C ″2=26,C ″A ″2=8,此时,在△ABC 中,因为BC 2+CA 2=AB 2,所以该三角形是直角三角形.在△A ′B ′C ′中,因为因为A ′B ′2+B ′C ′2≠C ′A 2,所以该三角形不是直角三角形.在△A ″B ″C ″中,因为A ″B ″2+ C ″A ″2=B ″C ″2,所以该三角形是直角三角形.所以在△ABC 、△A ′B ′C ′、△A ″B ″C ″三个三角形中有两个是直角三角形.故应选B ;4.D.点拨:因为两个三角形都是边长为4的等边三角形,所以CB =CD ,又因为等边三角形的每个内角都是60°,所以∠CDB =∠CBD =30°,在△BDE 中,∠BDE =90°,BE =8,DE =4,由勾股定理可,得BD =.故应选D ;5.A ;6.D.点拨:设斜边为13x ,那么一直角边为5x ,由勾股定理,得另一直角边为12x ,所以有5x +12x +13x =60,解得x =2,所以这个三角形三边长分别是26,24,10,故应选D ;7.B.点拨:由折叠的原理,得最后的三角形是等腰三角形,且底边长为2,又由勾股定理,以周长为故应选B ;8.A.点拨:在Rt △DBC 中,由勾股定理,得BD 10,所以OD =5.连接DF ,由折叠的原理可知DF =BF ,设DF =x ,则FC =8-x ,在Rt △DBC 中,由勾股定理,得DC 2+FC 2=DF 2,所以62+(8-x )2=x 2,解得x =254.在Rt △DOF 中,由勾股定理,得OF =154,所以EF =2OF =152. 二、9.5.点拨:在Rt △ABC 中,∠C =90°,BC =3,AC =4,所以由勾股定理,得AB 5,即AB 的长是5;点拨:由图易知AC =2,BC =3,所以由勾股定理,得AB ABC 的周长=AB +AC +BC =11.答案不惟一.如,3、4、5;6、8、10;5、12、13,c b a c b a c b a c b a c c等;12.2π.点拨:S 1=12×π×(12AC )2=18πAC 2,S 2=12×π×(12BC )2=18πBC 2,所以S 1+S 2=18πAC 2+18πBC 2=18π(AC 2+BC 2),而由勾股定理,得AC 2+BC 2=AB 2,所以S 1+S 2=18πAB 2=18π×42=2π;13.2.点拨:连结对角线AD 交BC 于E ,由正方形的性质可知,AD ⊥BC ,所以AE =32BC ,而由勾股定理,得BC,所以AE;14.103.点拨:设一个直角三角形的面积为a ,则S 1=8a +S 3,S 2=4a +S 3,所以12a +3S 3=10,故4a +S 3=103=S 2;或-点拨:分两种情形:如图,当30cm 的边所对的角为锐角∠AC 1B 时,第三边BC 1,所以S △ABC =12×10=cm 2);当30cm 的边所对的角是钝角∠AC 2B 时,同法可求第三边为-S △ABC =100-(cm 2);16.128.点拨:S 1=12=1=21-1,S 2=2=2=22-1,S 3=(2)2=4=23-1,S 4=)2=8=24-1,…S n =2n -1,所以当n =8时,S 8=28-1=27=128.提示:求解这类题目的关键策略是:从特殊到一般,即先通过观察几个特殊的数式中的变数与不变数,得到一般规律,再利用其一般规律求解所要解决的问题.三、17.因为∠ACB =90°,所以由勾股定理,得AB 2=AC 2+BC 2=8002+1 5002,所以AB =1 700,而1 700÷50=34,所以大约34分钟后该游客到达山顶.18.在Rt △ADC 中,∠C =90°,∠ADC =60°,所以∠DAC =30°,所以DC =12AD ,即AD =2DC ,设DC =x ,那么AD =2x ,又因为AC,所以由勾股定理,得(2x )2=x 22,解得x =1,即DC =1,所以AD =2.而BD =2AD ,所以BD =4,即BC =BD +DC =5,在Rt △ABC 中,∠C =90°,因为ACBC =5,所以由勾股定理,得AB,所以Rt △ABC 的周长为AB +BC +AC =19.不发生变化.理由:过A 作AH ⊥BC 于H ,由勾股定理,得AP 2+PB ·PC =AH 2+PH 2+(BH -PH )(CH +PH )=AH 2+PH 2+BH 2-PH 2=AH 2+BH 2=AB 2=16=定值.20.连结AE ,设正方形的边长为4a ,则由勾股定理,得AF 2=AD 2+DF 2=(4a )2+(2a )2=20a 2,EF 2=FC 2+EC 2=(2a )2+a 2=5a 2,AE 2=AB 2+BE 2=(4a )2+(3a )2=25a 2,而5a 2+20a 2=25a 2,所以EF 2+AF 2=AE 2,所以△AEF 是直角三角形,且∠AFE =90°,所以AF ⊥FE .21.(1)由题意知,∠ABN =45°,又而∠CBN =45°,所以∠ABC =90°,在Rt △ABC 中,DC 2 B A C 1因为AB =,BC =5,所以根据勾股定理,得AC=10(千米).(2)在Rt △ABC 中,因为AC =2BC ,所以∠BAC =30°,所以C 在点A 北偏东45°-30°=15°的方向上.22.(1)由三角形内角和定理,得∠BAC =180°-60°-45°=75°.(2)因为AD ⊥BC ,所以△ADC 是直角三角形,又因为∠C =45°,所以∠DAC =45°,而AC =2,所以根据勾股定理,得AD.23.方法不惟一.如,(1)如图1所示.(2)证明:因为大正方形的面积表示为(a +b )2,大正方形的面积也可表示为c 2+4×12ab ,所以(a +b )2=c 2+4×12ab ,即a 2+2ab +b 2=c 2+2ab ,所以a 2+b 2c 2.即直角三角形两直角边的平方和等于斜边的平方.又如,(1)如图2所示.(2)证明:因为大正方形的面积表示为c 2,又可以表示为12ab ×4+(b -a )2,所以c 2=12ab ×4+(b -a )2,即c 2=2ab +b 2-2ab +a 2,所以c 2=a 2+b 2.即直角三角形两直角边的平方和等于斜边的平方.a b c 图2 a b c c cc b b b a a a 图1。

人教版八年级下册数学《第17章勾股定理》单元检测卷含答案

 人教版八年级下册数学《第17章勾股定理》单元检测卷含答案

人教版八年级下册数学《第17章勾股定理》单元检测卷含答案一、选择题(每小题3分;共33分)1.下列各组数中,属于勾股数的是()A. 2.5,6,6.5B. 5,7,10C. ,,D. 6,8,102.已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )A. 25B. 14C. 7D. 7或253.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A. 11cmB. 12cmC. 13cmD. 14cm4.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A. (4+)cmB. 9cmC. 4cmD. 6cm5.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A. 1、2、3B. 2、3、4C. 3、4、5D. 4、5、66.如图,分别以直角△ABC的三边AB,BC,CA为直径向外作半圆.设直线AB左边阴影部分的面积为S1,右边阴影部分的面积和为S2,则()A. S1=S2B. S1<S2C. S1>S2D. 无法确定7.如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是()A. B. C. D. 28.如图,有一只棱长为20厘米的正方形盒子,一只蚂蚁从A点出发,沿着正方体木箱的外表面爬行到C′D′的中点P的最短路线长为()A. 10厘米B. 50厘米C. 10厘米D. 30厘米9.如图,在Rt△ABC中,∠ACB=90°,AB=4.分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A. 2πB. 3πC. 4πD. 8π10.现有一只蜗牛和一只乌龟从同一点分别沿正东和正南方向爬行,蜗牛的速度为14厘米/分钟,乌龟的速度为48厘米/分钟,5分钟后,蜗牛和乌龟的直线距离为()A. 300厘米B. 250厘米C. 200厘米D. 150厘米11.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A. a=1.5,b=2,c=3B. a=3,b=4,c=5C. a=6,b=8,c=10D. a=7,b=24,c=25二、填空题(共11题;共33分)12.如图,O为矩形ABCD内的一点,满足OD=OC,若O点到边AB的距离为d,到边DC的距离为3d,且OB=2d,求该矩形对角线的长 ________13.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:________14.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.15.等腰△ABC,其中AB=AC=17cm,BC=16cm,则三角形的面积为________ cm2.16.一个直角三角形的两条直角边长为6和8,则它的斜边上的高是________.17.如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是________18.在Rt△ABC中,AC=9,BC=12,则AB=________.19.一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距________千米.20.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为________ 米.21.一个直角三角形的两条直角边分别为3cm,4cm,则这个直角三角形斜边上的高为________ cm.22.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=________.三、解答题(共4题;共34分)23.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?24.如图,△ABC中,AB=AC=20,BC=32,D是BC上一点,AD=15,且AD⊥AC,求BD长.25.已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2 ,求:(1)AB的长为________;(2)S△ABC=________.26.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?参考答案一、选择题D D C C C A C C A B A二、填空题12. 2 d 13. 13、84、85 14. 415. 120 16. 4.8 17.18. 15或3 19. 10 20. 1521. 22. 12三、解答题23.解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25﹣x)2,x=10.故:E点应建在距A站10千米处.24.解:∵AD⊥AC,AC=20,AD=15,∴CD= =25∴BD=BC﹣CD=32﹣25=725.(1)4(2)2+226.(1)解:由题意得:AB=2.5米,BE=0.7米,∵AE2=AB2﹣BE2,∴AE= =2.4米(2)解:由题意得:EC=2.4﹣0.4=2(米),∵DE2=CD2﹣CE2,∴DE= =1.5(米),∴BD=0.8米。

八年级数学下册《第十七章-勾股定理》单元测试卷-含答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷-含答案(人教版)

八年级数学下册《第十七章 勾股定理》单元测试卷-含答案(人教版)一、选择题1.在平面直角坐标系中,点(34)Q --,到原点的距离为() A .3B .4C .5D .72.如图,作一个正方形,使其边长为单位长度,以表示数1的点为圆心,正方形对角线的长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .12-B .13-C .13D .123.下列各组数据中,不能作为直角三角形的三边边长的是 ( )A .3,4,6B .6,8,10C .7,24,25D .9,12,154.如图,有一个水池,水面是边长为8尺的正方形,在水池中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度是( )A .7.5尺B .8尺C .8.5尺D .9尺5.一个直角三角形的两条边分别为2,6,那么这个直角三角形的面积是 ( )A 3B .3C 32D .3或26.如图,在ABC 中,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧(弧所在圆的半径都相等),两弧相交于M ,N 两点,直线MN 分别与边BC AC ,相交于点D ,E ,连接AD .若45BD DC AE AD ===,, 则AB 的长为( )A .9B .8C .7D .67.如图,点A ,B ,C 在边长为1的正方形网格格点上,则AB 边上的高为( )A .655B 5C .56D 58.如图,长方体的底面边长分别为2厘米和4厘米,高为5厘米.若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为( )厘米A .8B .10C .12D .13二、填空题9.一个直角三角形的两边长分别为1和2,则第三边长为 .10.一艘船以20海里/时的速度从A 港向东北方向航行,另一艘船以15海里/时的速度从A 港向西北方向航行,经过1小时后,它们相距 海里.11.如图,在Rt ABC 中9086C AC BC ∠=︒==,,,D 为AC 上一点,若BD 是ABC ∠的角平分线,则AD = .12.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a 、b ,斜边长为c ,若420b a c -==, 则每个直角三角形的面积为 .三、解答题13.如图,在四边形ABCD 中90C ∠=︒,BC=CD=1,AB=2,6AD =ABC ∠的度数.14.如图,在ABC 中3AC =2AB =是边BC 的中点,且5AE =.求证:ABC 是直角三角形.15.要把宣传牌()AB ,装订在教室的黑板上面(如图所示).一架梯子(5AE =米)靠在宣传牌()AB A ,底端落在地板E 处,然后移动的梯子使顶端落在宣传牌()AB 的B 处,而底端E 向外移到了1米到C 处(1CE =米).测量得4BM =米.求宣传牌()AB 的高度(结果用根号表示).四、综合题16.如图,在四边形ABCD 中,点E 是边BC 上一点,且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠;(2)若60C ∠=︒,4DE =时,求AED 的面积.17.如图,永定路一侧有A 、B 两个送奶站,C 为永定路上一供奶站,CA 和CB 为供奶路线,现已测得8km AC = 15km BC = AC BC ⊥ 130∠=︒.(1)连接AB ,求两个送奶站之间的距离.(2)有一人从点C 处出发,沿永定路路边向右行走,速度为2.5km /h ,多长时间后这个人距B 送奶站最近?18.图1、图2、图3均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中ABC 的形状是 ;(2)在图1中确定一点D ,连接DB DC ,,使DBC 与ABC 全等但不成轴对称; (3)在图2中确定一点D ,连接DB DC ,,使DBC 与ABC 成轴对称;(4)在图3中ABC 边BC 上找一个点D ,使得它与点A B ,与点A C ,构成的三角形为等腰三角形.19.如图,点O 是等边ABC 内一点,将CO 绕点C 顺时针旋转60°得到CD ,连接OD ,AO ,BO ,AD .(1)求证:BCO ≌ACD .(2)若OA =10,OB =8,OC =6,求∠BOC 的度数.参考答案与解析1.【答案】C【解析】【解答】解: 点(34)Q --,到原点的距离为2234+故答案为:C.【分析】直接利用勾股定理计算即可.2.【答案】D【解析】22112+=则点A 表示的数为12故答案为:D .【分析】利用勾股定理求出正方形的对角线的长,即可得到点A 表示的数为123.【答案】A【解析】【解答】解: A 、∵32+42≠62,∴ 由勾股定理的逆定理可知这三条线段不能作为直角三角形的三边边长 ,故此选项符合题意;B 、∵62+82=102,∴由勾股定理的逆定理可知 这三条线段能作为直角三角形的三边边长 ,故此选项不符合题意;C 、∵72+242=252,∴由勾股定理的逆定理可知 这三条线段能作为直角三角形的三边边长 ,故此选项不符合题意;D 、∵92+122=152,∴由勾股定理的逆定理可知 这三条线段能作为直角三角形的三边边长 ,故此选项不符合题意; 故答案为:A.【分析】分别计算各选项中各数的平方,观察是否满足a 2+b 2=c 2,由勾股定理的逆定理可知:若满足,则可构成直角三角形,反之,不能构成直角三角形,结合各选项即可判断求解.4.【答案】C【解析】【解答】解:设芦苇的长度为x 尺,则AB 为(x-1)尺根据勾股定理得: 2228(1)()2x x -+=解得: 8.5x = ∴芦苇的长度为8.5尺. 故答案为:C.【分析】设芦苇的长度为x 尺,则AB 为(x-1)尺,利用勾股定理建立方程,求解即可.5.【答案】C【解析】【解答】解:分两种情况:6()()226242-==则S ∆=12222⨯= 6为直角边时 则S ∆=12632=;32. 故答案为:C.【分析】由题意可分两种情况:当6为斜边时,用勾股定理求出另一条直角边,然后根据直角三角6为直角边时,根据直角三角形的面积等于两直角边乘积的一半可求解.6.【答案】D【解析】【解答】解:由题意可得:MN 是AC 的垂直平分线∴AC = 2AE =8,DA= DC ∴∠DAC= ∠C ∵BD = CD ∴BD = AD ∴∠B = ∠BAD∵∠B+∠BAD+ZC+∠DAC =180° ∴2∠BAD+2∠DAC = 180° ∴∠BAD+∠DAC=90°∴∠BAC =90°∵BC =BD+CD =2AD =10∴2222=-=-=1086AB BC AC故答案为:D.【分析】根据垂直平分线求出AC = 2AE =8,DA= DC,再求出∠B = ∠BAD,最后利用勾股定理计算求解即可。

人教版初2数学8年级下册 第17章(勾股定理)单元测试卷(解析版)

人教版初2数学8年级下册 第17章(勾股定理)单元测试卷(解析版)

第十七章勾股定理单元测试卷一、选择题1. 边长分别是下列各组数的三角中,是直角三角形的是()A.5,10,13B.5,7,8C.8,25,27D.7,24,252. 直角三角形三边的长分别为3、4、x,则x可能取的值为()A.5B.7C.5或7D.不能确定3. 在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14B.14或4C.8D.4或84. 现有一只蜗牛和一只乌龟从同一点分别沿正东和正南方向爬行,蜗牛的速度为14厘米/分钟,乌龟的速度为48厘米/分钟,5分钟后,蜗牛和乌龟的直线距离为()A.300厘米B.250厘米C.200厘米D.150厘米5. 如图为某楼梯,已知楼梯的长为5米,高3米,现计划在楼梯表面铺地毯,则地毯的长度至少需要()A.8.5米B.8米C.7.5米D.7米6. 在直线l上有三个正方形m,q,n,若m,q的面积分别为5和11,则n的面积( )A.4B.6C.16D.557. 如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.9+2534B.9+2532C.18+253D.18+25328. 如图,点E在正方形ABCD内,满足∠AEB=90∘,AE=6,BE=8,则阴影部分的面积为()A.48B.60C.76D.809. 如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5,则AB的长是( )A.2cmB.3cmC.4cmD.221cm10. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为( )A.9B.6C.4D.311. 如图,正方形ABCD的边长为2,E是AB的中点,F、G是对角线AC上的两个动点,且FG=AC,点P是BC中点,连接EF,EP,PG,则EF+BG的最小值为( )2A.2B.2+2C.2+5D.5二、填空题12. 若一个三角形的三边长分别为5、12、13,则此三角形的面积为________.13. 在平面直角坐标系中,长方形ABCD四个顶点的坐标分别是A(−4,1),B(−4,−2),C(2,−2),D(2,1),设M是长方形ABCD边上的动点,直线AM将长方形ABCD的周长分为4:5的两部分,则点M的坐标是________.14. 如图,已知CD=6m,AD=8m,∠ADC=90∘,BC=24m,AB=26m.图中阴影部分的面积=________.15. 如图所示,⊙O分别切△ABC的三边AB,BC,CA于点D,E,F,若BC=8,AC=10,AB=6.AD=________;⊙O的半径长为________.16.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行________米.17. 如图,△ABC中,∠C=90∘,AD平分∠BAC,CD=10,BC=12,AB=13,则3△ADB的面积是________.18. 如图,矩形ABCD中,AB=4,BC=5,以AB为直径作⊙O,在直线BC上取点P,使得⊙O上的动点E到点P的最小距离为22−2,则DP的长为________.19. 如图,一根长18cm的筷子置于底面直径为5cm.高为12cm圆柱形水杯中,露在水杯外面的长度ℎcm,则ℎ的取值范围是________.20. 如图,已知圆锥的底面半径是2,母线长是6.(1)侧面展开图中∠ABC的度数为________;(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,则这根绳子的最短长度为________.三、解答题21. 如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD的面积.22. 如图,在△ABC中,∠C=90∘,AC<BC,D为边BC上一点,且到A,B两点的距离相等.(1)利用尺规,作出点D的位置(不写作法,保留作图痕迹);(2)连接AD,若AB=5,AC=3,求CD的长.23. 如图,在四边形中,∠B=90∘,BC=4,AE⊥CD,垂足为E,AE=CE,连接AC,若DE=5,AD=61.求:(1)AC的长;(2)四边形ABCD的面积.24. 为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60∘的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45∘的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:2≈1.141,3≈1.732)25. 如图,四边形ABCD是矩形.(1)在图1中作对角线BD的垂直平分线MN,分别交AD、BC于点M、N,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BM和DN,求证:四边形DMBN是菱形;(3)如图2,点E在矩形ABCD的边BC上,且DE=AD,延长EB到点F,使BF=CE,连接AF.若AD=10,BE=4,则四边形ADEF的面积为________.参考答案与试题解析一、选择题1.【答案】D【考点】勾股数【解析】由已知得其符合勾股定理的逆定理才能构成直角三角形,对选项一一分析,选出正确答案.【解答】解:A、52+102≠132,不能构成直角三角形,故错误;B、52+72≠82,不能构成直角三角形,故错误;C、82+252≠272,不能构成直角三角形,故错误;D、72+242=252,能构成直角三角形,故正确;故选:D.2.【答案】C【考点】勾股定理勾股定理的综合与创新【解析】由于直角三角形的斜边不能确定,故应分x为斜边与4为斜边两种情况进行讨论.【解答】解:当x为斜边时,x=32+42=5;当4为斜边时,x=42−32=7.∴x的值为5或7;故选:C.3.【答案】B【考点】勾股定理勾股定理的综合与创新【解析】根据勾股定理先求出BD、CD的长,再求BC就很容易了.【解答】解:此图中有两个直角三角形,利用勾股定理可得:CD2=152−122=81,∴CD=9,同理得BD2=132−122=25∴BD=5∴BC=14,此图还有另一种画法.即当是此种情况时,BC=9−5=4故选B.4.【答案】B【考点】勾股定理的应用【解析】根据题意画出图形,再根据勾股定理求解即可.【解答】解:如图所示,∵蜗牛的速度为14厘米/分钟,乌龟的速度为48厘米/分钟,∴OA=14×5=70(厘米),OB=48×5=240(厘米),∴AB=OA2+OB2= 702+2402=250(厘米).答:5分钟后,蜗牛和乌龟的直线距离为250厘米,故选B.5.【答案】D【考点】勾股定理的应用生活中的平移现象【解析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度=52−32=4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是3+4=7米.故选D.6.【答案】C【考点】勾股定理全等三角形的性质勾股定理的综合与创新【解析】根据已知及全等三角形的判定可得到△ABC≅△CDE,从而得到c的面积=b的面积−a 的面积.【解答】解:如图所示:∵∠ACB+∠ECD=90∘,∠DEC+∠ECD=90∘,∴∠ACB=∠DEC,在△ABC和△CDE中,∵∠ABC=∠CDE ∠ACB=∠DECAC=CE,∴△ABC≅△CDE,∴BC=DE,∴根据勾股定理的几何意义,n的面积=m的面积+q的面积=11+5=16.故选C.7.【答案】A【考点】三角形的面积旋转的性质勾股定理的逆定理等边三角形的判定等边三角形的性质【解析】将△BPC绕点B逆时针旋转60∘得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60∘,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60∘,在△AEP中,AE=5,延长BP,作AF⊥BP于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90∘,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.【解答】解:∵△ABC为等边三角形,将△BPC 绕点B 逆时针旋转60∘得△BEA ,连接EP ,且延长BP ,作AF ⊥BP 于点F ,如图,∴ BE =BP =4,AE =PC =5,∠PBE =60∘,∴ △BPE 为等边三角形,∴ PE =PB =4,∠BPE =60∘,在△AEP 中,AE =5,AP =3,PE =4,∴ AE 2=PE 2+AP 2,∴ △APE 为直角三角形,且∠APE =90∘,∴ ∠APB =90∘+60∘=150∘.∴ ∠APF =30∘,∴ 在Rt △APF 中,AF =12AP =32,根据勾股定理可知:PF =323,∴ 在Rt △ABF 中,AB 2=BF 2+AF 2=(4+323)2+(32)2=25+123,则△ABC 的面积是34⋅AB 2=34⋅(25+123)=9+2534.故选A .8.【答案】C 【考点】勾股定理【解析】由已知得△ABE 为直角三角形,用勾股定理求正方形的边长AB ,用S 阴影部分=S 正方形ABCD −S △ABE 求面积.【解答】解:∵ ∠AEB =90∘,AE =6,BE =8,∴ 在Rt △ABE 中,AB 2=AE 2+BE 2=100,∴ S 阴影部分=S 正方形ABCD −S △ABE ,=AB 2−12×AE ×BE =100−12×6×8=76.故选C .9.【答案】C【考点】勾股定理【解析】连接OA ,先根据⊙O 的直径CD =5cm 得出OD 的长,再根据OM OD =35求出OM 的长,在Rt △AOM 中根据勾股定理即可得出AM 的长,进而可得出结论.【解答】解:连接OA ,∵ CD 是⊙O 的直径,∴ OD =OA =52,又∵ OM OD =35,∴ OM =32,在Rt △AOM 中,由勾股定理得,AM =OA 2−OM 2=(52)2−(32)2=2,∴ AB =2AM =4.故选C .10.【答案】D【考点】勾股定理的证明【解析】本题主要考查勾股定理.【解答】解:由题意可知:中间小正方形的边长为:a−b ,∵ 每一个直角三角形的面积为:12ab =12×8=4,∴ 4×12ab +(a−b )2=25,∴ (a−b )2=25−16=9,∴ a−b =3.故选D .11.【答案】D【考点】勾股定理正方形的性质平行四边形的性质与判定三角形中位线定理【解析】AC,根据正方形ABCD的如图,取BC中点为P,E为AB中点,可得EP//AC,且EP=12边长为2,求出EP=2,FG=2,则EP//FG,且EP=FG,即四边形EPFGF为平行四边形,EF=PG,连接DG,则EF+BG=PG+DG,根据两点之间线段最短可得,当P,G,D在同一条直线上时,PG+DG取得最小值,即此时EF+BG的最小值为线段PD的长度.求出PD的长度即可得解EF+BG的最小值.【解答】解:如图,连接DG,PG,由题意得,EP为△ABC的中位线,AC,∴EP//AC且EP=12∵正方形ABCD的边长为2,∴AC=AB2+BC2=22,∴EP=2,FG=2,∴EP//FG且EP=FG,∴四边形EPGF为平行四边形,∴EF=PG,根据正方形的对称性可知,BG=DG,∴EF+BG=PG+DG,当P,G,D在同一条直线上时,PG+DG取得最小值,即此时EF+BG的最小值为线段PD的长度.在Rt△PCD中,PC=1,CD=2,∴PD=PC2+CD2=12+22=5,故EF+BG的最小值为5.故选D.二、填空题12.【答案】30【考点】勾股定理的逆定理【解析】先根据勾股定理的逆定理判定三角形是直角三角形,再利用面积公式求得面积.【解答】∵ 52+122=132,∴ 三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴ 此三角形的面积为12×5×12=30.13.【答案】(1,−2)或(2,−1)【考点】动点问题点的坐标【解析】此题暂无解析【解答】解:根据点的坐标可知AB =3,BC =6,长方形的周长为(3+6)×2=18.AM 将长方形ABCD 的周长分为4:5.18×49=8.当M 在BC 上时,点M 的坐标为(1,−2).当M 在CD 上时,点M 的坐标为(2,−1).故答案为:(1,−2)或(2,−1) .14.【答案】96m 2【考点】勾股定理的逆定理勾股定理【解析】先根据勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACB 为直角三角形,再根据S 阴影=12AC ×BC−12AD ×CD 即可得出结论.【解答】在Rt △ADC 中,∵ CD =6m ,AD =8m ,∠ADC =90∘,BC =24m ,AB =26m ,∴ AC 2=AD 2+CD 2=82+62=100,∴ AC =10m ,(取正值).在△ABC 中,∵ AC 2+BC 2=102+242=676,AB 2=262=676.∴ AC 2+BC 2=AB 2,∴ △ACB 为直角三角形,∠ACB =90∘.∴ S 阴影=12AC ×BC−12AD ×CD =12×10×24−12×8×6=96(m 2).15.【答案】4,2【考点】切线的性质垂径定理正方形的判定与性质勾股定理【解析】设AD=x,利用切线长定理构建方程即可解决问题;如图,连接OD,OE,OF,OA,OB,OC.证明四边形ODBE是正方形即可解决问题.【解答】解:设AD=x,∵⊙O分别切△ABC的三边AB,BC,CA于点D,E,F,∴AF=AD=x,∵BC=8,AC=10,AB=6,∴BD=BE=AB−AD=6−x,CE=CF=AC−AF=10−x,∴BE+CE=6−x+10−x=BC=8,即16−2x=8,得x=4,∴AD的长为4.如图,连接OD,OE,OF,OA,OB,OC.∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90∘,∵⊙O分别切△ABC的三边AB,BC于点D,E,∴∠ODB=∠OEB=90∘,∴四边形ODBE是矩形,∵OD=OE,∴四边形ODBE是正方形,∴DB=OD,∵AB=6,AD=4,∴OD=DB=6−4=2,∴⊙O的半径长为2.故答案为:4;2.16.10【考点】勾股定理的应用勾股定理的综合与创新【解析】从题目中找出直角三角形并利用勾股定理解答.【解答】解:过点D作DE⊥AB于E,连接BD.在Rt△BDE中,DE=8米,BE=8−2=6米.根据勾股定理得BD=10米.故答案为:10 .17.【答案】653【考点】角平分线的性质三角形的面积【解析】过D作DE⊥AB于E,根据角平分线性质求出DE,根据三角形的面积公式求出即可.【解答】解:过D作DE⊥AB于E,如图,在△ABC中,∵∠C=90∘,AD平分∠BAC,CD=103,∴CD=DE=103.∵AB=13,BC=12,∴S△ADB=12×AB×DE=12×13×103=653.故答案为:653.18.【答案】【考点】圆与四边形的综合矩形的性质勾股定理【解析】分两种情况:①如图1,P在点B的右侧时,先确定E和P的位置,根据半径和最小距离为22−2,计算PB的长,并根据勾股定理进行计算即可;②如图2,P在点B的左侧,同理可得:PB=2,根据勾股定理进行计算即可.【解答】解:分两种情况:①如图,P在点B的右侧时.∵AB=4,以AB为直径作⊙O,∴OB=OE=2.由题意可知:EP=22−2,∴OP=22.∵四边形ABCD是矩形,∴∠OBP=90∘,∴BP=2.∵BC=5,∴PC=3.在Rt△CDP中,由勾股定理得:DP=CD2+PC2=32+42=5;②如图,P在点B的左侧时.同理可得:PB=2,∴PC=5+2=7.在Rt△CDP中,由勾股定理得:DP=42+72=16+49=65.综上所述,DP的长为5或65.故答案为:5或65.19.【答案】5cm≤ℎ≤6cm【考点】勾股定理的应用【解析】根据杯子内筷子的长度的取值范围得出杯子外面长度的取值范围,即可得出答案.【解答】解:∵将一根长为18cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,x=12,最长时等于杯子斜边长度是:x=122+52=13,∴ℎ的取值范围是:(18−13)cm≤ℎ≤(18−12)cm,即5cm≤ℎ≤6cm.故答案为:5cm≤ℎ≤6cm.20.【答案】120∘,63【考点】勾股定理弧长的计算圆锥的展开图及侧面积【解析】圆锥的侧面展开图是扇形,从A点出发绕侧面一周,再回到A点的最短的路线即展开得到的扇形的弧所对直径,转化为求直径的长的问题.【解答】解:由2π×2=nπ×6得n=120∘,180∴∠ABC=120∘.作BD⊥AC交AC于点D,如图.∵AB=BC,AB,则∠2=∠1=60∘,∠3=30∘,BD=12∴AB=2BD,∴BD=3.在Rt△ABD中,根据勾股定理得:AD=AB2−BD2=33,∴AC=2AD=63.故答案为:120∘;63.三、解答题21.【答案】解:连接BD,在△ABD中,∠A是直角,AB=3,AD=4,∴BD=AD2+AB2=42+32=5,△BCD中,BC=12,DC=13,DB=5,52+122=132,即BC2+BD2=DC2,∴△BCD是直角三角形,∴S四边形ABCD=S△ABD+S△BDC=12AD⋅AB+12BD⋅BC=12×4×3+12×5×12=6+30=36.【考点】勾股定理的逆定理【解析】连接BD,根据勾股定理的逆定理,判断出△ABD和△DBC是直角三角形,然后根据三角形面积公式求出两个三角形的面积,将其相加即可得到四边形ABCD的面积.【解答】解:连接BD,在△ABD中,∠A是直角,AB=3,AD=4,∴BD=AD2+AB2=42+32=5,△BCD中,BC=12,DC=13,DB=5,52+122=132,即BC2+BD2=DC2,∴△BCD是直角三角形,∴S四边形ABCD=S△ABD+S△BDC=12AD⋅AB+12BD⋅BC=12×4×3+12×5×12=6+30=36.22.【答案】解:(1)如图,点D为所作;(2)在Rt△ABC中,BC=AB2−AC2=52−32=4,设CD的长为x,则BD的长为(4−x),由题意得AD=BD=4−x,在Rt△ACD中,∵AC2+CD2=AD2,∴32+x2=(4−x)2,解得x=78,∴CD的长为78.【考点】作线段的垂直平分线勾股定理【解析】(1)作AB 的垂直平分线交BC 于D 点,则DA =DB ;(2)先Rt △ABC 中利用勾股定理计算出BC =4,设CD 的长为x ,则BD 的长为(4−x),所有AD =BD =4−x ,然后在Rt △ACD 中利用勾股定理得到32+x 2=(4−x )2,再解方程求出x 即可.【解答】解:(1)如图,点D 为所作;(2)在Rt △ABC 中,BC =AB 2−AC 2=52−32=4,设CD 的长为x ,则BD 的长为(4−x),由题意得AD =BD =4−x ,在Rt △ACD 中,∵ AC 2+CD 2=AD 2,∴ 32+x 2=(4−x )2,解得x =78,∴ CD 的长为78.23.【答案】解:(1)∵ AE ⊥CD ,∴ ∠AED =∠AEC =90∘,∴ AE =AD 2−DE 2=61−25=6,∴ CE =AE =6,∴ AC =AE 2+CE 2=62+62=62;(2)∵ ∠B =90∘,∴ AB =AC 2−BC 2=(62)2−42=214,∵ CD =CE +DE =6+5=11,∴ 四边形ABCD 的面积=△ABC 的面积+△ACD 的面积=12AB ×BC +12CD ×AE =12×214×4+12×11×6=414+33.【考点】勾股定理【解析】(1)由垂直的定义得出∠AED =∠AEC =90∘,由勾股定理求出AE ,得出CE ,再由勾股定理求出AC 即可;(2)由勾股定理求出AB ,再求出CD ,四边形ABCD 的面积=△ABC 的面积+△ACD 的面积,即可得出结果.【解答】解:(1)∵ AE ⊥CD ,∴ ∠AED =∠AEC =90∘,∴ AE =AD 2−DE 2=61−25=6,∴ CE =AE =6,∴ AC =AE 2+CE 2=62+62=62;(2)∵ ∠B =90∘,∴ AB =AC 2−BC 2=(62)2−42=214,∵ CD =CE +DE =6+5=11,∴ 四边形ABCD 的面积=△ABC 的面积+△ACD 的面积=12AB ×BC +12CD ×AE =12×214×4+12×11×6=414+33.24.【答案】解:作PD ⊥AB 于D .设BD =x ,则AD =x +200.∵ ∠EAP =60∘,∴ ∠PAB =90∘−60∘=30∘.在Rt △BPD 中,∵ ∠FBP =45∘,∴ ∠PBD =∠BPD =45∘,∴ PD =DB =x .在Rt △APD 中,∵ ∠PAB =30∘,∴ PD =tan 30∘⋅AD ,即DB =PD =tan 30∘⋅AD =x =33(200+x),解得:x ≈273.2,∴ PD =273(米).答:凉亭P 到公路l 的距离为273米.【考点】勾股定理的应用解直角三角形的应用-方向角问题【解析】此题暂无解析【解答】解:作PD ⊥AB 于D .设BD=x,则AD=x+200.∵∠EAP=60∘,∴∠PAB=90∘−60∘=30∘.在Rt△BPD中,∵∠FBP=45∘,∴∠PBD=∠BPD=45∘,∴PD=DB=x.在Rt△APD中,∵∠PAB=30∘,∴PD=tan30∘⋅AD,(200+x),即DB=PD=tan30∘⋅AD=x=33解得:x≈273.2,∴PD=273(米).答:凉亭P到公路l的距离为273米.25.【答案】(1)解:如图所示,MN即为所求.(2)证明:∵四边形ABCD为矩形,∴AD//BC,∴∠ADB=∠CBD,∵MN垂直平分线段BD,∴BO=DO,在△DMO和△BNO中,∠ADB=∠CBD,BO=DO,∠DOM=∠BON,∴△DMO≅△BNO(ASA),∴MO=NO,∴四边形DMBN是平行四边形,又∵MN⊥BD,∴四边形DMBN是菱形.80【考点】矩形的性质作线段的垂直平分线全等三角形的性质与判定菱形的判定勾股定理菱形的面积菱形的判定与性质【解析】(1)根据垂直平分线的性质,以B,D为圆心,任意长为半径画弧,连接弧交点所得直线即MN;(2)先证四边形DMBN是平行四边形,由MN⊥BD,即可得出结论;(3)求证四边形ADEF为菱形,由菱形的性质得AF=EF=DE=AD=10,则BF=EF−BE=6,由勾股定理求出AB=8,由菱形面积公式即可得出结论.【解答】(1)解:如图所示,MN即为所求.(2)证明:∵四边形ABCD为矩形,∴AD//BC,∴∠ADB=∠CBD,∵MN垂直平分线段BD,∴BO=DO,在△DMO和△BNO中,∠ADB=∠CBD,BO=DO,∠DOM=∠BON,∴△DMO≅△BNO(ASA),∴MO=NO,∴四边形DMBN是平行四边形,又∵MN⊥BD,∴四边形DMBN是菱形.(3)解:∵四边形ABCD是矩形,∴∠ABC=90∘,AD //=BC,∵BF=CE,∴BF+BE=CE+BE,即FE=BC,∴AD=FE,AD//FE,又∵AD=DE,∴四边形ADEF为菱形,∴AF=EF=DE=AD=10,∴BF=EF−BE=10−4=6,在Rt△ABE中,AB2=AF2−BF2,∴AB=102−62=8,∴S菱形ADEF=EF×AB=10×8=80.故答案为:80.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第17章勾股定理单元目标检测
令狐采学
(时间:60分钟,满分:100分)
一、选择题(本大题共10小题,每小题3分,共30分) 1.在△ABC中,AB=17,AC=10,BC边上的高AD=8,则
边BC的长为().A.21 B.15 C.6 D.以上答案都不对2.在△ABC中,AB=15,AC=13,BC边上的高AD=12,则△ABC的面积为().
A.84 B.24C.24或84 D.84或24 3.如图,直角三角形ABC的周长为24,且AB∶BC=5∶3,则AC的长为().
A.6 B.8C.10 D.12
????第??题图??????????????第??题图
??????????????????????????????????????第??题图??
??.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=??,则图中阴影部分的面积为??.
A.????????????B.????????????C.????????????D.
??.如图,在△ABC中,AD⊥BC于点D,AB=??,BD=
??,DC=??,则AC的长为??.
A.??????????B.??????????C.??????????????D.??
??.若三角形三边长为a,b,c,且满足等式a+b??-c =ab,则此三角形是??.
A.锐角三角形??????????????B.钝角三角形
C.等腰直角三角形????????????D.直角三角形
??.一直角三角形两直角边分别为??,则这个直角三角形
斜边上的高为??.
D.A.????????????B.??????????C.
8.底边上的高为3,且底边长为8的等腰三角形腰长为().
A.3 B.4 C.5
D.6
9.一只蚂蚁沿直角三角形的边长爬行一周需2 s,如果将该直
角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一
周需().
A.6 s B.5 s C.4 s
D.3 s
10.如图,在Rt△ABC中,∠ACB=90°,AB=4.分别以
AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2
的值等于().
A.2π B.3π C.4π
D.8π
(第10题图) (第12题图) 二、填空题本大题共??小题,每小题??分,共??分??
.等腰三角形一腰长为??,一边上的高为??,则其底边长为________.
.观察图形后填空.
图??中正方形A的面积为__________;图??中斜
边x=________ ??.四根小木棒的长分别为????cm????cm ??cm,????cm,任选三根组成三角形,其中有________个直角三角形.
??.东东想把一根??
??cm长的木棒放到一个长、宽、高分别为??
??cm??
??cm??
??cm的木箱中,他能放进去吗?答:______ 填“能”或
“不能”??
三、解答题本大题共??小题,共????分??
??.??分??如图,已知等边△ABC的边长为????cm ??求AD的长度;??求△ABC的面积.
??.??分??如图,在一块由边长为
??cm的方砖铺设的广场上,一只飞来的喜鹊落在A点处,该喜鹊吃完小朋友洒在B,C处的鸟食,最少需要走多远?
17.(9分)如图,这是一个供滑板爱好者使用的U型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4 m的半圆,其边缘AB=CD=20 m,点E在CD上,CE=2 m,一滑行爱好者从A 点到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)
18.(9分)图(1)所示为一个无盖的正方体纸盒,现将其展开成
平面图,如图(2)所示.已知展开图中每个正方形的边长为1.
(1)求该展开图中可画出最长线段的长度,并求出这样的线段可画几条.
(2)试比较立体图中∠ABC与平面展开图中∠A′B′C′的大小关系.
19.(10分)如图,一架云梯长25 m,斜靠在一面墙上,梯子靠墙的一端距地面24 m.
(1)这个梯子底端离墙有多少米?
(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也滑动了4 m吗?
20.(10分)有一块直角三角形状的绿地,量得两直角边长分别为6 m,8 m.现在要将绿地扩充成等腰三角形,且扩充部分是以8 m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.
参考答案
1答案:D 点拨:△ABC可能为锐角三角形.此时BC=15+6=21;△ABC也可能为钝角三角形,此时BC=15-6=9. 2答案:C点拨:△ABC为锐角三角形时,S△ABC=×14×12=84;△ABC为钝角三角形时,S△ABC=×4×12=24.
3答案:B 点拨:设AB=5x,则BC=3x,由勾股定理可得AC=4x,所以5x+3x+4x=24,解得x=2,所以AC=8. 4答案:D 点拨:S阴=S△ABE+S△ACG+S△BCF =
=.
5答案:B 点拨:因为在Rt△ABD中,AD==8,所以在Rt△ACD中,AC==10.
6答案:D 点拨:由(a+b)2-c2=2ab,得a2+2ab+b2-c2=2ab,即a2+b2=c2.因此△ABC为直角三角形.
7答案:D 点拨:由勾股定理得斜边长为13,
所以5×12=13h,得h=.
8答案:C 点拨:由等腰三角形的“三线合一”及勾股定理可得腰长为5.
9答案:C 点拨:把直角三角形的边长扩大1倍,即直角三角形的周长变为原来的2倍.
因此所用时间为原来的2倍,即为4 s.
10答案:A 点拨:因为S1=,S2=BC2,所以S1+S2=(AC2+BC2)=×16=2π.
11答案:6或或点拨:当底边上的高为4时,底边的长为6;当腰上的高为4,且三角形为锐角三角形时,底边长为;当腰上的高为4,且三角形为钝角三角形时,底边的长为.
12答案:3613 点拨:由勾股定理易得.
13答案:1 点拨:边长为5 cm,12 cm,13 cm时,可组成直角三角形.
14答案:能点拨:因为木箱的对角线长为= cm>70 cm,所以能放进木棒去.
15解:(1)∵△ABC为等边三角形,
∴BD=3(cm).
在Rt△ABD中,由勾股定理得AD=(cm).
(2)S△ABC=×BC×AD=×6×=(cm2).
16解:AB是4×3方格的对角线.
由勾股定理得:
AB=20×=20×5=100(cm).
BC是5×12方格的对角线,
由勾股定理得
BC=20×=20×13=260(cm).
因此最短距离为100+260=360(cm).
17解:把半圆柱体展开后,可得下图.
由题意可知AD=πr=4π(cm),
DE=20-2=18(cm).
中,
AE

Rt△ADE


≈22(m)

18解:(1)由勾股定理可得最长线段的长为.
能画4条,如图所示.
(2)∠ABC与∠A′B′C′相等.
∵在立体图中,易得∠ABC=90°,又在平面展开图中,对于△A′B′D和△B′C′E有
∴△A′B′D≌△B′C′E(SAS).
∴∠DA′B′=∠EB′C′.
∵∠DA′B′+∠A′B′E=90°,
∴∠A′B′D+∠EB′C′=90°,即∠A′B′C′=90°.∴∠ABC=∠A′B′C′.
19解:(1)由题意,设云梯为AB,墙根为C,则AB=25 m,AC=24 m,
于是

BC
7 m.

故梯子底端离墙有7 m.
(2)设下滑后云梯为A′B′,则A′C=24-4=20(m).
在Rt△A′CB′中,

B′C


15(m)

∵15-7=8 m,∴梯子不是向后滑动4 m,而是向后滑动了8 m.
20解:依题意,设在Rt△ABC中,∠ACB=90°,AC=8,BC=6,
勾股定理得
AB


10(m)


(1)如图①,当AD=AB=10 m时,CD=

6(m)

图①
∴C△ABD=10+10+12=32(m).(2)当AB=BD=10 m时,CD=10-6=4(m),
图②
∴AD

(m)





10
∴C△ABD
10

)(m)

(20

(3)当AD=BD时,设AD=BD=x m,
CD=(6-x) m,
在Rt△ACD中,CD2+AC2=AD2,
即(6-x)2+82=x2,
x
解得

.

C△ABD
此时
×2
10

(m)

+。

相关文档
最新文档