长波辐射与辐射平衡
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L ( , ) L (0 )e(0 )/
• 设地面是朗伯面,即可求出在z高度上的辐照度为,
E ( )2 L ( 0 )e
0 1 ( 0 ) 1
d E ( 0 ) 2 e(
0
0 )
d
• 定义由地面至 z 处气层的漫射辐射通量透过率为,
0
• 在已知吸收物质的吸收系数和光学厚度以及介质的温度分布以后, 可以从理论上计算大气中辐射场的分布。
Figure 1. Three isothermal layers model the atmosphere in this illustration of upward-moving electromagnetic radiation with frequency v. The radiation, assumed not to scatter, propagates at an angle θ with respect to the vertical and emerges from layer 3, the topmost atmospheric slice. The ground below the atmosphere emits as an ideal blackbody, characterized by the Planck function B. Each layer, at its own temperature T, emits with its own emissivity ev and, by Kirchhoff’s law, absorbs a proportion av = ev of the incident radiation. The radiation flux distribution incident on layer 3 is Iv. It is the sum of the thermal emission from the ground, layer 1, and layer 2, attenuated by absorption in the intervening layers 1 and 2. Squiggly arrows indicate thermal emission; straight arrows indicate transmitted radiation.
②
③ ④
长波辐射传输方程(Schwarzschild方程)
• 同时考虑气层的放射与吸收,但不考虑散射,并假定大气是水 平均一的,即是平面平行大气。
• 射入的辐亮度L沿传播方向经过一段距离 dl 后,由于吸收作用
而使辐亮度变化 ,由于吸收作用而使辐亮度变化:
dL kab, L dl
• 此处 k是体积吸收系数。按吸收率定义,该薄气层的吸收率:
• 理解(5.5.1)(5.5.2)式
• 设地表温度为Tg,地面的积分出射度应是:
F AgT
F gT
4 g
4 g
(5.5.1)
(5.5.2)
• 或以地面比辐射率eg 表示,为
• 陆地表面可看作朗伯面;而平静的水面因有反射,则不能当作朗 伯面处理。
5.5.2 长波辐射在大气中传输
大气的长波辐射性质 ① 地球与大气都是放射红外辐射的辐射源,通过大气中的任一平面射出的是 具有各个方向的漫射辐射。而太阳直接辐射是主要集中在某一个方向的平 行辐射。在红外波段,到达地面的太阳直接辐射能量远小于地球与大气发 射的红外辐射,常可不予考虑。 除非在云或尘埃等大颗粒质点较多时,大气对长波辐射的散射削弱极小, 可以忽略不计。即使在有云时,云对长波的吸收作用很大,较薄的云层已 可视为黑体。因而研究长波辐射时,往往只考虑其吸收作用,忽略散射。 大气不仅是削弱辐射的介质,而且它本身也放射辐射,有时甚至其放射的 辐射会超出吸收部分,因此必须将大气的放射与吸收同时考虑。 总之,长波辐射在大气中的传输,是一种漫射辐射,是在无散射但有吸收 又有放射的介质中的传输。
• 式中 Ei3(0 )一个三阶指数积分。n 阶指数积分的定义式是
Ein X e X
1
d
n
• 而且有下列关系, dEin ( X ) Ein 1 X dX • 通过数值积分方法可求出此指数积分的函数表便于应用。
•
对比平行辐射透过率和漫射透过率 表达示形式,若要把漫射辐射当作平 行辐射处理,应当将其光学厚度加 大1.66 倍。其原理是清楚的,因为 (0) 是这一层大气的垂直光学厚 度,垂直方向辐射的光学路径最短, 而其它方向的路径都要加长,其吸 收当然也增加了。作为对各个方向 的积分,其最终效果是加大 1.66 倍, 因此也有人把β 称为漫射因子
•
•
Outgoing Longwave Radiation (OLR) is the energy leaving the earth as infrared radiation at low energy. OLR is a critical component of the Earth’s radiation budget and represents the total radiation going to space emitted by the atmosphere.[1] Earth's radiation balance is very closely achieved since the OLR very nearly equals the Shortwave Absorbed Radiation received at high energy from the sun. Thus, the first law of thermodynamics (energy conservation) is satisfied and the Earth's average temperature is very nearly stable. The OLR is affected by clouds and dust in the atmosphere, which tend to reduce it below clear sky values. Greenhouse gases, such as methane (CH4), nitrous oxide (N2O), water vapor (H2O) and carbon dioxide (CO2), absorb certain wavelengths of OLR adding heat to the atmosphere, which in turn causes the atmosphere to emit more radiation. Some of this radiation is directed back towards the Earth, increasing the average temperature of the Earth's surface. Therefore, an increase in the concentration of a greenhouse gas would contribute to global warming by increasing the amount of radiation that is absorbed and emitted by these atmospheric constituents. The OLR is dependent on the temperature of the radiating body. It is affected by the earths skin temperature, skin surface emissivity, atmospheric temperature and water vapor profile, and cloud cover.
Figure 1. Three isothermal layers model the atmosphere in this illustration of upward-moving electromagnetic radiation with frequency v. The radiation, assumed not to scatter, propagates at an angle θ with respect to the vertical and emerges from layer 3, the topmost atmospheric slice. The ground below the atmosphere emits as an ideal blackbody, characterized by the Planck function B. Each layer, at its own temperature T, emits with its own emissivity ev and, by Kirchhoff’s law, absorbs a proportion av = ev of the incident radiation. The radiation flux distribution incident on layer 3 is Iv. It is the sum of the thermal emission from the ground, layer 1, and layer 2, attenuated by absorption in the intervening layers 1 and 2. Squiggly arrows indicate thermal emission; straight arrows indicate transmitted radiation.
(5.5.21)
第二项为各层大气的辐射和吸收。
若求地气系统从大气顶部向外射出的长波辐射(OLR),则需对所有波长积分,
E L,
0
E ( 0) d
(5.5.22)
5.5.3 大气顶射出的长波辐射
• 在推导前面的公式时请特别注意其物理意义: ① 各高度上发射的长波辐射量为该点温度所对应的黑体辐射量 乘以其比辐射率(吸收率)。 ② 这一辐射在传输到大气上界时要受到它上部这层大气的吸收 衰减。 ③ 大气层顶部的出射辐射是地面和各层大气辐射之和。 ④ 地球大气顶部总的长波出射辐射(OLR)为各波长出射辐射 之和。
1 E ( ) f , ( 0 ) 2 e(0 ) d 0 E ( 0 )
• 若令
1
பைடு நூலகம்
, d
1
2
d , 代入上式即得
( 0 )
f , ( 0 ) 2 e
1
d
3
2Ei3 ( 0 )
g
0
E (0)
L (0, ) cos sin d d 1 0 1 0 π B (Tg ) 2 e d π B [T ( )] 2 e d d 0 0 0
0 0
2π
π 2
L (0, ) e
B (Tg )
B [T ( )] e ( 0 ) d 0
0
假设大气放射是各向同性的,对半球空间积分以后,可得到大气上界的单色辐射 通量密度(5.5.18) 0 0 B (T ) e B [T ( )] e d
( 0 )
0
' d ' L ( , ) e L (0, ) 0 B [T ( ')]e 5.5.8b ( ') d ' 向下传输 L (0, )e B [T ( ')]e
d L kab, [ L B (T )] dz
dL kab, [L B (T )]sec dz
cos
d L L B (T ) d
• 方程的解的形式为(5.5.8a)(5.5.8b)
( ' 0 ) d ' L ( , ) e L ( 0 , ) 0 B [T ( ')]e 5.5.8a d ' ( 0 ) L ( 0 , )e B [T ( ')]e( ' ) 向上传输
dL kab, L dl A kab, dl L L
• 根据基尔霍夫定律,该气层放射的辐亮度是
A B (T ) kab, B (T )d l
式中T为大气温度
dL kab, L dl A kab, dl L L
A B (T ) kab, B (T ) dl
漫射辐射透过率
• 漫射辐射的辐射通量是由各个方向的辐射流积分而成的。虽然每 个方向辐射的传输符合指数衰减规律,但作为其总和的辐射通量,
其衰减规律就要复杂一些。
• 单色辐射通过这层大气,只考虑经过气层的吸收削弱,其削弱为:
dL L kab, sec dz L d
• 辐射由地面向上至 z 处时,由(5.5.8a)可得到,
d f, ( ) E (0) π B (Tg ) f, ( 0 ) π B [T ( )] d 0 d
0
π B (Tg ) f, ( 0 )
其中第一项为来自地表的辐射,
1
( 0 )
π B [T ( )] d f, ( )
第五章 地面和大气中的辐射过程
5.5 地球–大气系统的长波辐射 5.6 地面、大气及地气系统的辐射平衡
5.5.1 地面的长波辐射特性
• 结合前面内容掌握吸收率、比辐射率概念; • 比较地面长波、短波吸收率的不同特点。 • 地面对于长波辐射的吸收率接近常数,可作为灰体,但对短波辐 射的吸收率较低,且随波长变化大。
5.5.3 大气顶射出的长波辐射
•掌握OLR(Outgoing Longwave Radiation )概念,理解 (5.5.21) 式各项意义,结合(5.5.8) 式。
假定地面为黑体,温度为Tg,则有边条件:
= 0处,L ( 0)=B(Tg)。
0
0
根据长波辐射传输方程的通解(5.5. 8),大气顶 处向外单色幅亮度为