27.2.3 相似三角形的周长与面积(含答案)-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的周长与面积(1)
新颖题赏析
如图,已知梯形ABCD中,AD∥BC,BC=3AD,E是腰AB•上的一点,•若△BCE•和四
边形AECD的面积分别为S1和S2,且2S1=3S2,求BE
AE
的值.
分析由AD∥BC,就想到构造相似三角形.解分别延长BA、CD相交于H.
因为AD∥BC,BC=3AD.2S1=3S2
所以S△ADH:S△BCH =AD2:BC2=1:9,•
即S△ADH:(S△ADH+S1+S2)=1:9.
S△ADH=1
8
(S1+S2)=
5
16
S2,
?
所以S△CEH =21
16
S2,S△CEH:S△BCE =EH:BE=(AH+AE):BE=7:8,
AH:BH=•1:3,AH:AB=1:2,(1
2
AB+AE):BE=7:8,
所以BE=4AE.即BE
AE
=4.
一、基础练习
1.相似三角形周长的比等于________,相似多边形周长的比等于_______,•相似三角形对应高的比等于________,相似三角形对应中线的比等于________,相似三角形的对应角平分线的比等于________.
2.相似三角形面积的比等于_________;相似多边形面积的比等于_________.
3.已知△ABC∽△A′B′C′,它们的周长分别为56cm和72cm,那么它们的面积的比_________.
4.如果把一个12cm•×21cm•的矩形按相似比3
4
进行变换,•得到的新矩形的周长为
_________,面积是_______.
5.如果把一个多边形改成和它相似的多边形,面积缩小为原来的2
3
,那么边长缩小为原
来的_________.
。
6.如图1,在ABCD中,K是BC边上的一点,且BK:KC=2:3,则△ADE和△KBE的周长比为_______,面积比为_________.
(1)(2)(3)
7.如图2,在梯形ABCD中,AD∥BC,AC与BD相交于点O,若△AOD与△COB•的面积之比为1:4,且BD=12cm,则BO长为______cm.
8.如图3,DE∥BC,S△ADE=S四边形BCED,则AD:BD=________.
9.如图4,在△ABC中,DE∥FG∥BC,且AD=DF=FB,则S△ADE:S四边形DEGF:S四边形FGCB=________.
(4)(5)
10.如图5,已知DE∥FG∥BC,且GA:AD:DB=3:4:2,则S△AGF:S△ADE:S△ABC =________.二、整合练习
;
1.已知△A′B′C′∽△ABC,AB=5,BC=26,CA=33,若△A′B′C′的最长边为66,•求它的最短边的长.
2.已知两相似三角形对应高的比为3:10,且大三角形的面积为400cm2,•求小三角形的面积,又这两三角形的周长差为560cm,则它们的周长分别为多少
&
3.如图,△ABC中,DE∥FG∥BC,且DE、FG把△ABC的面积三等分,若BC=•12cm.•求FG的长.
【
答案:
一、基础练习
1.相似比 相似比 相似比 相似比 相似比
2.相似比的平方 相似比的平方
3.49:81 4.88cm 448cm 2 5
6.5:2 25:4 7.8 8.1
) 9.1:3:5 10.9:16:36
二、整合练习
)
1.△ABC 中最长边为AC ,最短边为BC ,因为△A ′B ′C ′∽△ABC , 所以''''A C B C AC BC
=,B ′C ′
. 2.小三角形的面积为36cm 2,两个三角形的周长分别为240cm 和800cm .
3.由已知得S △AFG :S △ABC =2:3,
222()(),12312
AFG ABC S FG FG FG S BC ∆∆===
cm 。