中考数学动点问题题型及解题方法归纳

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学动点问题题型及解题方法归纳
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点
例1:直线364
y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.
(1)直接写出A B 、两点的坐标;
(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;
(3)当485
S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.
提示:第(2)问按点P 到拐点B 所有时间分段分类;
第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

二、 特殊四边形边上动点
例2:如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....
的面积为y 平方厘米(这里规定:点和线段是面积为
B
O 的三角形)
,解答下列问题: (1)点P 、Q 从出发到相遇所用时间是 秒;
(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒;
(3)求y 与x 之间的函数关系式.
提示:第(3)问按点Q 到拐点时间B 、C 所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。

三、 直线上动点
例3:如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连
结AC BC A C
、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.
(1)求实数a b c ,,的值;
(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;
(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.
特殊角∠CAB=30°,∠CBA=60°
特殊图形四边形BNPM 为菱形;
第(3)问注意到△ABC 为直角三角形后,按直角位置对应分类;先画出与△ABC 相似的△BNQ ,
y 再判断是否在对称轴上。

四、 抛物线上动点
例4:如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.
(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.
注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P ,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。

第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC 平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

例5:正方形ABCD 在如图所示的平面直角坐标系中,A 在x 轴正半轴上,D 在y 轴的负半轴上,AB 交y 轴正半轴于E BC ,交x 轴负半轴于F ,1OE =,抛物线24y ax bx =+-过A D F 、、三点.
(1)求抛物线的解析式;
(2)Q 是抛物线上D F 、间的一点,过Q 点作平行于x 轴的直线交边AD 于M ,交BC 所在直线于N ,若32FQN AFQM S S =△四边形,则判断四边形AFQM 的形状;
(3)在射线DB 上是否存在动点P ,在射线CB 上是否存在动点H ,使得AP PH ⊥且AP PH =,若存在,请给予严格证明,若不存在,请说明理由.
注意:第(2)问,发现
并利用好NM ∥FA 且NM =FA;。

相关文档
最新文档