(完整版)数列中的数学思想和方法

合集下载

数列问题中的数学思想方法

数列问题中的数学思想方法

数列问题中的数学思想方法(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数列问题中的数学思想方法,手机号码;电话006;湖南祁东育贤中学 周友良 421600数列是高中数学的重要内容,它与数、式、函数、方程、不等式有着密切的联系,是每年高考的必考内容。

同时数列综合问题中蕴含着许多数学思想与方法(如函数思想、方程思想、分类讨论、化归与转化思想、归纳猜想等)。

在处理数列综合问题时,若能灵活运用这些数学思想与方法,则会取得事半功倍的效果。

一、函数思想数列是一种特殊的函数,数列的通项公式和前n 项和公式都可以看成n 的函数,也可以看成是方程或方程组,特别是等差数列的通项公式可以看成是n 的一次函数,而其求和公式可以看成是常数项为零的二次函数,因此许多数列问题可以用函数方程的思想进行分析,加以解决。

例1.已知数列的通项公式10102+-=n n a n ,这个数列从第几项起,各项的数值逐渐增大从第几项起各项的数值均为正数列中是否存在数值与首项相同的项分析:根据条件,数列{}n a 的点都在函数10102+-=x x y 的图象上,如右图利用图象根据二次函数的性质可得,这个数列从第5项开始,各项的数值逐渐增大,从第9项起,各项的数值均为正数,第9项是与首项相同的项。

例2.已知数列{}n a 是等差数列,若10=n S ,502=n S ,求n S 3。

解:)1(2)1(2111-+=-+=n d a n d n n na n S n ,故⎭⎬⎫⎩⎨⎧n S n 为等差数列,其通项为一次函数,设b ax x f +=)(,则点),(n S n n ,)2,2(2nSn n ,在其图象上,n b an 10=+∴,n b n a 2502=+⋅∴,nb n an 5,15-==∴, 故nn n S n n a n f n 5315353)3(3-⋅==-⋅=,解之得:1203=n S 。

蕴含数列中的数学思想方法

蕴含数列中的数学思想方法

蕴含数列中的数学思想方法蕴含数列中的数学思想方法山东省五莲一中王振香数列是高中数学的重要内容之一,与其它数学知识有着广泛、密切而又深入的交汇,这类数列综合问题往往蕴含着许多重要的数学思想与方法(如函数思想、方程思想、分类讨论、化归与转化思想、归纳猜想等),在分析与处理解决时,若能灵活地以这些数学思想与方法作思路指导,则会取得事半功倍的效果.一函数思想由于数列是以正整数为自变量的一种特殊离散型函数,则我们若能有意识地多从函数的角度去看待数列,在这种整体的、动态的观点之下加强数列与函数的联系,利用函数的图象和性质去解决数列的一系列问题,就会使数列的一些性质显现得更加清楚,使某些问题得到更好地解决.例1.已知数列{}n a 是等差数列,若10=n S ,502=n S ,求n S 3.分析:因{}n a 是等差数列,则知n S n也为等差数列,由此可用一次函数的方法解决问题. 解:)1(2)1(2111-+=-+=n d a n d n n na n S n ,故?n S n 为等差数列,其通项为一次函数,将之设为b ax x f +=)(,则点),(n S n n 、)2,2(2nS n n 在其图象上,n b an 10=+∴,5022a n b n ?+=,则解得155,an b n n==-. 故nn n S n n a n f n 5315353)3(3-?==-?=,解之得1203=n S . 评注:nS n 是关于n 的一次函数,其图象是直线上的离散点.上述解法是利用待定系数法建立一次函数来求解n S 3.当然更可利用结论“232,,n n n n n S S S S S --成等差数列”这个等差数列的重要结论而简单解决本题.二方程(组)思想数列与以前所学过的数、式、方程、函数、不等式、简易逻辑等许多知识都有广泛的联系,方程(组)思想在学习过程中得以较为充分的体现,许多数列习题都可通过列出方程或方程组而求解.如,数列的通项公式与前n 项和的公式紧密地联系着五个基本量1n a ,n,d(q),a ,n s ,“知三求二”是一类最基本的运算.因此方程的观点是解决此类问题的基本数学思想与方法. 例2.设{}n a 是正数组成的数列,其前n 项和为n s ,并且对于所有的正整数n ,n a 与2的等差中项等于n s 与2的等比中项,以此求{}n a 的通项公式.分析:由题设“n a 与2的等差中项等于n s 与2的等比中项”即可列出方程进行分析.解:由题意可知22n a +=21(2)8n n s a =+,当1n =时,21111(2)8s a a =+=,解得12a =. 又11n n n a s s ++=-2111(2)8n n a a ++∴=+-21(2)8n a +,整理得: 11()(4)0n n n n a a a a +++--=.又0n a >,∴14n n a a +-=,即{}n a 是首项为2、公差为4的等差数列,42n a n ∴=-.点评:本例利用了方程的消元思想由11n n n a s s ++=-、21(2)8 n n s a =+消去n s 得到了 11()(4)0n n n n a a a a +++--=这一方程,找到了数列中相邻两项的递推关系,使问题得到了解决.值得注意的是有的时候可借助11n n n a s s ++=-消去n a 利用1,n n s s +递推关系解题. 例3.已知等差数列{}n a 的公差是正数,并且374612,4a a a a =-+=-,求前n 项的和n s . 分析:由464a a +=-可知374a a +=-,结合条件3712a a =-可得相关方程.解:由等差数列{}n a 知:3746a a a a +=+,从而373712,4a aa a =-+=-,故37,a a 是方程24120x x +-=的两根,又0d >,解之得:376,2a a =-=.再解方程组1112610,622a d a a d d +=-=-??∴??+==?? ,因此有10(1)n s n n n =-+-. 点评:本题利用了3746a a a a +=+这一性质构造了二次方程,从中巧妙的解出了两个量 376,2a a =-=,再利用方程求得了首项与公差的值,从而使问题得到解决,由此可知在数列解题时往往可借助方程的思想与n m p q a a a a +=+(或n m p q a a a a ?=?)找出解题的捷径.三分类讨论思想所谓分类讨论,就是当问题所给出的对象不能进行统一研究时,我们就需要对所研究的对象分门别类的进行研究,最后综合各类的结果得到问题的解决.例4.设等比数列{}n a 的公比为q ,前n 项和),2,1( 0 =>n S n .(Ⅰ)求q 的取值范围;(Ⅱ)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小. 分析:凡涉及等比数列和的问题,一般而言均需分类讨论.解:(Ⅰ)因为}{n a 是等比数列,.0,0,011≠>=>q S a S n 可得当;0,11>==na S q n 时1(1)11,0,0,(1,2,)11n nn a q q q S n q q--≠=>>=-- 当时即上式等价于不等式组:),2,1(,01,01 =<-<-n q q n ① 或),2,1(,01,01 =>->-n q q n ② 解①式得q>1;解②,由于n 可为奇数、可为偶数,得-1<q<1.< p=""> 综上,q 的取值范围是).,0()0,1(+∞?- (Ⅱ)由2132n a n b a a ++=-得23()2n n b a q q =-,则其前n 项和23()2n n T q q S =-. 于是)123(2--=-q q S S T n n n ).2)(21(-+=q q S n 又∵n S >0且-10. 当112q -<<-或2q >时0n n T S ->即n n T S > 当122q -<<且q ≠0时,0n n T S -<即n n T S < 当12q =-或q =2时,0n n T S -=即n n T S = 点评:关于数列的分类一般考查三个方向:对公差d 的分类讨论、对公比q 的分类讨论、对项数n 的分类讨论.四化归与转化的思想数列的绝大多数问题最后归结为两大问题——求通项公式和求前n 项和.由于数列种类繁多,对一般数列讨论这两个问题有一定困难,故一般的,均能将待解决的问题化归成我们比较熟悉的等差、等比这两种最典型的数列去解决.例5.已知数列{}n a 的首项11=a ,前n 项和为n S ,且)(24*1N n a S n n ∈+=+,求{}n a 的通项公式.分析与略解:当n ≥2时,241+=+n n a S ,241+=-n n a S .两式相减,得11144-++-=-=n n n n n a a S S a ,将之变形为)2(2211-+-=-n n n n a a a a . 可见{}n n a a 21-+是公比为2的等比数列.又 241221+==+a S a a ,11=a ,得 52=a ,则 3212=-a a .因此 11232-+?=-n n n a a .两边同除以12+n ,得432211=-++n n n n a a (常数),可见?n n a 2是首项为2121=a ,公差为43的等差数列. 因此)1(43212-+=n a n n 4143-=n ,从而22)13(--=n n n a . 评析:本例通过两次化归,第一次把数列化归为等比数列,第二次把数列化归为等差数列,随着化归的进行,问题降低了难度.化归与转化的思想中隐含着许多数学方法如消元法、构造法、错位相减法、倒序相加法、拆项相消法、拆项分组求和法等.结束语:当然,渗透数列中的思想还有“一般与特殊的思想”、“归纳猜想的思想”、“递推(归)的思想”等.数学中的思想与方法是数学的“灵魂”,它并不是完全抽象的东西,而是以数学知识为载体的客观存在的内容,是人们解题经验的积累、解题方法的提炼和总结,具有应用性、概括性和指导性.因此在数列复习时,应高度重视数学思想方法的渗透,让学生领悟其价值、滋生应用的意识.</q<1.<>。

【高中数学】高中数列知识蕴含的主要数学思想

【高中数学】高中数列知识蕴含的主要数学思想

【高中数学】高中数列知识蕴含的主要数学思想1.函数思想由于一般的项公式、第一个n项和序列的公式都是关于n的函数的,所以可以从函数的角度,利用函数的思想来解决一些序列问题,相关的问题有:序列的单调性、求基本量、最大值、,利用序列对应函数的特征和序列对应函数的性质可以解决上述问题2.方程思想在等差和等比的顺序中有五个基本量。

利用方程的思想,我们可以“知三求二”,当一些量已知时,其他量可以通过一系列方程或方程来求解。

此外,本章中常用的待定系数法实际上是方程思想的体现3.转化与化归思想本章中变换思想的应用主要体现在将非特殊序列问题转化为特殊序列问题求解上。

例如,递归序列的通项公式可以通过构造转化为特殊序列的通项公式,而非特殊序列的求和问题可以转化为特殊序列的求和问题,它是指将相等数量的项目或研究对象转化为相等数量的点,例如相等数量序列或最差数量序列的基础4.分类讨论思想本章分类讨论的思想主要体现在解决一些参数级数问题,尤其是比例级数的求和或相关问题上。

如果包括参数,我们不能忽视q=1的讨论5.数形结合思想借助于序列对应函数的图像,解决一些问题将非常直观和快速。

例如,为了解决算术序列前n项之和的最大值问题,我们可以组合二次函数的图像6.归纳思想归纳思维是指从本章中的个别事实中归纳出一般结论的数学思维,根据序列的前几项归纳出序列的一般术语公式,图的归纳数是根据图的归纳数或归纳数在图中的应用7.类比思想类比思维指的是一种数学思维,即一种对象具有某些特征,而一个相似的对象也具有这些特征。

它的推理方式是从特殊推理到特殊推理,作为两种特殊数列,等差数列和等比数列有许多相似之处。

例如,在等差数列中,if,then;在比例数列中,如果,那么通过类比可以得出许多有用的结论,并且可以发现许多有趣的性质8.整体思想在研究序列(即等距或比例序列的前k项之和)时,我们使用整体思想,即将其视为序列中的一项,依此类推,我们可以得到序列的特征首页上一页12下一页末页共2页。

高中数列知识蕴含的主要数学思想

高中数列知识蕴含的主要数学思想

高中数列知识蕴含的主要数学思想1.函数思想因为数列的通项公式、前n项和公式都是关于n的函数,所以一些数列问题可从函数的角度出发,运用函数思想来解答.相关的问题有:数列的单调性问题、求基本量问题、最值问题等.上述问题可利用数列所对应函数的特征、数列所对应函数的性质来解答.2.方程思想等差、等比数列都有5个基本量,运用方程思想可做到“知三求二”.在已知某些量的情况下,通过列方程或方程组求解其它量.此外,本章经常使用的待定系数法其实就是方程思想的体现.3.转化与化归思想本章的转化思想的运用,主要体现在把非特殊数列问题转化成特殊数列问题来解答,如:求递推数列的通项公式可通过构造转化成特殊数列求通项公式,非特殊数列的求和问题可转化成特殊数列的求和问题等.化归思想指的是把问题转化到研究对象最基础知识点上去解决,如:用等差、等比数列及等差、等比中项的定义,证明一个数列是等差或等比数列等.4.分类讨论思想本章的分类讨论思想主要体现在解决一些含参数列问题上,尤其是等比数列求和或相关问题时,若含参数,一定不要忽略对q=1的讨论.5.数形结合思想借助数列所对应函数的图象解答某些问题,会十分的直观、快捷.如:解答等差数列前n项和的最值问题,我们可结合二次函数的图象.6.归纳思想归纳思想是指由个别事实概括出一般性结论的数学思想.在本章中,根据数列的前若干项归纳数列的通项公式,或根据若干图形中子图形的个数归纳第n个图形中子图形的个数(其实也是求通项公式)都是运用归纳思想的典型例子.7.类比思想类比思想是指由一类对象具有某些特征,推出与它相似的某一对象也具有这些特征的数学思想,它的推理方式是由特殊到特殊的推理.等差数列和等比数列作为两类特殊的数列,有很多相似之处,比如,在等差数列中,若,则;在等比数列中,若,则有.通过类比可推导出很多有用的结论,发现很多有趣的性质.8.整体思想在研究数列(是等差或等比数列的前k项的和)时,就利用了整体思想,即把看作数列中的一项,依此类推,即可得出此数列的特征.9.特殊化思想在解答一些关于数列的选择或填空题时,用符合题设条件的特殊数列求解,就是特殊化思想的体现.最常用的特殊数列是常数列,这是因为非零常数列既是等差数列又是等比数列,在题目对公差、公比没有显性或隐性的限制时,我们就可以特殊化为常数列来解答.二、高中数列知识常用的数学方法1.待定系数法本法实质是通过列方程或方程组求待定的参数,这是解答含参数列问题的一种重要方法.2.配方法主要应用在等差数列(非常数列)求前n项和的最值问题中.3.构造法①由一个等差或等比数列的某些子数列可构造成一个新的等差或等比数列;②由数列递推公式求数列的通项公式往往采用构造法,即通过添项、取倒数、开方、平方等手段把它转化成特殊数列求通项公式;③对于数列应用题,我们可构造相应的数列模型来解答.。

数列问题中的数学思想方法

数列问题中的数学思想方法

数学思想方法贯穿在整个教材的知识点中,以内隐的方式溶于数学知识的体系中,要使学生把这种思想内化成自己的观点并应用它来解决问题,就要努力把各种知识所表现出来的数学思想方法表层化,这符合未来数学教育改革的趋势。

一、函数的思想数学教学内容从总体上可分为两个层次:一个称为表层知识,包含概念、性质、法则、公式、公理、定理等基本内容;另一个称为深层知识,主要指数学思想和方法。

表层知识是深层知识的基础,具有较强的操作性,学生只有通过对教材的学习,在掌握与理解了一定的表层知识后,才能进一步学习和领该先讲授数据库表的操作,以数据处理为主线,将三大模块合理地穿插讲解,这不仅能使学生将所学内容前后联系起来,也有助于学生对所学知识的巩固和理解。

二、合理地安排理论与技能的时间VFP是一门操作性极强的学科,形形色色的命令及属性设置操作很简单,教师在多媒体教室讲解,学生都能听得懂。

但是过了几天,上机实作早已忘得一干二净,什么也做不起来,这就是理论与实践的脱节。

如果全部在机房授课,学生则忙于操作计算机,无暇顾及教师在讲些什么,更有甚者则已悄悄地玩起了游戏。

教师在兴致勃勃讲课之时,也不愿听到下面"嘀嘀"、"嗒嗒"的鼠标点击和键盘敲打声。

许多教师虽然对在机房授课情有独钟,却迟迟不敢付诸行动。

根据多年的探索与实践,我们将每周的6节课,2节安排在多媒体教室,4节安排在可实现多媒体教学的机房。

在多媒体教室上课可保证授课的系统性、连续性,也保证了授课的进度,还防止了学生的注意力分散,进而保证了理论授课的质量。

在多媒体机房授课,可以一边讲、一边练,教师每讲完一点,还可以检查学生是否操作正确,对不会的学生则可以手把手地教。

这样就保证了每教一点,学生就掌握一点。

一方面避免了学生囫囵吞枣,另一方面又避免了教师只顾进度往下赶。

同时,这种方式还增加了教师与学生的交流,便于教师因材施教,适当调整教学的内容、进度和方法。

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。

前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。

3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。

数列求和7种方法(方法全-例子多)精选全文

数列求和7种方法(方法全-例子多)精选全文

可编辑修改精选全文完整版数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。

(完整版)数列中的数学思想和方法

(完整版)数列中的数学思想和方法

(完整版)数列中的数学思想和方法数列中的数学思想和方法数学思想方法是数学知识的精髓,是知识转化为能力桥梁.能否有意识地正确运用数学思想方法解答数学问题,是衡量数学素质和数学能力的重要标志.数列中蕴涵了许多重要的数学思想,下面我们一起来看一看吧!一、方程思想 方程思想就是通过设元建立方程,研究方程解决问题的方法。

在解数列问题时,利用等差、等比数列的通项公式、求和公式及性质构造方程(组),是解数列问题基本方法。

例1 已知等差数列{}n a 的公差d 是正数,且3712,a a =-464a a +=-,求其前n 项和n S .解:由等差数列{}n a 知:3746a a a a +=+,从而373712,4a a a a =-+=-,故37,a a 是方程24120x x +-=的两根,又0d >,解之,得:376,2a a =-=。

再解方程组:112662a d a d +=-⎧⎨+=⎩1102a d =-⎧⇒⎨=⎩, 所以10(1)n S n n n =-+-。

〈法一〉法二、基本量法,建立首项和公差的二元方程 知三求二点评:本题利用了3746a a a a +=+这一性质构造了二次方程巧妙的解出了376,2a a =-=,再利用方程求得了首项与公差的值,从而使问题得到解决,由此可知在数列解题时往往可借助方程的思想与n m p q a a a a +=+(或n m p q a a a a ⋅=⋅)找出解题的捷径。

关注未知数的个数,关注独立方程的个数。

点评基本量法:性质法 技巧备用:设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .解 (1)由已知得错误!解得a 2=2。

设数列{a n }的公比为q ,由a 2=2,可得a 1=错误!,a 3=2q ,又S 3=7,可知错误!+2+2q =7,即2q 2-5q +2=0。

(完整版)数列通项公式及其求和公式

(完整版)数列通项公式及其求和公式

一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。

数列问题中的数学思想

数列问题中的数学思想

数列问题中的数学思想数列是高中数学的重要内容,蕴含着极其丰富的数学思想。

若能有效的运用其数学思想去分析问题、解决问题,在高考中大为有益。

一、方程思想等差(或等比)数列{}a n 的通项公式,前n 项和公式集中了等差(或等比)数列的五个基本元素a 1、d (或q )、n 、a n 、S n 。

“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的。

例1 在等比数列{}a n 中,已知a a 6424-=,aa 3564=,求{}a n 的前8项的和S 8。

解:a a a q q 64132124-=-=() (1) 由a a a q 3513264==() 有aq 138=± 将aq 138=-代入(1),得q 22=-(舍去) 将a q 138=代入(1),得q =±2。

当q=2时,a 11=,S 8255=;当q =-2时,a S 18185=-=, 二、函数思想数列是一种特殊的函数,动态的函数观点是解决数列问题的有效方法。

数列的项可看作定义在正整数集(或它的有限子集)上的函数,如等差数列{}a n 的通项公式a a n =+1 ()()n d d nad -=+-11,前n 项的和公式S n a n n d d n a d n n =+-=+-1211222()()。

当d ≠0时,可以看作自变量n 的一次和二次函数。

因此利用函数的思想方法去研究数列问题不仅能加深对数列的理解,也有助于学生解题思维能力的培养及增强应用函数思想解题的意识。

例2 等差数列{}a n 的前n 项的和为S n ,且S 10100=,S 10010=,求S 110。

解:显然公差d ≠0,所以S n 是n 的二次函数且无常数项。

于是设S a n b n n =+2()a ≠0,则a b a b ⨯+⨯=⨯+⨯=⎧⎨⎩10101001001001022解得a b =-=⎧⎨⎪⎪⎩⎪⎪1110011110所以S n n n=-+11100111102 从而S 11021110011011110110110=-⨯+⨯=- 例3 已知数列{}a n 中a n nn n=-+≥l n ()()12,求证a a n n >+1。

高中数学-数列求和及数列通项公式的基本方法和技巧演示教学

高中数学-数列求和及数列通项公式的基本方法和技巧演示教学

C
n n
1
C
n n
)
2(n 1) 2n
(反序相加)
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或
常见的数列,然后分别求和,再将其合并即可
.
若数列 an 的通项公式为 cn an bn ,其中 an , bn 中一个是等差数列,另一个是等比
数列,求和时一般用分组结合法。 [例 ]:求数列 1 1 ,2 1 ,3 1 ,4 1 2 4 8 16
数列通项公式的十种求法
一、公式法
例 1 已知数列 { an} 满足 an 1 2an 3 2n , a1 2 ,求数列 { an} 的通项公式。
二、累加法
例 2 已知数列 { an} 满足 an 1 an 2n 1,a1 1 ,求数列 { an} 的通项公式。
例 3 已知数列 { an} 满足 an 1 an 2 3n 1, a1 3 ,求数列 { an} 的通项公式。

Sn
(1 x)2
注意、 1 要考虑 当公比 x 为值 1 时为特殊情况
2 错位相减时要注意末项
此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。
对 应 高 考 考 题 : 设 正 项 等 比 数 列 an 的 首 项 a1
1
,前 2
n
项 和 为 Sn , 且
210 S30 ( 210 1)S20 S10 0 。(Ⅰ)求 an 的通项; (Ⅱ)求 nSn 的前 n 项和 Tn 。
1 (1 4an 16
1 24an ), a1 1 ,求数列 { an} 的通项公式。
九、不动点法
例 14 已知数列 { an} 满足 an 1 21an 24 , a1 4 ,求数列 { an} 的通项公式。 4an 1

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

数列中的数学思想

数列中的数学思想

数列中的数学思想谢伟杰数学思想是人们对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想。

在数列综合问题中蕴含着重要的数学思想,如归纳思想、函数思想、方程思想、分类讨论思想,在这些思想的指导下产生许多解决数列问题的方法,让学生充分理解和掌握这些思想和方法,对提高解决数列综合问题的能力很为重要。

1.函数思想函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。

它体现了"联系和变化"的辩证唯物主义观点数列是一类特殊的函数,以函数的观点认识理解数列,是解决数列问题的有效方法.例1等差数列的前n项和为.已知问数列的多少项和最大?解:的图象是开口向下的抛物线上一群离散的点,由知最高点的横坐标为,即前13项的和最大.2.方程思想方程思想是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。

有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的,在解数列问题时,利用等差、等比数列的通项公式、求和公式及性质构造方程(组),是解数列问题基本方法.例2(2016年江苏省高考)已知{a n}是等差数列,S n是其前n项和.若a1+a22=-3,S5=10,则a9的值是 ▲ .解:()2034223911211=⇒⎩⎨⎧=-=⇒⎩⎨⎧=+-=++adadadaa例3.【2015江苏高考,20】设1234,,,a a a a是各项为正数且公差为d(0)d≠的等差数列(1)证明:略(2))是否存在1,a d,使得2341234,,,a a a a依次成等比数列,并说明理由;解:(1)略(2)令1a d a+=,则1a,2a,3a,4a分别为a d-,a,a d+,2a d+(a d>,2a d>-,0d≠).假设存在1a,d,使得1a,22a,33a,44a依次构成等比数列,则()()34a a d a d=-+,且()()6422a d a a d+=+.令dta=,则()()3111t t=-+,且()()64112t t+=+(112t-<<,0t≠),化简得32220t t+-=(*),且21t t=+.将21t t=+代入(*)式,()()21212313410t t t t t t t t+++-=+=++=+=,则14t=-.显然14t=-不是上面方程得解,矛盾,所以假设不成立,因此不存在1a,d,使得1a,22a,33a,44a依次构成等比数列.3.分类讨论思想在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法.数列中蕴含着丰富的分类讨论的问题.例4(2016年浙江高考)设数列{n a}的前n项和为n S.已知2S=4,1n a+=2n S+1,*Nn∈.(I)求通项公式n a(略)(II)求数列{2--nan}的前n项和.解析:(1)略1*3,nna n N-=∈.(2)设1|32|nnb n-=--,*n N∈,122,1b b==.当3n≥时,由于132n n->+,故132,3nnb n n-=--≥.(下转第209页). All Rights Reserved.的学习效率不断地提升。

数列中常见的数学思想方法

数列中常见的数学思想方法

数列中常见的数学思想方法数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目。

最近几年的高考通过选择题,填空题来着重对三基进行考查,涉及到的知识主要有:等差(比)数列的性质。

通过解答题着重对观察、归纳、抽象等解决问题的基本方法进行考查,其中涉及到方程、不等式、函数思想方法的应用等,综合性比较强,但难度略有下降。

其中重要的数学思想方法有函数与方程思想、归纳法思想、分类讨论思想、等价转化思想、数形结合思想、算法思想等,注重思想方法的学习,可以在数列的学习中起到事半功倍的效果,有助于我们对数列的深入学习和掌握。

一、方程思想在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想。

利用方程组解决数列中知三求二的问题,具体解题过程中会用到加减消元法和代入消元法来求方程组的解,属于比较简单的问题。

其中体现出列方程组解题的思想,有助于利用已知的知识解决未知问题的过程。

二、整体思想整体思想在代数式的化简与求值、解方程(组)、几何解证等方面的应用。

整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中运用。

处理数学问题的着眼点或在整体或在局部,它是从整体角度出发,分析条件与目标之间的结构关系、对应关系、相互联系及变化规律。

从而找出最优解题途径的重要的数学思想。

在整体思想指导下,解题技巧只需记住已知、想着目标,、步步正确推理就够了。

三、分类讨论思想分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。

高中数学数列中的数学思想方法

高中数学数列中的数学思想方法

数列中的数学思想方法数学思想方法的掌握和自觉运用可以使数学学习达到更高境界。

数列中蕴含了函数思想、方程思想、化归与转化思想、分类与整合思想、数形结合思想等重要的数学思想,努力用数学思想的高观点指导数列的学习,可以更深刻地理解知识,形成能力。

一、函数思想与数形结合思想数列是定义在正整数集上的函数,等差、等比数列的通项公式和前n 项和公式是函数的解析式,在函数的观点指导下可使许多问题的理解产生一个质的飞跃。

例1.已知数列{}n a 是等差数列,数列{}n b 是等比数列,其公比1≠q ,且0>i b ( ,3,2,1=i ),若11b a =,1111b a =,则( ))(A 66b a = )(B 66b a > )(C 66b a < )(D 66b a >或66b a <分析:(方法一)1111b b q ≠⇒≠,0>i b ,所以626111111111622b b b b b b a a a ==>+=+=,选B (方法二)等差数列是定义在正整数集上的一次函数,等比数列(1≠q )时是定义在正整数集上的指数函数。

由11b a =,1111b a =知两函数有两个交点如图,显然66b a >,而且当N n n ∈<<,111时都有n n b a >,当11>n 时,n n b a <例2.已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于( )A .55B .70C .85D .100分析:函数的本质是对应,对数列}{n a ,1)(1-+==n a n f a n 就是11-+→n a n ,)(n b n b f a c n ==就是11-+→n n b a b ,将上述对应关系中的n 整体代换成了n b 即可。

数列中的数学思想学习方法

数列中的数学思想学习方法

数列中的数学思想学习方法
在数列综合问题中蕴含着许我重要的数学思想,如归纳思想、函数思想、方程思想、递推思想、化归思想、分类讨论思想,在这些思想的指导下产生许多解决数列问题的方法,让学生充分理解和掌握这些思想和方法,对提高解决数列综合问题的能力很为重要。

一.归纳思想
通过对命题在特殊情况下的考察与探索,发现并归纳出一般性的结论,再运用数学的方法对结论进行证明,这种归纳思想形成了解决数列问题的一种重要方法;观察、归纳、猜想、证明。

例1.设是数列的前n项和,且,数列的通项公式为,将数列和的公共项按它们在原数列中的先后顺序排成一个新数列,求。

分析:由,得,直接求出它们的公共项比较困难,可列举它们开始的若干项进行观察,发现规律后再进行证明。

(完整版)极限法求数列通项

(完整版)极限法求数列通项

(完整版)极限法求数列通项一、背景介绍在数学中,数列是由一系列按照特定规律排列的数字组成的序列。

求数列的通项是研究数列性质和解决问题的关键之一。

极限法是一种常用的方法,用于求解数列的通项,在数学的各个领域中都有广泛的应用。

二、极限法的基本思想极限法是通过研究数列的极限性质来推导数列的通项。

当数列的通项存在极限时,可以利用极限的性质来确定通项的形式。

三、极限法的具体步骤1. 首先,观察数列的前几项,寻找可能的规律性。

2. 推测数列的通项形式,可以根据前几项建立一个方程或递推关系。

3. 证明数列的极限存在。

可以通过数学归纳法、定义证明等方法证明数列的极限性质。

4. 根据已知的极限关系,推导出数列的通项。

四、示例下面以一个简单的数列为例来演示极限法求解数列通项的过程。

假设数列的前四项依次为:2, 4, 6, 8。

1. 观察数列的前几项,可以发现数列的公差为2,即每一项与前一项之差为2。

2. 推测数列的通项形式为:an = 2n,其中n表示数列中的第n个项。

3. 证明数列的极限存在,根据极限定义,当n趋向于无穷大时,数列的通项为无穷大。

因此,数列的极限存在。

4. 根据已知的极限关系,推导出数列的通项。

由于数列的公差为2,所以通项可以表示为an = a1 + (n - 1)d,其中a1为数列的首项,d为公差。

代入已知条件得:an = 2 + (n - 1)2 = 2n。

因此,根据极限法求解得出该数列的通项为an = 2n。

五、总结极限法是一种有效的求解数列通项的方法。

通过观察前几项,推测通项形式,并通过证明数列的极限性质来确定通项的形式。

在实际问题中,极限法有着广泛的应用,可以帮助我们更好地理解数列的性质和规律。

以上是关于极限法求解数列通项的文档,希望能对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列中的数学思想和方法数学思想方法是数学知识的精髓,是知识转化为能力桥梁.能否有意识地正确运用数学思想方法解答数学问题,是衡量数学素质和数学能力的重要标志.数列中蕴涵了许多重要的数学思想,下面我们一起来看一看吧! 一、方程思想方程思想就是通过设元建立方程,研究方程解决问题的方法.在解数列问题时,利用等差、等比数列的通项公式、求和公式及性质构造方程(组),是解数列问题基本方法. 例1 已知等差数列{}n a 的公差d 是正数,且3712,a a =-464a a +=-,求其前n 项和n S 。

解:由等差数列{}n a 知:3746a a a a +=+,从而373712,4a a a a =-+=-,故37,a a 是方程24120x x +-=的两根,又0d >,解之,得:376,2a a =-=。

再解方程组:112662a d a d +=-⎧⎨+=⎩1102a d =-⎧⇒⎨=⎩, 所以10(1)n S n n n =-+-。

<法一>法二、基本量法,建立首项和公差的二元方程 知三求二点评:本题利用了3746a a a a +=+这一性质构造了二次方程巧妙的解出了376,2a a =-=,再利用方程求得了首项与公差的值,从而使问题得到解决,由此可知在数列解题时往往可借助方程的思想与n m p q a a a a +=+(或n m p q a a a a ⋅=⋅)找出解题的捷径。

关注未知数的个数,关注独立方程的个数。

点评基本量法:性质法 技巧备用:设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列. (1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n . 解(1)由已知得⎩⎨⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q,a 3=2q ,又S 3=7,可知2q +2+2q =7,即2q 2-5q +2=0.解得q 1=2,q 2=12.由题意得q >1,∴q =2,∴a 1=1.故数列{a n }的通项为a n =2n -1. (2)由于b n =ln a 3n +1,n =1,2,…, 由(1)得a 3n +1=23n ,∴b n =ln 23n =3n ln 2. 又b n +1-b n =3ln 2,∴{b n }是等差数列, ∴T n =b 1+b 2+…+b n =n (b 1+b n )2=3n (n +1)2·ln 2.故T n =3n (n +1)2ln 2.小结:方程思想是数学解题中常用的基本思想方法之一,注意到方程思想在数列间题中的应用.常可以简洁处理一些其他思想方法难以解决的数列问题。

在等差数列和等比数列中,通项公式a n 和前n 项和公式S n 共涉及五个量:a 1,a n ,n ,q (d ),S n ,其中首项a 1和公比q (公差d )为基本量,“知三求二”是指将已知条件转换成关于a 1,a n ,n ,q (d ),S n 的方程组,通过方程的思想解出需要的量.二、函数思想函数思想是用联系和变化的观点考察数学对象.数列是一类特殊的函数,以函数的观点认识理解数列,是解决数列问题的有效方法.例2、已知等差数列{}n a 中,129a =,1020S S =,则该数列前多少项的和最大? 寻求通项 ,借助数列的单调性解决 解:1020111092019,102022S S a d a d ⨯⨯=∴+=+, 又129a =,2d ∴=-29(1)(2)231n a n n ∴=+-⨯-=-+ 令0,15,n a n n N *>≤∈,所以数列首项为正,公差为负,前15项为正,从第16项开始为负,所以前15项的和最大,1511514152252S a d ⨯=+=。

巧用等差数列下标的性质,关注数列的单调性解:10201112131920,0S S a a a a a =∴++++=, 由等差数列下标的性质可得:111213192015165()0a a a a a a a ++++=+=,又1290a =>,15160,0a a ∴><∴ 当15n =时,n S 取得最大值。

又129a =,2d ∴=-29(1)(2)231n a n n ∴=+-⨯-=-+令0,15,n a n n N *>≤∈,所以数列首项为正,公差为负,前15项为正,从第16项开始为负,所以前15项的和最大,且1511514152252S a d ⨯=+=。

思路2:从函数的代数角度来分析数列问题 解:1020111092019,102022S S a d a d ⨯⨯=∴+=+, 又129a =,2d ∴=-21(1)302n n n S na d n n ⨯-∴=+=-+2(15)225n =--+∴ 当15n =时,n S 取得最大值225。

思路3:从函数图象入手,数形结合解:设2n S An Bn =+,数列对应的图象是过原点的抛物线上孤立的点,又1290a =>,1020S S =,∴对称轴为1020152n +==且开口向下, ∴ 当15n =时,n S 取得最大值。

四种方法的比较设数列{a n }的公差为d , ∵S 10=S 20,∴10×29+10×92d =20×29+20×192d ,解得d =-2, ∴a n =-2n +31,设这个数列的前n 项和最大,则需⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧-2n +31≥0,-2n +1+31≤0, ∴14.5≤n ≤15.5,∵n ∈N *,∴n =15.方法二 设数列{a n }的公差为d , ∵S 10=S 20,∴10×29+10×92d =20×29+20×192d ,解得d =-2.等差数列{a n }的前n 项和S n =d2n 2+(a 1-d2)n 是关于n 的不含常数项的二次函数,根据其图象的对称性,由S 10=S 20,知x =10+202=15是其对称轴,由d =-2知二次函数的图象开口向下, 故n =15时S n 最大.备用:数列{}n a 中,21,n a n n n N *=+∈,求数列{}n a 的最大项。

.小结:利用二次函数的性质解决等差数列的前n 项和的最值问题,避免了复杂的运算过程. 数列是一种特殊的函数,在求解数列问题时,若涉及参数取值范围、最值问题或单调性时,均可考虑采用函数的性质及研究方法指导解题.值得注意的是数列定义域是正整数集或{1,2,3,…,n },这一特殊性对问题结果可能造成影响.三、分类讨论思想复杂问题无法一次性解决,常需分类研究,化整为零,各个击破.数列中蕴含着丰富的分类讨论的问题. 分类讨论是一种逻辑方法,同时又是一种重要的解题策略,在数学解题中有广泛的应用.所谓分类讨论,是在讨论对象明确的条件下,按照同一的分类标准,不重复、不遗漏、不越级的原则下进行的.它体现了化整为零、积零为整的思想与归类整理的方法.例3、已知等差数列{}n a 的前n 项的和32nn S =+,求n a 。

解:(1)当1n =时,115a s ==;(2)当2n ≥时,111222n n n n n n a s s ---=-=-=;综合(1) (2)可知15122n n n a n - ,=⎧=⎨ ,≥⎩。

点评:此例从分的体现了n a 与n s 的关系中隐含了分类讨论思想,其理由是1n n n a s s -=-中脚码1n -必须为正整数。

备用:已知数列{}n b 的前n 项和n n s n 182+-=,试求数列{}n b 的前n 项和n T 的表达式.分析:解题的关键是求出数列{}n b 的通项公式,并弄清数列{}n b 中各项的符号以便化去n b 的绝对值.故需分类探讨.解:当n=1时,171181211=⨯+-==s b ; 当n≥2时,()[]n n n n n s s b n n n 21918118221-=+---+-=-=-. ∴当1≤n≤9时,0>n b ,当n≥10时,0<n b .从而当1≤n≤9时,n T =n b b b +⋅⋅⋅++21=n n s b b b n n 18221+-==+⋅⋅⋅++;当n≥10时,n T =n b b b +⋅⋅⋅++21 =9109212s s b b b b b n n +-=-⋅⋅⋅-+⋅⋅⋅++16218)9189(218222+-=⨯+-+-n n n n .∴n T =⎪⎩⎪⎨⎧≥+-≤≤+-)10(,16218)91(,1822n n n n n n小结:数列中的分类讨论多涉及对公差d 、公比q 、项数n 的讨论,特别是对项数n 的讨论成为近几年高考的热点.四、整体的思想整体思想就是从整体着眼,通过问题的整体形式、整体结构或其它整体处理后,达到简捷地解题的目的.例4、在等差数列{}n a 中,已知1479a a a ++=,25815a a a ++=,求369a a a ++的值。

解:258147()3a a a a a a d ++=+++,2d ∴=,369258()321a a a a a a d ∴++=+++=例4、在等比数列{}n a 中,910(0)a a a a +=≠,1920a a b +=,则99100a a +=________.分析 根据题设条件可知a 19+a 20a 9+a 10=q 10=ba ,而a 99+a 100a 9+a 10=q 90,故可整体代入求解. 解析 设等比数列{a n }的公比为q ,则a 19+a 20a 9+a 10=q 10=b a ,又a 99+a 100a 9+a 10=q 90=(q 10)9=⎝⎛⎭⎫b a 9, 故a 99+a 100=⎝⎛⎭⎫b a 9(a 9+a 10)=b 9a8.答案 b 9a8小结:解决此题如果不把它与整体思想联系起来,那么直接解决要走很多弯路也不容易直接求出它的准确答案,因此此题应用了整体思想来解决了数列问题是非常重要的.备用:已知数列{}n b 为等差数列,前12项和为354,前12项中奇数项和与偶数项和之比为27:32,求公差d . 分析:此题常规思路是利用求和公式列方程组求解,计算量较大,注意考虑用整体思想去解决,解法十分简捷.解:由题意令奇数项和为x 27,偶数项和为x 32. 因为:,35459322712==+=x x x s 所以:6=x . 而5,63052732=∴===-d d x x x .五、转化与化归的思想等价转化就是将研究对象在一定条件下转化并归结为另一种研究对象,使之成为大家熟悉的或容易解决的问题.这是解决数列问题重要方法.例5. 已知数列{}n a 的首项11=a ,前n 项和为n S ,且)(24*1N n a S n n ∈+=+,求{}n a 的通项公式。

相关文档
最新文档