圆柱绕流的fluent数值模拟-算例演示专题培训课件

合集下载

用Fluent计算二维圆柱绕流

用Fluent计算二维圆柱绕流


边界层网格(一)

边界层网格:mesh/boundary layer/create boundary layer 边界层网格设置有两种方法:uniform or aspect ratio based


Uniform包含四个参数: first row(a)指定第一层边界层的厚度 Growth factor(b/a)边界层厚度增长的比例,但如果相邻 边的节点分布已经确定,则网格会自动调整 Rows边界层层数 Depth(D)总的边界层厚度 这四个参数中任意设定三个,则程序会自动算出第四个参 数的值
使用Gambit生成网格

确定几何形状
点 ——> 直线、曲线 —封闭—> 面(特殊面) 布尔运算(Unit, Subtract, Intersect),移动和拷贝(Move/Copy) 分裂与合并(Split, Merge),连接与解除连接(connect, disconnect)

生成计算网格
线网格 ——>(边界层网格) ——> 面网格(结构、非结构) 单元形式:三角形单元、四边形单元、混合单元
网格类型

结构网格(structured grid )
节点排列有序、邻点间的关系明确

非结构网格(unstructured grid)
节点位置无法用一个固定的法则排序 生成过程复杂,但有极好的适应性

Gambit网格生成
结构网格 —— Map 块结构网格 —— Submap 非结构网格 —— Pave
用Fluent计算二维圆柱绕流
王吉飞 wangjifei@
主要内容

计算流体力学简介

Fluent软件简介 二维圆柱绕流标准算例

圆柱绕流的fluent数值模拟-算例演示

圆柱绕流的fluent数值模拟-算例演示

Fluent运算
(3)选择基本物理模型 单击导航栏中的Models,打开Models面板,双击Energy-Off,弹出 对话框。对勾勾中,单击OK;双击Viscous-Laminar,弹出对话框 选择K-epsilon(2eqn),保持默认参数,单击OK。
Fluent运算
(4)设置材料属性 单击导航栏中的Materials,打开Materials面板,单击Create/Edit, 在材料编辑对话框中单击Fluent Datebase,打开材料库选择材料 water-liquid(h2o<1>),单击copy。
创建几何模C型reate a geometric model
(14)生成网格 生成壳网格,单击Compute生成网格。
创建几何模C型reate a geometric model
(15)观察并保存网格 File选择Mesh,单击Save Mesh As,保存生成的网格为Vertex.uns。
创建几何模C型reate a geometric model
创建几何模C型reate a geometric model
(3)创建Point 其余点根据基点偏移生成,左键选中,中键确定
创建几何模C型reate a geometric model
(4)创建线 创建两个点 之间的curve,依次确定两点,中键确定
创建几何模C型reate a geometric model
创建几何模C型reate a geometric model
(8)删除所有的点和线,英文输入法下左键选中整个区域按键盘V键
创建几何模C型reate a geometric model
(9)创建几何模型拓扑结构
创建几何模C型reate a geometric model

XFlow培训讲稿圆柱绕流外流场气动仿真

XFlow培训讲稿圆柱绕流外流场气动仿真

XFlow培训讲稿圆柱绕流外流场气动 仿真
1.5 Check the geometrical properties of the c
PPT文档演模板
XFlow培训讲稿圆柱绕流外流场气动 仿真
1.5 Check the geometrical properties of the c
PPT文档演模板
• To deactivate this mode, press again the toolbar icon.
PPT文档演模板
XFlow培训讲稿圆柱绕流外流场气动 仿真
4.5 Create data sensor
• Post-Processing > Data sensors
• Refresh the sensor: Right click on Post-Processing > Sensors > Se Refresh
• Go to Main menu > Options > Preferences, or press • Enable the grid in: Graphic View > Show grid
PPT文档演模板
XFlow培训讲稿圆柱绕流外流场气动 仿真
1.2 Check the position of the c with the help of the grid
PPT文档演模板
XFlow培训讲稿圆柱绕流外流场气动 仿真
Step 1: Create geometry
• The cylinder appears as a Shape in Project Tree > Geometry > Geo
PPT文档演模板

流体力学Fluent报告——圆柱绕流

流体力学Fluent报告——圆柱绕流

亚临界雷诺数下串列单圆柱与圆柱绕流的数值模拟之阳早格格创做目要:原文使用Fluent硬件中的RNG k-ε模型对付亚临界雷诺数下二维串列圆柱战圆柱绕流问题举止了数值钻研,通过截止对付比,分解了雷诺数、柱体形状对付柱体绕流阻力、降力以及涡脱频次的效率.普遍而止,Re数越大,圆柱的阻力越大,圆柱体则可则;而Re越大,二种柱体的降力均越大.相对付于圆柱,共种条件下,圆柱受到的阻力要大;好异天,圆柱涡脱降频次要小.Re越大,串列柱体的Sr数越靠近于单圆柱体的Sr数.闭键字:圆柱绕流、降力系数、阻力系数、斯特劳哈我数正在工程试验中,如航空、航天、航海、体育疏通、风工程及大天接通等广大的本量范畴中,绕流钻研正在工程本量中具备要害的意思.当流体流过圆柱时, 由于漩涡脱降,正在圆柱体上爆收接变效率力.那种效率力引起柱体的振荡及资料的疲倦,益坏结构,成果宽沉.果此,近些年去,稠稀博家战教者对付于圆柱绕流问题举止过细致的钻研,特天是圆柱所受阻力、降力战涡脱降以及涡致振荡问题.沈坐龙等[1]鉴于RNG k⁃ε模型,采与有限体积法钻研了亚临界雷诺数下二维圆柱战圆柱绕流数值模拟,得到了圆柱战圆柱绕流阻力系数Cd与Strouhal 数随雷诺数的变更顺序.姚熊明等[2]采与估计流体硬件CFX中LES模型估计了二维不可压缩匀称流中孤坐圆柱及串列单圆柱的火能源个性.使用非结构化网格六里体单元战有限体积法对付二维N- S圆程举止供解.他们着沉钻研了下雷诺数时串列单圆柱正在分歧间距比时的压力分集、阻力、降力及Sr数随Re数的变更趋势.费宝玲等[3]用FLUENT硬件对付串列圆柱绕流举止了二维模拟,他们采用间距比L/D(L为二圆柱核心间的距离,D为圆柱直径)2、3、4共3个间距举止了数值分解.估计均正在Re = 200 的非定常条件下举止.估计了圆柱的降阻力系数、尾涡脱降频次等形貌绕流问题的主要参量,分解了分歧间距对付圆柱间相互效率战尾流个性的效率.圆柱绕流的一个要害个性是震动形态与决于雷诺数.Lienhard[4]归纳了洪量的真验钻研截止并给出了圆柱体尾流形态随雷诺数变更的顺序.当Re<5时,圆柱上下游的流线呈对付称分集,流体本去不摆脱圆柱体,不旋涡爆收.此时与理念流体相似,若改变流背,上下游流形仍相共.当5<Re<40时,鸿沟层爆收分散,分散剪切层正在圆柱体里前产死一对付宁静的“附着涡”.当40<Re<150时,震动脆持层流状态而且流体旋涡接替天从圆柱后部做周期性的脱降并正在尾流中产死二列接叉排列的涡,即卡门涡街.从150<Re<300启初,旋涡里里启初由层流背湍流转捩,直至减少至3x105安排,此时圆柱体表面附近的鸿沟层仍为层流,所有涡街渐渐转化成湍流,及e<3xl05称为亚临界天区.当3xl05<Re<3.5x106时,鸿沟层的震动也渐渐趋于湍流状态,尾流中不明隐的涡街结构,称为临界状态.[5]圆柱绕流的另一个隐著个性是斯特劳哈我数是雷诺数的函数.早正在1878年,捷克科教家Strouhal[6]便对付风吹过金属丝时收出鸣喊声做过钻研,创造金属丝的风鸣音调与风速成正比,共时与弦线之细细成反比,并提出估计涡脱降频次f的体味公式:式中即斯特劳哈我数Sr由Re所唯一决定.原文使用Fluent硬件中的RNG k-ε模型对付亚临界雷诺数下二维串列圆柱战圆柱绕流问题举止了数值钻研,通过截止对付比,分解了雷诺数、柱体形状对付柱体绕流阻力、降力以及涡脱频次的效率.1.数教模型1.1统造圆程对付于停止圆柱绕流,原文钻研对付象为二维不可压缩震动.正在直角坐标系下,其疏通顺序可用N-S圆程去形貌,连绝性圆程战动量圆程分别为:其中ui为速度分量;p为压力;ρ为流体的稀度;ν为流体的能源黏性系数.对付于湍流情况,原文采与RNG k⁃ε模型,RNG k⁃ε模型是k⁃ε模型的矫正规划.通过正在大尺度疏通战建正后的粘度项体现小尺度的效率,而使那些小尺度疏通有系统天从统造圆程中去除.所得到的k圆程战ε圆程,与尺度k⁃ε模型非常相似,其表白式如下:其中Gk为由于仄衡速度梯度引起的湍动能的爆收项,,,体味常数=0.084 5,==1.39,=1.68.相对付于尺度k⁃ε模型,RNG k⁃ε模型通过建正湍动粘度,思量了仄衡震动中的转动及转动震动情况,RNG k⁃ε模型不妨更佳的处理下应变率及流线蜿蜒程度较大的震动.1.2相闭参数圆柱绕流的相闭参数主要有雷诺数Re、斯特劳哈我数Sr、降力系数Cl战阻力系数Cd,底下给出各个参数的估计公式战物理意思.雷诺数Re与圆柱绕流的状态战雷诺数有很大闭系,雷诺数代表惯性力战粘性力之比:其中U为去流速度;L为个性少度,原文与圆柱直径或者圆柱边少;为流体稀度;、分别为流体介量能源粘度战疏通粘度.斯特劳哈我数Sr是Strouhal 指出圆柱绕流后正在圆柱后里不妨出现接替脱降的旋涡,旋涡脱降频次、风速、圆柱直径之间存留一个闭系:式中:Sr为斯托罗哈数,与决于结构的形状断里;f 为旋涡脱降频次;L为结构的个性尺寸; U 为去流速度.阻力系数战降力系数是表征柱体阻力、降力的无量目参数.定义为:,式中ρ为流体稀度;V为去流速度;A为迎流截里里积;战.由于涡脱降的闭系,阻力系数将爆收振荡,原文采用仄衡脉动降力去钻研,即与圆均根值去钻研.2.数值估计2.1物理模型二维数值模拟单圆柱流场估计天区的采用如图1所示,圆柱绕流以圆柱体直径为个性尺度D,采用圆柱半径为1.5 mm,估计天区为9D×32D的矩形天区.柱1距上游少度图 1 串列圆柱战圆柱的估计天区5D,下游少度27D,脆持二柱间距 L/D= 2. 5D稳定 (L是二圆柱核心连线少度),二柱到上下鸿沟距离相等.对付于圆柱绕流,采用圆柱边少为个性少度,D=30mm.2.2网格区分估计天区采与分块结构化网格,柱体表面网格干加稀处理,鸿沟区网格相对付稠稀.简直网格区分情况睹图2.其中串列圆柱网格31116个节面,30615个四边形里单元;串图 2 圆柱绕流与圆柱绕流估计域的网格区分列圆柱46446个节面,46550个四边形里单元.2.3鸿沟条件管讲壁里战柱体表面均采与无滑移的停止壁里条件.而出心采用速度出心,出心采用自由出流.去溜速度大小根据Re去树坐,雷诺数分300、3000、12000、30000四个等第,速度大小依次为0.1m/s、1m/s、4m/s、10m/s.2.4估计模型原文湍流模型采与尺度壁里函数的RNG k-ε模型.采与有限容积法供解二维不可压缩粘性流体非定常震动统造圆程,即把估计天区分成很圆柱近壁里网格多小的统造体,对付每个统造体的各个变量举止积分.统造圆程的对付流项采与二阶迎风圆法失集,速度战压力采与SIMPLE算法耦合供解,将所有天区瞅成一个完全举止耦合估计.动量、湍动能战湍动耗集率均采与二阶迎风圆法.先定常估计流场,再用定常估计的截止动做非定常迭代的初初值举止估计.根据初略估计的涡脱频次,牢固树坐时间步少为0. 002s, 正在每个时间步内树坐迭代次数为20.流体介量为液态火.3.估计截止3.1网格模型考证为考证网格独力性,原文估计了网格节面数为8346,里单元为8932的细网格、节面数为31116,里单元为30615的稀网格、节面数为63432,里单元为67434的细稀网格下Re=200、L/D=2的串列网格的Sr数,截止隐现三套网格的估计截止分别为0.143、0.133、0.133.故稀网格可用.而圆柱绕流则采与共级别网格.[7]的估计数据相比较,比较图像如图3所示,最大缺面为2.2%.图3串列圆柱分歧间距的Sr数估计对付比3.2流线与涡量图图 6 Re=3000圆柱绕流流线图图 7 Re=3000圆柱绕流涡量等值线图图 4 Re=3000圆柱绕流流线图图 5 Re=3000圆柱绕流涡量等值线图原文给出了估计历程中雷诺数Re=3000,t=1s时的流线图战涡量图.3.3阻力系数图 9 Re=3000圆柱绕流脉动阻力系数图 8 Re=3000圆柱绕流脉动阻力系数原文给出了Re=3000时,圆柱绕流战圆柱绕流的脉动阻力系数图如下.由图9战错误!未找到引用源。

圆柱绕流的fluent数值模拟-算例演示专题培训课件

圆柱绕流的fluent数值模拟-算例演示专题培训课件

Fluent运算
(14)计算结果后处理分析 1>残差曲线 单击Calculate按钮后,迭代计算开始,弹出残差监视窗口
Fluent运算
(14)计算结果后处理分析 2>Cd和Cl图 单击Calculate按钮后,迭代计算开始,弹出Cd和Cl监视窗口。
Fluent运算
(14)计算结果后处理分析 3>压力场和速度场 单击选择Results →Graphics and Animations命令,打开Graphics and Animations面板;在面板中双 击Graphics →Contours选项,单击Display按钮,弹出压力云图窗口;重复上述步骤,在Contours of的第一个下拉列表中选择velocity,单击Display按钮,弹出速度云图
Fluent运算
(6)设置边界条件 内部interior对应Type栏interior,在弹出对话框直接点击OK,对于interior2、interior3同样的操 作步骤。
Fluent运算
(6)设置边界条件 定义无滑移壁面,滑移壁面以及内部的interiorwall-cir对应Type栏中wall,wall对应Type栏,在 Wall montin栏中选择Moving wall,在Montin栏中选择Absolute,Speed=0.201m/s 。
创建几何模型 Create a geometric model
(16)选择求解器并导出网格 选择Fluent-V6作为求解器。
创建几何模型 Create a geometric model
(17)选择求解器并导出网格 导出网格,在fluentV6中选择2D。
Fluent运算
(1)启动FLUENT,选择二维求解器

圆柱绕流的算例

圆柱绕流的算例

二、Fluent计算圆柱绕流算例
用PIV方法,我们通过实验得到了圆柱后面卡门涡街流场的信息,现在,我们通过Fluent来计算相同条件下的圆柱绕流。

选择一个长15cm,宽12cm的矩形区域作为计算区域,中间有一个直径为2cm的圆柱,左端定义为速度边界,来流速度为6.25cm/s(这样可以保证圆柱上下两侧的速度平均值为7.5cm/s,与PIV实验的条件一致),右端是出口边界,其它边界为固壁。

在二维条件下计算这个绕流问题(Re=1393)。

图2-4-3显示了上述计算区域和边界条件。

图2-4-3 二维圆柱绕流的计算区域和来流条件
在gambit当中进行网格划分,在圆柱边界附近,网格非常密,图2-4-4显示了靠近圆柱附近的部分网格:
图2-4-4圆柱附近的网格
在Fluent中进行计算,相关参数分别选择如下表:
计算之后,我们得到了圆柱绕流的尾迹,它的流线图以及涡量分布图分别图2-4-5(a, b)所示:
从上述涡量分布可以看出,在圆柱下游,也有两条辫子一样形状的涡量层,在下游稍微远端交替甩动。

比较PIV方法得到的照片,我们也看到了这样的两个辫子一样的涡量层,其分布位置与计算所得的结论是一致的。

比较这个时刻的流线图也可以看出来,它们的流线分布
也基本是一致的。

这说明,PIV方法是可靠的。

FLUENT仿真计算不同雷诺数下的圆柱绕流

FLUENT仿真计算不同雷诺数下的圆柱绕流

FLUENT仿真计算不同雷诺数下的圆柱绕流。

尾迹与旋涡脱落经典图如下:Re=1 无分离流动Re=20 尾流中一对稳定的弗普尔旋涡Re=100 圆柱后方形成有规律的涡街Re=3900Re=100000 随着Reynolds数增大,涡道内部向湍流过度,直到全部成为湍流Re=1000000 超临界区,分离点后移,尾流变窄,涡道凌乱,涡随机脱落Re=10000000 极超临界区,分离点继续后移,尾流变窄,湍流涡道重新建立。

图3 Cd随Re的变化曲线图3中实曲线是由Wieselsberger,A.Roshko以及G.W.Jones和J.J.Walker测量数据绘制得到,图中圆点部分是FLUENT计算值在Re=106(超临界区),从经典数据和我们的计算结果都可以看到,圆柱体的平均阻力系数急剧下降。

这是因为在Re=3×105附近,边界层流动由层流状态转变为湍流状态,虽然湍流边界层流动的摩擦阻力较层流边界层大,但它从物面的分离较晚,所以形成较小的尾流区。

由于钝体绕流的阻力主要是压差阻力,所以此时物体的总阻力有了一个明显的下降。

入口VELOCITY_INLET,出口OUTFLOW,上下WALL.Re=1,20,100,二维层流模型。

Re=3900后,三维大涡模型计算不准与网格划分与一些参数设置有关。

1。

圆柱中心离上下边界(wall)的距离大于10D(D为圆柱直径),影响较小。

2。

湍流模型采用大涡模型(LES)。

是目前最复杂,最完善的一种湍流模型。

试验曲线来自,《Boundary-Layer Theory》, Dr.HERMANN SCHLICHTING, Translated by Dr.J.KESTIN,Seventh Edition,用MATLB绘制4.阻力系数的求法请参考此论坛我发的教程FLUENT三分立系数的求法。

【fluent软件学习】计算流体力学软件Fluent培训67页PPT

【fluent软件学习】计算流体力学软件Fluent培训67页PPT
• 如何学习Fluent?
1. 掌握流体力学、传质传热和化学反应动力学 等基础知识。
2. 了解CFD中使用的数值计算方法。 3. 了解Fluent中各个数值模型的适用范围及各参
数含义。 4. 接下来,可以尝试使用Fluent进行计算了!
4
交流学习的安排
第一讲 流体力学基础、传热学基础 第二讲 燃烧学,计算流体力学基础 第三讲 Fluent介绍 第四讲 Fluent应用实例(1) 第五讲 Fluent应用实例(2)
• 连续介质假设
– 连续介质假设认为真实流体所占有的空间可近似看作由“流体 质点”连续地无空隙地充满着。
– 换一句话说,就是在我们感兴趣的微小尺度内,都包含着无数 个流体分子。
• 局限性
– 当特征尺寸远大于分子间隙时,可以认为满足连续介质假设。 实际上,在一般的工程问题上,均可以满足。
– 当压力很低的稀薄气体中,分子间距很大,能与感兴趣的特征 尺度相比拟。此时,传统的流体力学理论就不适用,必须使用 统计力学的方法。
5
交流学习的安排
第一讲 流体力学基础、传热学基础 第二讲 燃烧学,计算流体力学基础 第三讲 Fluent介绍 第四讲 Fluent应用实例(1) 第五讲 Fluent应用实例(2)
6
什么是流体(Fluid)?
• 固体
– 在静止状态下,能够抵抗一定的压力、 拉力和剪切力。
• 流体
– 在静止状态下,能够抵抗一定的压力。
• 粘度
• 流体内摩擦应力 的大小与流体的 速度梯度成正比
• 持续变形的流体 才能抵抗一定的 剪切力!
11
流体的主要物理性质
• 粘度
• μ:动力粘度系数 • 当流体的μ为常数时,称为牛顿流体。 • 主要受温度影响,基本不受压力影响。 • 一般,液体(如水煤浆、重油)的粘度随温

fluent 简单三维案例

fluent 简单三维案例

fluent 简单三维案例
以下是一个简单的三维 Fluent 案例,用于模拟一个三维圆柱绕流问题。

步骤 1:创建模型
在 Gambit 中创建一个三维模型,该模型包括一个圆柱体和一个流场区域。

将圆柱体放置在流场中心,并设置适当的边界条件和初始条件。

步骤 2:划分网格
在 Gambit 中对模型进行网格划分,确保网格足够细以获得准确的模拟结果。

对于复杂的几何形状,可能需要使用非结构化网格。

步骤 3:导入模型
将模型导入到 Fluent 中,并检查网格的质量和边界条件的正确性。

如果需要,可以使用 Fluent 的网格修复工具来改进网格质量。

步骤 4:设置物理模型和材料属性
在 Fluent 中设置流体动力学方程、湍流模型和材料属性。

对于绕流问题,
通常使用湍流模型来模拟流动的复杂性。

步骤 5:设置边界条件和初始条件
在 Fluent 中设置适当的边界条件和初始条件,以确保模拟的准确性和收敛性。

对于绕流问题,通常设置圆柱体为静止壁面,并设置流场区域为速度入口或压力出口。

步骤 6:运行模拟
在 Fluent 中运行模拟,并监视收敛性和计算精度。

如果需要,可以使用Fluent 的后处理工具来分析结果和可视化流动特性。

以上是一个简单的三维Fluent 案例,您可以根据具体问题修改和调整模型、网格、物理模型、材料属性和边界条件等参数,以获得更准确的模拟结果。

XFlow培训讲稿圆柱绕流外流场气动仿真

XFlow培训讲稿圆柱绕流外流场气动仿真
The setup of the problem is done in the following sections of t • Environment > Engine • Environment > Environment • Materials • Geometry • Simulation
• 缩放:滑动中键 • 旋转:Alt + 左键 • 平移:Alt + 中键
PPT文档演模板
XFlow培训讲稿圆柱绕流外流场气动 仿真
1.4 Select the cylinder
• Select the cylinder geometry-object (Shape) either by: • highlighted in blue.
PPT文档演模板
XFlow培训讲稿圆柱绕流外流场气动 仿真
1.3 Navigate in the Graphic View
• Change the v iew by clicking the following tothe Graphic View window through the following actio
Step 1: Create geometry
• The cylinder appears as a Shape in Project Tree > Geometry > Geo
PPT文档演模板
XFlow培训讲稿圆柱绕流外流场气动 仿真
1.2 Check the position of the c with the help of the grid
• The red and green lines indicate the X and Y axis, respect • The separation between grid lines is displayed at the top l

《fluent讲义》课件

《fluent讲义》课件

Fluent的模拟应用和优化技术
1
热传导模拟
模拟热传导过程,包括传热、热辐射和相变,以优化能量传递和系统效率。
2
多物理场模拟
将不同物理场耦合进行模拟,如流体-固体、流体-电磁和流体-热传导,以研究多 场耦合效应。
3
物流耦合模拟
模拟流体和结构耦合,研究流体对结构的影响,以及结构变化对流体行为的反馈。
流体力学概念与模拟
1 流体力学基础
介绍流体力学的基本概念,包括质量守恒、 动量守恒和能量守恒。
2 多相流模拟
探索多相流模型,如气固流、气液流和固液 流,并学习如何模拟这些复杂的流体行为。
3 湍流模拟
了解湍流的产生机制和模型,并学习如何进 行湍流模拟以预测和优化流体行为。
4 化学反应模拟
研究流体中的化学反应过程,包括燃烧、化 学反应和质量转移,并模拟这些过程的影响。
Fluent的动网格技术和并行计算
动网格技术
介绍Fluent中的动网格技术,包括网格自适应和网 格重构。动态调整网格以捕捉流动细节和提高模拟 精度。
并行计算
探索Fluent中的并行计算技术,利用多核处理器和 集群系统提高模拟速度和处理大规模模拟任务。
Fluent的后处理工具和工程应用案例
后处理工具
Fluent的操作和界面介绍包括模型创建、网 格导入、参数设置等。
物理模型选择
深入了解Fluent所提供的多种物理模型选项,并 选择适合你的应用的模型。
用户界面
探索Fluent友好的用户界面,包括工具栏、菜单 栏、视图控制和后处理选项。
求解器设置
学习如何选择和设置合适的求解器以提高模拟效 率和准确性。
使用Fluent的后处理工具进行数据可视化、图表分析 和结果解释,以实现全面的模拟分析。

CFD数值模拟(含Fluent)学习及培训课件

CFD数值模拟(含Fluent)学习及培训课件

所有变量全场联立求解 部分变量全场联立求解 局部地区所有变量联立求解
分解式求解法
(segregated method)
涡量-流函数法 非原始变量法
涡量-速度法
压力修正法 原始变量法 解压力泊松方程法
人为压缩法
耦合式解法
❖ 求解过程
1)假定初始压力和速度等变量,确定离散方程的系数 及常数项等。
2)联立求解连续方程、动量方程、能量方程; 3)求解湍流方程及其他标量方程; 4)判断当前时间步上的计算是否收敛。若不收敛,返
回到第2)步,迭代计算;若收敛,重复上述步骤, 计算下一时间步的物理量。
耦合式解法(续)
❖特点
➢ 当计算中流体的密度、能量、动量等参数存在相 互依赖关系时,采用耦合解法具有很大优势。
➢ 其主要应用包括高速可压流动、有限速率反应模 型等。
➢ 所有变量全场联立求解应用较普遍,求解速度较 快,而局部对所有变量联立求解仅用于声变量动 态性极强的场合,如激波捕捉。
Fluent软件。
基于有限体积法式)只考虑控制方程中 的对流项和扩散项,有低阶离散格式和高阶离散格式。
❖ 低阶离散格式
❖ 高阶离散格式
➢ 中心差分格式; ➢ 一阶迎风格式; ➢ 混合格式(综合中心差分和迎风格式); ➢ 指数格式; ➢ 乘方格式。
➢ 二阶迎风格式; ➢ QUICK格式; ➢ 改进的QUICK格式。
➢ 隐式时间积分方案
度)
全隐式时间积分方案( app a(n6p))np b
❖ 全隐式方案是无条件稳定的:即无论采用多长的时间步长,都不会出现解 的振荡。但是,由于该方案在时间区域上只具有一阶截差精度,因此需要 使用小的时间步长,以保证获得精度较高的解。由于算法健壮且绝对稳定, 全隐式方案在瞬态求解过程中,得到了最为广泛的应用。

计算流体动力学软件Fluent简介 PPT

计算流体动力学软件Fluent简介 PPT

软件:
常用软件的教程、视频 软件的HELP文档 实例操作练习
类比:
1 计算流体动力学及Fluent概述
1.1 概念
什么是CFD?
• CFD是计算流体动力学(Computational fluid dynamics)的缩写,是预测流体流动、 传热传质、化学反应及其他相关物理现象的一门学科。CFD一般要通过数值方法 求解以下的控制方程组 – 质量守恒方程 – 动量守恒方程 – 能量守恒方程 – 组分守恒方程 – 体积力 – 等等
模拟结果
结果
2 Fluent应用领域成果概览
2.3 Fluent滑移网格模拟区域运动
实现目标:杯子中装满水,现 在以速度1rad/s延续1s钟使杯子倾斜 1rad,观察5s钟内水的变化情况。
涉及到内容包括: (1)分界面几何模型的建立。 涉及到多几何体的创建,主要是各 部分模型网格的组装问题。 (2)区域运动的指定。在本例 中主要是指定运动区域的旋转速度 。需要注意的是旋转中心与旋转方 向的设定。 (3)多相流的使用。本例中使 用的是VOF模型。
➢ 在被ANSYS收购后为6.3版本 ➢ 2009年6月发布12.0版本 ➢ 2010年底发布13.0版本 ➢ 2011、2013、2015年底分别发布14.0、15.0、16.0版

1 CFD软件Fluent简介
1.4 Fluent软件的基本功能
可压缩与不可压缩流动问题 稳态和瞬态流动问题 无粘流、层流及湍流问题 牛顿流体及非牛顿流体 对流换热问题(包括自然对流和混合对流) 导热与对流换热耦合问题 辐射换热 惯性坐标系和非惯性坐标系下的流动问题模拟
顶板高位钻孔抽采模型线框图
3 Fluent在矿业安全中的应用介绍
3.1 煤矿综放工作面高位钻孔瓦斯治理

圆柱绕流

圆柱绕流

圆柱绕流的数值模拟一、问题简介我们考虑一个固定的无限长圆柱体,其直径为10mm,空气以均匀的速度由远处而来绕过圆柱,气流会在圆柱后发展为复杂的流动。

这是一个经典的流体力学问题,随雷诺数的增加,柱体后的流动形态会由对称向不对称转变,并产生卡门涡街。

我对不同雷诺数下的流动进行了数值模拟,并对计算所得流场进行了比较和分析。

二、文献综述圆柱绕流作为最为常见的钝体绕流现象,演绎出了大量的流体控制工程技术和理论研究课题。

这类问题常见的有风掠过建筑物,气流对电线的作用,海流冲击海底电缆,河水对桥墩的冲击,气流经过冷凝器中的排管、空中加油机的油管以及飞行器上的柱体等等,具有很高的工程实践意义。

同时圆柱绕流又是流体力学的经典问题,其蕴含了丰富的流动现象和深刻的物理机理,长久以来一直是众多理论分析、实验研究及数值模拟的研究对象。

流体绕圆柱体流动时,过流断面收缩,流速沿程增加,压强沿程减小,由于黏性力的存在,就会在柱体周围形成附面层的分离,形成圆柱绕流。

在圆柱绕流问题中,流体边界层的分离与脱落、剪切层的流动和变化、尾迹区域的分布和变动,以及它们三者之间的相互作用等因素,使得该问题成为了一项复杂的研究课题。

圆柱绕流的流动状态主要由雷诺数(Re)决定,根据不同的Re范围,流动会经历多种流动状态,在我们流体力学的教材上,就可以查到不同雷诺数下圆柱绕流的形态变化,而下表更加完整详细。

表一在使用CFD方法对圆柱绕流进行求解时,早期使用求解二维定常N-S方程的方法来模拟绕流流场。

然而,由于圆柱尾部涡脱落的存在,绕流流场随时间在不断改变,具有非定常特性,因此就需要求解非定常N-S方程。

目前,在低雷诺数层流条件下,多以求解二维非定常N-S方程来研究圆柱绕流。

但随着雷诺数的增加,绕流流场中沿展向的三维特性越来越显著,如果还使用二维计算模型求解流场,必然不能正确的解析流场结构,获得正确的流场参数。

所以在大雷诺数条件下就需要求解三维的N-S方程。

5-1-FLUENT流体模拟-UDF-讲解PPT优秀课件

5-1-FLUENT流体模拟-UDF-讲解PPT优秀课件

A Pera Global Company © PERA China
UDF 数据结构 (1)
▪ 在UDF中,体域和面域通过Thread数据类型获得 ▪ Thread 是 FLUENT 定义的数据类型
Domain Cell
Boundary (face thread or zone)
Fluid (cell thread or zone)
域指针通过变量传递到UDF
thread_loop_c 宏用来获得 所有单元threads (zones), begin_c_loop 宏获得每个 单元thread中的单元
#include "udf.h“
DEFINE_INIT(my_init_function, domain) {
cell_t c; Thread *ct; real xc[ND_ND]; thread_loop_c(ct,domain) {
计算流体力学软件Fluent培训
UDF基础
概要
FLUENT UDF简介 FLUENT 数据结构和宏 两个例子 UDF 支持
A Pera Global Company © PERA China
简介
什么是UDF?
– UDF 是用户自己用C语言写的一个函数,可以和FLUENT动态链接
• 标准C 函数
▪ 三角函数,指数,控制块,Do循环,文件读入/输出等
Define User-Defined Functions Interpreted
把 UDF 源码加入到源文件列表中 点击 Build进行编译和链接 如果没有错误,点击Load读入库文件 如需要,也可以卸载库文件
/define/userdefined/functions/manage

08.圆柱绕流.ppt

08.圆柱绕流.ppt
其中D为阻力,S为圆柱体在垂直于流动方向的投影面积。对无限长等直 径圆柱,有S=1×d=d,d为圆柱直径。
➢ 单位宽度圆柱体所受压差阻力和圆柱的阻力系数分别为:
D
2
1
d
p cos d
d
02
2
2
0 ( p p ) cos
v2 d
2
2
0 ( p p ) cos d 1
1 v2 d
• 检验假设的理论模型是否正确; • 了解绕流物体流动的物理图案; • 提供强度设计所需载荷分布数据。
14-7
• §将压3力.2化压成无力量分纲布的压的力表系示数形方式法
Cp
p p
1 2
v2
其中 p、v分别为来流静压和来流速度。
➢ 用向量法或坐标曲线法表示压力分布
θ
14-8
• §阻力3系.3数阻力C系D 数12的定Dv2义 S与计算
理论曲线1的偏离比超临界绕流实验曲线2的偏离更大; • 亚临界绕流实验曲线3对应于发生“阻力危机”之前的层流附面层分离
( 危机CD”≈1之.2后,的分湍离流点附约面78层°分);离超(临C界D≈绕0.流3,实分验离曲点线约2对13应0°于)。发生“阻力
14-6
§3.1 压力分布的测量
• 压力分布测试是实验流体力学的基本实验方法,在基础 性和工程性实验研究中得到广泛应用。
14-4
§2.3 两种流态
发生“阻力微机”前后的两种典型流态
亚临界(Re < Rec): CD≈1.2,层流附面层分离,分离点约78 ° ; 超临界(Re > Rec): CD≈0.3,湍流附面层分离,分离点约130 °。
14-5
§2.4 压力分布曲线

三维圆柱扰流-卡门涡街数值仿真方法--详细教程PPT17页

三维圆柱扰流-卡门涡街数值仿真方法--详细教程PPT17页

时间步长
时间步长的选取决定能否快速观察到卡门涡街,卡 门涡街在Re>45时出现,根据斯特劳哈尔数(St)算 出涡的脱落频率(fs),求出脱落周期,然后根据 经验公式,取脱落周期的1/75作为时间步长。
斯特劳哈尔数公式 StfsD/U
仿真分析 Re=10 时的速度云图
流线对涡结构
Re=50压力云图
速度云图 此时出现涡街
Re=50 观测升 力震荡
残差线震荡
Re=100
Re=100000
Re=100000 残差与升力检测
Re=10 Re=100
Re=50 Re=100000
阻力系数
Re
Cd
10
2.24
50
1.83
100
1.67
100000ຫໍສະໝຸດ 1.05谢谢11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
CFX三维圆柱扰流分析 —卡门涡街模拟
边界条件设置
Inlet、Top、Down: velocity inlet(速度值以Re决定) Body:wall no slip Outlet:opening Side、Sym: symmery 非定常仿真 湍流模型:层流(Re<300)、大涡模拟(Re>300) 流体属性:空气(不可压)
三维圆柱扰流-卡门涡街数值仿真方法 --详细教程
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

创建几何模型 Create a geometric model
(16)选择求解器并导出网格 选择Fluent-V6作为求解器。
创建几何模型 Create a geometric model
(17)选择求解器并导出网格 导出网格,在fENT,选择二维求解器
创建几何模型 Create a geometric model
(3)创建Point 其余点根据基点偏移生成,左键选中,中键确定
创建几何模型 Create a geometric model
(4)创建线 创建两个点 之间的curve,依次确定两点,中键确定
创建几何模型 Create a geometric model
(5)输入圆半径,确定圆心,任选两点,中键确定
创建几何模型 Create a geometric model
(6)创建面 首先创建大面
创建几何模型 Create a geometric model
(6)创建面 将面进行分割,首先选择待分割面,再选择分割线,中键确定;依次由外到内进行分割, 创建3个不同的面。
Fluent运算
(2)读入网格 读入网格。File→ Read→ Case命令,读入准备好的网格文件。 检查网格, 执行Mesh→ Check命令(General面板中单击Check 按钮)。 检查网格质量, (Minimum Volume大于O)。
Fluent运算
(2)读入网格 定义网格单位。General→ Scale, 在Grid Was Created in 下拉列表中选择mm,单击Scale确定。
创建几何模型 Create a geometric model
(11)保存几何文件 File选择Geometry选择Save Geometry As,保存当前的几何文件为Vertex.tin。
创建几何模型 Create a geometric model
(12)定义网格尺寸 首先定义全局网格尺寸。定义Scale factor=1.0,Max Element=50,其余参数保持默认。
圆柱绕流的fluent数值模拟-算例演示
创建几何模型 Create a geometric model
(1)打开ICEM CFD 14.0软件
(2)设定工作目录 点击File选择Change Working Dir,保存路径 (3)创建Point
选择X=0,Y=0,Z=0为基点,单击Apply确认 其余点根据基点偏移生成,左键选中,中键确定
(6)设置边界条件 单击导航栏中的Boundry Conditions项,打开Boundry Conditions面板,选择边界类型。在Zone 栏选择in,在Type栏中选择velocity-inlet,在弹出的velocity-inlet对话框中修改速度参数 Velocity Magnitude。
创建几何模型 Create a geometric model
(14)生成网格 生成壳网格,单击Compute生成网格。
创建几何模型 Create a geometric model
(15)观察并保存网格 File选择Mesh,单击Save Mesh As,保存生成的网格为Vertex.uns。
Fluent运算
(3)选择基本物理模型 单击导航栏中的Models,打开Models面板,双击Energy-Off,弹出对话框。对勾勾中,单击 OK;双击Viscous-Laminar,弹出对话框选择K-epsilon(2eqn),保持默认参数,单击OK。
Fluent运算
(4)设置材料属性 单击导航栏中的Materials,打开Materials面板,单击Create/Edit,在材料编辑对话框中单击 Fluent Datebase,打开材料库选择材料water-liquid(h2o<1>),单击copy。
创建几何模型 Create a geometric model
(7)创建Part 点击模型树Parts,右键选择Creat Part 定义外部的面为为SUR-OUT,内部左侧左侧为SUR-CIR,右侧的面为SUR-RIG,定义完成查看 模型树的变化,检查Part定义是否成功。颜色不同表示所属Part不同。
创建几何模型 Create a geometric model
(8)删除所有的点和线,英文输入法下左键选中整个区域按键盘V键
创建几何模型 Create a geometric model
(9)创建几何模型拓扑结构
创建几何模型 Create a geometric model
(10)创建Curve的Part 点击模型树Parts,右键选择Creat Part,定义左边线入口为IN,右边线出口为OUT,内部圆为 WALL-CIR,上下边界为WALL,剩余线为INTER。(左键选择,中键确定)
Fluent运算
(5)设置区域计算条件 单击导航栏中的Cell Zone Conditions,设置区域类型。在Zone栏选择sur-cir,在Type栏中选择 fluid,在Material name选择water-liquid,单击ok确定,采用同样的方法定义sur-out,sur-rig。
Fluent运算
创建几何模型 Create a geometric model
(12)定义网格尺寸 再定义壳网格尺寸。定义网格生成类型Quad Dominant,定义网格生成方法Patch Dependent, 其余参数保持为默认。
创建几何模型 Create a geometric model
(13)定义不同Part的网格参数 在二维地面上生成边界层。定义SUR_CIR的max size=2,SUR_OUT的max size=30,SUR_RIG的Max Size=4.设置WALL_CIR的height=0.5,height ratio=1.1,num Layers=4
Fluent运算
(6)设置边界条件 内部interior对应Type栏interior,在弹出对话框直接点击OK,对于interior2、interior3同样的操 作步骤。
相关文档
最新文档