基于ICP算法的图像配准的MATLAB实现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
function [TR, TT] =
icp(model,data,max_iter,min_iter,fitting,thres,init_flag,tes_flag,refpn t)
% ICP Iterative Closest Point Algorithm. Takes use of
% Delaunay tesselation of points in model.
%
% Ordinary usage:
%
% [R, T] = icp(model,data)
%
% ICP fit points in data to the points in model.
% Fit with respect to minimize the sum of square
% errors with the closest model points and data points.
%
% INPUT:
%
% model - matrix with model points, [Pm_1 Pm_2 ... Pm_nmod]
% data - matrix with data points, [Pd_1 Pd_2 ... Pd_ndat]
%
% OUTPUT:
%
% R - rotation matrix and
% T - translation vector accordingly so
%
% newdata = R*data + T .
%
% newdata are transformed data points to fit model
%
%
% Special usage:
%
% icp(model) or icp(model,tes_flag)
%
% ICP creates a Delaunay tessellation of points in
% model and save it as global variable Tes. ICP also
% saves two global variables ir and jc for tes_flag=1 (default) or
% Tesind and Tesver for tes_flag=2, which
% makes it easy to find in the tesselation. To use the global variables % in icp, put tes_flag to 0.
%
%
% Other usage:
%
% [R, T] = icp(model,data,max_iter,min_iter,...
% fitting,thres,init_flag,tes_flag)
%
% INPUT:
%
% max_iter - maximum number of iterations. Default=104
%
% min_iter - minimum number of iterations. Default=4
%
% fitting - =2 Fit with respect to minimize the sum of square errors. (default)
% alt. =[2,w], where w is a weight vector corresponding to data.
% w is a vector of same length as data.
% Fit with respect to minimize the weighted sum of square errors.
% =3 Fit with respect to minimize the sum to the amount 0.95 % of the closest square errors.
% alt. =[3,lambda], 0.0 % points will affect the translation and rotation. % If 1 % of the closest points will affect the translation and % rotation in each iteration. % % thres - error differens threshold for stop iterations. Default 1e-5 % % init_flag - =0 no initial starting transformation % =1 transform data so the mean value of % data is equal to mean value of model. % No rotation. (init_flag=1 default) % % tes_flag - =0 No new tesselation has to be done. There % alredy exists one for the current model points. % =1 A new tesselation of the model points will % be done. (default) % =2 A new tesselation of the model points will % be done. Another search strategy than tes_flag=1 % =3 The closest point will be find by testing % all combinations. No Delaunay tesselation will be done. % % refpnt - (optional) (An empty vector is default.) refpnt is a point corresponding to the % set of model points wich correspondig data point has to be find. % How the points are weighted depends on the output from the % function weightfcn found in the end of this m-file. The input in weightfcn is the % distance between the closest model point and refpnt. % % To clear old global tesselation variables run: "clear global Tes ir jc" (tes_flag=1) % or run: "clear global Tes Tesind Tesver" (tes_flag=2) in Command Window. % % m-file can be downloaded for free at % /matlabcentral/fileexchange/loadFile.do?objectI d=12627&objectType=FILE % % icp version 1.4 % % written by Per Bergström 2007-03-07 if nargin<1 error('To few input arguments!'); elseif or(nargin==1,nargin==2)