骨组织形态计量学方法课案
骨形态计量学Bone histomorphometry
Table2:Derived indice in Bone histomorphometry 中文名称 英文名称英文缩写 单位公式骨小梁相对体积 Percent trabecular area BV/TV % Tb.Ar/T.AR*100骨小梁厚度 Trabecular thickness Tb.Th μm (2000/1.199)( Tb.Ar/Tb.Pm ) 骨小梁数量 Trabecular number Tb.N #/mm (1.199/2)( Tb.Pm/T.Ar)骨小梁分离度 Trabecular separation Tb.Sp μm (2000/1.199)(T.Ar-Tb.Ar)/Tb.Pm 荧光周长百分率 Percent labeled perimeter %L.Pm % (dL.Pm+ sL.Pm/2 )/Tb.Pm*100 矿化沉积率 Mineral appositeion rate MAR μm /d IL.WI / Intervel骨形成率 Bone formation rate BFR/BS BFR/BV μm /d*100 %/year (dL.Pm+ sL.Pm/2)*MAR / Tb.Pm*100(dL.Pm+ sL.Pm/2)*(MAR/100*365)/Tb.Ar*100 单位骨小梁OC 数Osteoclast numberOC.N#/mm 2N.Oc/Tb.Ar计算所得参数可分为静态和动态参数. 1)静态参数:用来评价药物防治效果,描述骨量的多少和骨小梁的结构。
骨小梁相对体积(BV/TV ):指骨小梁体积占骨组织体积的百分比,反映骨量的多少。
它等于骨小梁厚度与数量的乘积的1/10,也就是说骨量多少由厚度和数量共同决定。
骨小梁厚度(Tb.Th):用于骨小梁结构形态,解释骨量变化。
其变化可影响骨量,在骨小梁一定的情况下,厚度越大,骨量越大越多。
骨小梁数量(Tb.N):用于描述骨小梁结构形态,解释骨量变化。
骨组织形态计量学和微CT测量技术在骨质疏松研究中的应用
性, 主要 以骨组织形态计量学参数 为评估 依据 。近年来 , 在骨质疏松防治研究 领域 , 两种 以促进 成骨细 胞性骨 形
分析计算以间接获取骨微结构 三维参数 的技 术方法正 日 趋受到青睐 。 2 1 常用参数及 意义 . 骨组织形态计量学参数可分为静态学参数和动态学 参数 。静态学参数 主要用于定量 描述某 一特定时 间点 的 骨结构特征 , 包括骨结构 的厚度 、 体积 、 表面积 , 以及骨样
( b S B )类 骨 质表 面 ( S B ) 破骨 细胞 数 ( c N) O ./ S 、 O /S 、 O. 、 破骨细胞表面( cS B ) 吸收表 面( s B ) 。这些 参 O ./ S 、 E / S等
成 , 因调 节成骨细胞 的骨保 护素 ( P 、 因子 K 并 O G)核 B受
基金项目: 上海 市科 委 非政 府间 国 际科技 合作 项 目(0 1720 ) 14 0000 作 者 单位 : 00 5 202 , 上海 市 伤骨科 研 究所 、 海市 中西 医结 合 防治 上 骨与 关节 病损 重点 实 验室 、 海交 通 大学 医 学院 附 属瑞 金 医 院骨 科 ( 上 齐进 、
速率 的描述 , 解释静 态学参 数变化 的原 因。在应用 过程 中, 常将静态学参数和动态学参 数相结合 , 以达到综合分
析判断骨生物学特征的 目的。 骨组织形态计量学参 数较多且 繁杂_ 其 中常用静 1 , 态学参数有 : 骨皮 质 厚度 ( tT )骨 皮质周 长 ( P ) C. h 、 B r 、 o
术 , 管难 以获 取 并反 映 骨组 织 局 部 的 细胞 形 态和 骨 形 成 率 、 收 率等 变化 参 数 , 可精 确 显 示骨 组 织 三 尽 吸 但 维 结构 特 征 , 测 得 的 参数 误 差 小 , 操 作 简便 , 所 且 定位 准 确 。在 骨 质 疏 松 研 究领 域 , 组 织 形 态 计 量 学和 骨 “ T 技 术 常 用 于 动物 实验 或 特 殊 患 者 的诊 断 , 其 是 用 于 骨质 疏 松 药物 疗 效 的评 价 。 C 尤
A13骨组织形态计量与微损伤分析
表5男女闻体重相同的10对配对骨矿量比较男女显著性检验n均值标准差rt 均值标准差(t值) BMD下肢101.1791.104 101.196O.0780.369(P>O.5) (g/甜)全身101.150O.05410】.191O.085j.205(p)0.1) BMC下肢10987141109411640.125(P>O.05)(g)全身1027512971026493960.084(P>0.05)体重(1‘g)1072.413.98 1072.4 13.98无差异结论骨矿量可以代表60—80%骨强度,骨密度仪测量骨矿量有BMD和BMC两个指标可用,骨强度主要由体重决定,所以研究体重与BMD、BMC之间的关系作为选择应用指标的依据,经117例(男54,女 63)分析,发现BMC与体重之间呈密切正相关(r=0.611一O.846之间),而BMD与体重之间仅有较弱相关。
经用体重标准化(BMC÷体重)及男女之间相同体重配对消除体重对BMC的影响后,发现男女之间的BMC基本上没有差异,所以BMC较BMD更能代表骨强度,如用BMC指标诊断骨质疏松比用BMD更有利,有关BMC在骨质疏松诊断实践中应用的其它问题有待进~步研究。
A13.骨组织形态计量与微损伤分析中南大学湘雅医学院附属二院代谢内分泌研究所(41001I)廖二元一、骨组织形态计量作为骨质疏松(OP)诊断和疗效评价金标准的BMD,在临床上已应用多年。
新一代的DEXA测量仪具有灵敏度高.可测量任意骨骼部位等优点,但.BMD所固有的缺陷必须克服,并急待将代谢性骨病的诊断和药物评价手段深入到更深层次。
BMD的固有缺点主要表现为:①测量结果受骨盐含量的影响,而骨盐含量并不反映骨病的病因和病理.而且受韧带钙化、骨质增生、动脉硬化等的影响;②BMD不能直接反映骨的力学性能,而骨折与否在很大程度上取决于骨的生物质量而非骨盐含量;③BMD表达的是整块骨骼的骨盐,无法了解更微小部位的病变特征。
骨质疏松常见模型(1)
骨质疏松常见模型1.概念:骨质疏松症是一种以骨量降低、骨微细结构破坏、骨强度下降,导致骨脆性增加,易发生骨折〔骨折风险性增加〕为特征的全身性骨骼疾病。
2.临床表现:腰背部疼痛,体长缩短,驼背及发生骨折。
3.按严重程度分:骨质疏松的发生程度包括低骨量、骨质疏松症和骨质疏松性骨折。
依次程度增加。
4.现代医学将骨质疏松症分为原发性、继发性、特发性骨质疏松症三大类。
原发性骨质疏松症〔primary osteoporosis,POP〕,因年龄所致的体内性激素突然减少及生理性退行性改变所致。
分为Ⅰ型绝经后骨质疏松症〔postmenopausal osteoporosis,POMP〕和Ⅰ型老年性骨质疏松症。
继发性骨质疏松症,由疾病或药物因素诱发,疾病如内分泌代谢病〔糖尿病、甲状腺功能亢进症〕、肾脏疾病、肝脏疾病等,药物诱发如长期大剂量的肝素、免疫抑制剂、抗癫痫病药、糖皮质激素的应用。
而特发性骨质疏松症,一般伴有遗传疾病史,女性多见,妇女哺乳期和妊娠期的骨质疏松症往往也列为此类现代医学的研究1.发病机制:主要机制是因为衰老、体内性激素减少、药物和某些疾病等因素导致骨吸收和骨形成平衡失调,骨矿物质和有机质等比例丧失,导致骨量减少和骨质疏松,进而引发骨折,为全身性代谢性骨病。
总的来说,是由遗传、激素、营养、失用、年龄、生活习惯及免疫学等方面多种因素交互影响的结果。
2.诊断与治疗:①诊断:依靠临床表现、骨量的测定、骨密度〔bone mineral density,BMD〕及骨转化生化指标等,其中以骨量测定最为重要。
临床上采用采用BMD测量作为诊断、与测量骨质疏松症骨折风险、监测自然病程以及评价药物干预疗效的最正确定量指标。
临床上测量BMD的方法有双能X线吸收测定法〔DXA〕、外周双能X线吸收测定法〔pDXA〕、定量电脑断层照相术〔QCT〕及定量骨超声〔QUS〕等,其中DXA测量值是目前国际学术界公认的临床骨质疏松症诊断的“金标准”。
急性和亚急性骨质疏松椎体骨折不同愈合时期骨组织形态学分析
中国骨质疏松杂志 2020 年 12 月第 26 卷第 12 期 Ch$ J Osteoporos , December 2020,V0 26, No 12Published online doi :10. 3969/j.issn.1006-7108. 2020. 12.018 1815-™床研:-急性和亚急性骨质疏松椎体骨折不同愈合时期骨组织 形态学分析张芸1齐浩然2高观4姜强4王磊3王文波3孙建民2王均宁1薛景才3!1. 山东中医药大学中医学院山东 济南2500122. 山东大学附属省立医院山东济南2500123. 山东中医药大学第二附属医院脊柱外科,山东济南2500124. 山东省威海卫人民医院脊柱外科,山东,威海261002中图分类号:R683.2文献标识码:A 文章编号:1006-7108( 2020) 12-1815-05摘要:目的 观察急性和亚急性骨质疏松性椎体压缩骨折(osteeporotio vertebral compression fracture , OVCF)发生后,不同愈合时期椎体内骨组织病理特点)方法 将119例(OVCF )患者按发病时间分为四期:1期(0-15 d );II 期(15-30 d ); III 期(30-60 d );I V 期(60-90 d )0常规行椎体内骨折区活检骨组织取岀,制备脱钙活检标本,运用光镜观察并骨组织形态计量学分析)结果 共获得活检标本119例,其中I 期67例(56.3 %)、11期28例(23.5期12例(10.8 %)、IV 期13例(10.9 %)0所有病理标本均未发现肿瘤或结核)骨折时间与骨组织形态学改变呈显著正相关,镜下表现为骨折区域的修复变化:从早期血肿和炎性浸润到肉芽期织和纤维组织的增生,进一步软骨成骨、钙盐沉积,最终形成新的编织骨)骨组织形态学测量结果显示 I 期、II 期 FV/TV ( %)显著增高(P<0. 000 1, * * 0.488 2), III 期 OS/BS ( %)显著增高(%<0, 000 1, *-0. 572 7 ), IV 期WBV/TV ( %)显著增高(P<0. 000 1,*-0.583 6) 0结论 骨折时间是骨折愈合分期重要的预测因素,发病时间不同,其椎体内部的病理变化也不尽相同)基金项目:山东省医药卫生科技发展计划项目(2018WS094)* 通信作者:薛景才,Email : 826067299+关键词:骨质疏松性椎体压缩骨折;活检;骨组织形态计量学Bone histomorphologic analysis at different healing stages of sub and acute osteoporotic vertebral fractureZHANG Yun 1 , QI Haoran 2, GAO Guan 4, JIANG Qiang 4, WANG Lei 3 , WANG Wenbo 3, SUN Jianmin 2, WANG Junning 1,XUE Jingcai 3!1. College of Chinese Medicine , Shandong University of Traditional Chinese Medicine , Jinan 2500122. Departmeni of spine , Shandong Provincial Hospital affiliated to Shandong University , Jinan 2500123. Department of spine ,The second affiliated hospital of shandong university of traditional Chinese medicine , Jinan 2500124. Department of Spine , Weihaiwei PeopieY Hospital ,Weihai 264200*Corresponding author : XUE Jingcai , Email :826067299@ Abstract : Objectine To observe the bone pathologic characteristics of sub and acute osteoporoic vertebral compression fracture(OVCF ) at diferentheeling stages. Methods According to the time sincc fractura , 119 patientt wea divided into foua stages :Stage I (0 to 15 days ) , Stage II ( 15 days to 30days ) , Stage III (30 days to 60days ) , Stage IV (60 days to 90days ). Decdcifiedbiop,y ,pecimen wa,obtained faom thecance i ou,bonecoaein thefaactuaed veatebaaibody.Thehitomoaphometay ,tudy weaeanalyzed by light microscopy using grid analyst and defined using bone hitomorphometry criteria. Results 119 biopsy specimenswera obtained , 67 (56.3%) patientt in Stage I , 28 (23.5%) in Stage II , 12 ( 10.8%) in Stage III and 1 (10.9%) in Stage IV. No tumor or tuberculosit was found in all pathological specimens. Thera was a significant positive correlation between fractura time and bone histomorDhometry . Microscopical y , the changes wera observed : From early hematoma and inflammatory infiltration to granulation weave and fibrous tissue proliferation , further cartilage osteogenesis , calcium salt deposition , and eventuall y theformation of new woven bone.Bone histomorphometry showed that FW/TW(%)in stage I and II increased significantly (%<0.0001,厂二0.4882),OS/BS(%)in stage III increesed significantly( %<0.0001,厂二—0.5727),and WBV/TV( %)in stage IV increesed significantly(P<0.0001,*=-0.5836).Conclusion The fracture time is an important predictor of heeling stage.The pathologicai changes inside the vertebrai body were also different with the onset time.Key words:osteoporotic vertebral compression fracture;biopsy;bone histomoehometry随着人口老龄化程度的不断加剧,骨质疏松椎体压缩骨折(osteoporotic vertebral cempression fracture,OVCF)患病率不断上升,已成为影响我国老年人群的三大疾病之一。
骨质疏松常见模型(1)
(四)刘锡仪等曾报道用损毁大鼠弓状核,致使ARC神经细胞明显受损,最终导致骨质疏松,皮下注射10%谷氨酸钠(MSG,4g/kg),可以选择性损伤大鼠下丘脑弓状核神经元,导致内分泌调节功能紊乱,从而建立了谷氨酸单钠(MSG)大鼠骨质疏松模型。被命名为脑源性骨质疏松症。其他脑源性骨质疏松模型:下丘脑-垂体断开术,松果体切除术。更接近于人类骨质疏松的病变过程,也适用于研究中枢神经系统在骨骼系统生长和发育中的作用。
骨质疏松常见模型
1.概念:骨质疏松症是一种以骨量降低、骨微细结构破坏、骨强度下降,导致骨脆性增加,易发生骨折(骨折风险性增加)为特征的全身性骨骼疾病。
2.临床表现:腰背部疼痛,体长缩短,驼背及发生骨折。
3.按严重程度分:骨质疏松的发生程度包括低骨量、骨质疏松症和骨质疏松性骨折。依次程度增加。
4.现代医学将骨质疏松症分为原发性、继发性、特发性骨质疏松症三大类。原发性骨质疏松症(primary osteoporosis,POP),因年龄所致的体内性激素突然减少及生理性退行性改变所致。分为Ⅰ型绝经后骨质疏松症(postmenopausalosteoporosis,POMP)和Ⅱ型老年性骨质疏松症。继发性骨质疏松症,由疾病或药物因素诱发,疾病如内分泌代谢病(糖尿病、甲状腺功能亢进症)、肾脏疾病、肝脏疾病等,药物诱发如长期大剂量的肝素、免疫抑制剂、抗癫痫病药、糖皮质激素的应用。而特发性骨质疏松症,一般伴有遗传疾病史,女性多见,妇女哺乳期和妊娠期的骨质疏松症往往也列为此类
4.骨密度(BMD)测量:可以了解骨吸收与骨形成功能状态。采用定量计算机断层扫面法(QCT)、超声法和双光子吸收测量法(DPA)等测量。
骨的形态和结构课件
03
04
骨质是构成骨的主要成分,分 为皮质骨和松质骨两种类型。
皮质骨是骨的外层,质地坚硬, 对骨起到保护作用。
松质骨是骨的内层,由许多小 梁状结构组成,具有较好的抗
压和抗扭曲能力。
骨质的主要成分是矿物质和胶 原蛋白,对维持骨的硬度和韧
性起到重要作用。
骨髓
骨髓是充填于骨髓腔和骨松质间隙内 的软组织,分为红骨髓和黄骨髓两种 类型。
骨的形态和结构课件
• 骨的基本形态 • 骨的结构 • 骨的功能
目录
PART 01
骨的基本形态
长骨
定义
功能
长骨为长管状骨,主要存在于四肢, 如股骨、肱骨等。
支撑身体,保护内脏器官,参与运动 和负重。
特征
长骨有一个骨干和两个端,骨干表面 有骨膜,内部有骨髓腔,容纳骨髓。 两端有软骨覆盖,随着生长发育逐渐 骨化。
治疗 根据肿瘤的性质和分期,选择手术治 疗、放疗、化疗等综合治疗手段。
PART 06
骨的生物力学
骨的应力分布
骨的应力分布是指骨在不同外 力作用下的受力分布情况。
骨的应力分布与骨的结构和形 态密切相关,不同部位的骨承 受不同的应力。
骨的应力分布对于骨的生长、 发育和重塑具有重要影响。
骨的应变与变形
骨具有不同的生物力学特性。
了解骨的生物力学特性对于预防 骨折、设计人工关节和骨骼替代
材料等具有重要意义。
THANKS
感谢观看
功能
保护内脏器官,参与构成 颅腔、胸腔和盆腔等结构。
不规则骨
定义
不规则骨为形态不规则的骨,主 要分布在脊柱、颅底等部位。
特征
不规则骨的形态多样,内部结构 也较为复杂,如椎骨由多个部分 组成。不规则骨的功能多样,如 参与构成脊柱的支柱和颅底的支
骨组织形态计量学方法课案
2.5.4骨组织形态计量学方法2.5.4.1 不脱钙骨骨标本的包埋(1)包埋前单体(甲基丙烯酸甲酯)的洗脱方法①将1500ml的甲基丙烯酸甲酯倒入分液漏斗(2L)中。
②加入5% NaOH溶液500ml,充分摇匀,静置,待溶液分层后,放出下层溶液,弃去。
③重复操作“2”三次,三次的总量与单体量相当(洗脱阻滞剂)。
④加入500ml蒸馏水,充分摇匀,静置,待溶液分层后,放出下层溶液,弃去。
⑤重复操作“2”三次,三次的总量与单体量相当(洗脱NaOH)。
⑥将上述处理过的单体放入无水CaCl2(1000 ml:500g)脱水2次。
⑦滤纸过滤,收集滤液。
⑧-20℃保存备用,第二天取出看有无冰晶漂浮:无,表明无水可备用;有,则需重新脱水。
(2)胫骨上段包埋前的制备过程①暴露骨髓腔将固定液中的胫骨用低速锯锯开,暴露骨髓腔,解剖部位如下:②脱水分别通过70%乙醇2天,95%乙醇2天,100%乙醇1天,100%乙醇1天,四个脱水过程,二甲苯透明1天。
③渗透先后用浸液Ⅰ、浸液Ⅱ、浸液Ⅲ分别浸透2天。
三种浸液的配制方法如下:浸液Ⅰ甲基丙烯酸甲酯90ml,邻苯二甲酸二丁酯10ml,磁力搅拌器上搅拌3小时。
浸液Ⅱ甲基丙烯酸甲酯90ml,邻苯二甲酸二丁酯10ml,过氧化笨甲酰1.0g,磁力搅拌器上搅拌4小时。
浸液Ⅲ甲基丙烯酸甲酯90ml,邻苯二甲酸二丁酯10ml,过氧化苯甲酰2.5g,磁力搅拌器上搅拌6小时。
(3)包埋用新鲜配置的浸液Ⅲ(当日配置)倒入装有浸润好的骨头块容积约为15 ml 的小瓶中,倒入的包埋剂约,盖好瓶盖,并在瓶盖上插一注射器针头,室温过夜。
第二天把包埋瓶置入37-39℃的水育箱中聚合约48小时,直至包埋块形成。
若为胫骨中段骨,则需在包埋前几天预先倒入少量包埋剂于小玻璃瓶中作包埋块底衬,变硬后为1.5cm高为宜。
包埋时将胫骨中段至于瓶中央,在倒入2cm高的包埋剂。
若为胫骨上段,仅需将其锯开面贴瓶底中央包埋,倒入约3.5cm高的包埋剂即可。
骨组织形态计量学方法
骨组织形态计量学方法
首先,骨骼成分分析是通过测量骨骼中不同成分的含量来评估骨骼的
组成。
常用的方法有骨质量测量仪、骨钙测量仪、X射线能谱仪等。
这些
方法能够测量骨骼中的矿物质、有机质、水分等成分的含量,并且可以对
不同骨组织中的成分进行定量分析。
例如,在评估骨质量的过程中,可以
测量骨密度和骨矿物含量,从而评估骨质量的健康状况。
最后,骨形态分析是通过测量骨骼的形态特征来评估骨骼的结构和功能。
常用的方法有计算机辅助三维重建技术、X射线成像以及磁共振成像等。
这些方法能够提供骨骼的三维形态数据,并且可以对骨骼的大小、形状、密度、连续性等进行定量分析。
骨形态分析在评估骨骼发育、人类进
化以及骨折风险等方面具有重要的研究意义。
例如,通过比较不同种族或
不同性别的骨骼形态特征,可以了解人类的进化历程和骨骼的适应性变化。
总结起来,骨组织形态计量学方法是研究骨骼形态特征的科学方法,
主要包括骨骼成分分析、骨密度测量和骨形态分析。
这些方法能够评估骨
骼的组成、稠密程度以及结构和功能特征,对于评估骨骼的健康状况、诊
断疾病、研究人类进化以及进行人工骨骼材料的设计和优化具有重要的意义。
人的骨骼和形态教案
人的骨骼和形态教案教案标题:人的骨骼和形态教案教学目标:1. 了解人体骨骼系统的组成和功能;2. 掌握人体骨骼系统的基本形态和结构;3. 理解人体骨骼系统对身体姿态和运动的重要性;4. 培养学生对骨骼系统的保护意识和正确的姿势习惯。
教学内容:1. 人体骨骼系统的组成和功能;2. 人体骨骼系统的基本形态和结构;3. 骨骼系统与身体姿态的关系;4. 骨骼系统与运动的关系;5. 骨骼系统的保护和正确姿势习惯。
教学重点:1. 人体骨骼系统的组成和功能;2. 人体骨骼系统的基本形态和结构;3. 骨骼系统与身体姿态的关系。
教学难点:1. 骨骼系统与运动的关系;2. 骨骼系统的保护和正确姿势习惯。
教学方法:1. 图片展示法:通过展示人体骨骼系统的图片,引导学生认识和了解骨骼系统的组成和形态;2. 案例分析法:通过分析不正确的姿势习惯对骨骼系统的影响,引导学生理解骨骼系统的保护意识;3. 活动探究法:通过小组活动,让学生模拟不同运动动作,体验骨骼系统在运动中的作用。
教学过程:1. 导入(5分钟):- 引入话题:你知道人体是由哪些部分组成的?其中,骨骼系统对我们的身体起着重要的支撑作用。
请你们谈谈骨骼系统的作用。
- 学生回答问题,引出本节课的学习内容。
2. 知识讲解与展示(15分钟):- 利用图片或模型展示人体骨骼系统的组成和形态,讲解骨骼系统的基本结构和功能。
- 强调骨骼系统对身体姿态的影响,引导学生认识到正确的姿势对骨骼系统的重要性。
3. 案例分析与讨论(15分钟):- 给学生展示几个常见的不正确姿势的案例,让学生分析这些姿势对骨骼系统的影响。
- 引导学生思考如何保护骨骼系统,提出正确的姿势习惯。
4. 活动探究(20分钟):- 分组活动:将学生分成小组,每组选择一种运动动作进行模拟,让学生感受骨骼系统在运动中的作用。
- 学生通过活动,体验正确姿势对运动的帮助,加深对骨骼系统保护的认识。
5. 总结与拓展(5分钟):- 回顾本节课的学习内容,强调骨骼系统对身体健康的重要性。
实验家兔骨折愈合骨组织形态计量学研究
实验家兔骨折愈合骨组织形态计量学研究天津医院骨研所兰耋羹轰魏典摘要作者应用骨组织形态计量方法测定丁132个(术后2~90天)实验家兔骨折血台标本的15项骨计量学指标的变化。
并对所获指标数据进行丁计算机统计分析、制图处理,继而找出了骨折自然愈合过程中的多种骨计量学指标参数。
提出骨折血台过程中,类骨质生成量及矿化沉积率变化均旱驻峰样政峦瑚象国内外学者多用病理学、组织化学和超微结构等方法对骨折愈合和促进骨折愈合的方法进行了研究0.2]。
这些研究方法所得结果仅停留在单纯形态学水平,因而在评价骨折愈台中常受主观因素的影响。
也由于这些方法受技术条件所限,不可能为骨折实验模型提供一组鉴定骨折愈合速度的客观指标。
而常规观察骨折标本多进行脱钙制片,失掉了占骨重2/S的矿物质,势必会在一定程度上破坏骨组织形态,影响对骨折愈合的观察。
骨组织形态计量学(bone histomotphometfy啪简称骨计量学)采用四环素活体双标记方法,利用四环紊能与钙特异结合并沉积在骨矿化前沿(minaralization front)的特性,在荧光显微镜下观察骨内二次标记的四环素荧光线距离等变化,从而求得骨矿化沉积率(minaralization apposition rate),骨体积(bonevolume)等十数项骨动力学及骨形态学指标。
本文采用骨计量学方法测量骨折愈合各时期中新生骨痴的各种骨计量学指标变化,找出与观察骨折愈合有关的骨计量学指标。
从而开辟研究实验骨折愈合和鉴定骨折愈合速度的新方法,有利于促进骨折愈合(如:中西药物、微量元素、器械方法等)和骨折愈合机理的研究。
材料方法一、实验性家兔骨折模型的制备和四环紊标记方法及不脱钙切片的制作本次实验选用家兔70只,在戊巴比妥钠静脉麻醉下,使用三角型双锯片电动摆锯,将家兔双侧桡骨中上1/S交界处锯成3mm宽的骨折缺损。
术后不傲任何固定,采用复合饲料喂养。
标记四环耳缘静脉注射两次,剂量为每公斤体重50II1g,首次在处死前9天,第二次在处死前3天。
骨学详细教案(仅供参照)
骨学Osteology第一节总论教学大纲1.掌握骨的形态、构造和功能。
2.了解骨的表面形态,理解骨的化学成分及物理性质,临床意义。
教学内容骨bone是一种器官, 具有一定的形态和功能,坚韧而有弹性,有血管和神经分布,能不断进行新陈代谢,并有修复、改造和再生能力。
成人骨共有206块,按其所在的部位可分为颅骨、躯干骨和四肢骨三部分。
一、骨的分类骨的形态不一,根据外形可分为长骨、短骨、扁骨和不规则骨四类。
1. 长骨long bone呈长管状, 分一体两端。
长骨中部细长称为体或骨干, 体内的腔称骨髓腔, 容纳骨髓。
骨的两端膨大称为骺, 骺表面有光滑的关节面。
骨干与骺邻接的部分称干骺端。
长骨多见于四肢,如股骨和肱骨。
2. 短骨short bone呈立方形,位于连接牢固并有一定灵活性的部位,如手的腕骨和足的跗骨。
3. 扁骨flat bone呈板状,主要构成容纳重要器官的腔壁,起保护作用,如颅盖骨、胸骨、髓骨等。
4. 不规则骨irregular bone形状不规则,功能各异,如椎骨和某些颅骨。
在一些不规则骨内,具有含气的腔,称含气骨,如上颌骨和额骨等。
二、骨的构造骨是由骨质、骨膜和骨髓构成,并有血管和神经分布。
1. 骨质bone substans分骨密质compact bone和骨松质spongy bone。
骨密质致密坚硬,耐压性较大,由紧密排列成层的骨板构成,分布于骨的表面。
骨松质呈海绵状,由骨小梁交织排列而成,位于骨的内部。
扁骨由内、外两层骨密质板中间夹着一层骨松质构成。
颅盖骨的骨松质称为板障。
2. 骨膜periosteum是被覆于骨内、外面由纤维结缔组织构成的膜。
分布于除关节面以外整个骨外面。
衬于骨髓腔内面和骨松质腔隙内的称骨内膜。
骨膜含有丰富的血管、神经和淋巴管,对骨的营养、生长或再生具有重要作用。
3. 骨髓bone marrow充满于长骨的髓腔和骨松质的腔隙内,分红骨髓和黄骨髓。
红骨髓red bone marrow有造血功能,含有大量不同发育阶段的红细胞和其他幼稚型的血细胞。
骨形态计量学Bone histomorphometry
Table2:Derived indice in Bone histomorphometry 中文名称 英文名称英文缩写 单位公式骨小梁相对体积 Percent trabecular area BV/TV % Tb.Ar/T.AR*100骨小梁厚度 Trabecular thickness Tb.Th μm (2000/1.199)( Tb.Ar/Tb.Pm ) 骨小梁数量 Trabecular number Tb.N #/mm (1.199/2)( Tb.Pm/T.Ar)骨小梁分离度 Trabecular separation Tb.Sp μm (2000/1.199)(T.Ar-Tb.Ar)/Tb.Pm 荧光周长百分率 Percent labeled perimeter %L.Pm % (dL.Pm+ sL.Pm/2 )/Tb.Pm*100 矿化沉积率 Mineral appositeion rate MAR μm /d IL.WI / Intervel骨形成率 Bone formation rate BFR/BS BFR/BV μm /d*100 %/year (dL.Pm+ sL.Pm/2)*MAR / Tb.Pm*100(dL.Pm+ sL.Pm/2)*(MAR/100*365)/Tb.Ar*100 单位骨小梁OC 数Osteoclast numberOC.N#/mm 2N.Oc/Tb.Ar计算所得参数可分为静态和动态参数. 1)静态参数:用来评价药物防治效果,描述骨量的多少和骨小梁的结构。
骨小梁相对体积(BV/TV ):指骨小梁体积占骨组织体积的百分比,反映骨量的多少。
它等于骨小梁厚度与数量的乘积的1/10,也就是说骨量多少由厚度和数量共同决定。
骨小梁厚度(Tb.Th):用于骨小梁结构形态,解释骨量变化。
其变化可影响骨量,在骨小梁一定的情况下,厚度越大,骨量越大越多。
骨小梁数量(Tb.N):用于描述骨小梁结构形态,解释骨量变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5.4骨组织形态计量学方法2.5.4.1 不脱钙骨骨标本的包埋(1)包埋前单体(甲基丙烯酸甲酯)的洗脱方法①将1500ml的甲基丙烯酸甲酯倒入分液漏斗(2L)中。
②加入5% NaOH溶液500ml,充分摇匀,静置,待溶液分层后,放出下层溶液,弃去。
③重复操作“2”三次,三次的总量与单体量相当(洗脱阻滞剂)。
④加入500ml蒸馏水,充分摇匀,静置,待溶液分层后,放出下层溶液,弃去。
⑤重复操作“2”三次,三次的总量与单体量相当(洗脱NaOH)。
⑥将上述处理过的单体放入无水CaCl2(1000 ml:500g)脱水2次。
⑦滤纸过滤,收集滤液。
⑧-20℃保存备用,第二天取出看有无冰晶漂浮:无,表明无水可备用;有,则需重新脱水。
(2)胫骨上段包埋前的制备过程①暴露骨髓腔将固定液中的胫骨用低速锯锯开,暴露骨髓腔,解剖部位如下:②脱水分别通过70%乙醇2天,95%乙醇2天,100%乙醇1天,100%乙醇1天,四个脱水过程,二甲苯透明1天。
③渗透先后用浸液Ⅰ、浸液Ⅱ、浸液Ⅲ分别浸透2天。
三种浸液的配制方法如下:浸液Ⅰ甲基丙烯酸甲酯90ml,邻苯二甲酸二丁酯10ml,磁力搅拌器上搅拌3小时。
浸液Ⅱ甲基丙烯酸甲酯90ml,邻苯二甲酸二丁酯10ml,过氧化笨甲酰1.0g,磁力搅拌器上搅拌4小时。
浸液Ⅲ甲基丙烯酸甲酯90ml,邻苯二甲酸二丁酯10ml,过氧化苯甲酰2.5g,磁力搅拌器上搅拌6小时。
(3)包埋用新鲜配置的浸液Ⅲ(当日配置)倒入装有浸润好的骨头块容积约为15 ml 的小瓶中,倒入的包埋剂约,盖好瓶盖,并在瓶盖上插一注射器针头,室温过夜。
第二天把包埋瓶置入37-39℃的水育箱中聚合约48小时,直至包埋块形成。
若为胫骨中段骨,则需在包埋前几天预先倒入少量包埋剂于小玻璃瓶中作包埋块底衬,变硬后为1.5cm高为宜。
包埋时将胫骨中段至于瓶中央,在倒入2cm高的包埋剂。
若为胫骨上段,仅需将其锯开面贴瓶底中央包埋,倒入约3.5cm高的包埋剂即可。
2.5.4.2 不脱钙股组织片的制备(1)载玻片的制备①清洗把玻片在酸缸中浸泡24小时,取出,先用自来水冲洗,后用单蒸水冲洗,晾干。
②上胶称取1.8g明胶溶于200ml的双蒸水中,加热溶解明胶(90度)称取1g的硫酸铬钾溶于25ml的双蒸水中,待其完全溶解后缓缓倒入沸腾的明胶溶液中,边加边搅拌,直至其完全溶解再停止加热,溶液室温冷却至60℃左右即可使用;将载玻片浸入60℃的胶液中2min,取出晾干后即可使用。
(2)切片①打磨用石膏打磨机将包埋块打磨成合适大小,并暴露切面,把切面打磨到合适位置。
②切片将打磨好的块固定在切片机上,右手慢慢切下。
同时,左手用一沾有40%乙醇的软毛刷轻轻地拨下切片,注意不要弄烂切下的片,然后用毛刷把片转移到滴有一滴70%酒精的载玻片上,再滴一滴70%酒精,然后漫漫展平切片,盖上一张薄塑料片,并用滤纸将多余的酒精吸干。
一个标本切两种厚度的片5μm (薄片)和9μm(厚片):薄片用于Masson-Goldner Trichrome染色数破骨细胞;厚片可直接封片,测量动态参数;或硝酸银染色,测量静态参数。
③烤片将切好的一组片,用夹子夹稳,放入40℃左右的鼓风烤箱中烤4小时左右,取出备用。
(3)骨片染色5μm的薄片常采用Masson-Goldner Trichrome染色,染色后,骨质为绿色,骨髓为红色,用于观察骨小梁表面的破骨细胞和测量其周长。
9μm的厚片可采用硝酸银染色,染色后,骨质为黑色,反映矿化后的骨质,用于观察骨量和骨结构,下面是Masson-Goldner Trichrome染色过程。
①工作液的准备A.Weigert hematoxylin工作液:溶液A含Mematoxylin(苏木素精)1g加入95%酒精100ml中过滤备用;溶液B含29%氯化铁4ml、稀盐酸1ml(用40%的盐酸加蒸馏水1:4稀释),然后加蒸馏水至100ml。
将等份的溶液A和溶液B 混合即得工作液。
B. Poncean Fuchsin Stock工作液:配制溶液A含Poncean(丽春红)1g加蒸馏水100 ml,溶液B含Acid Fuchsin(品红)1g加蒸馏水100ml;将3份的溶液A和1份的溶液B混合配成原液,然后将原液用0.2%的醋酸按5:1的比例稀释成工作液。
C. Phosphotungstic acid-Orange G工作液:将Orange G 2g和Phosphotungstic acid 4g加入100ml蒸馏水中,用前过滤。
D. Light green工作液:将Light green(亮绿)0.2g和醋酸0.2ml加入100ml 蒸馏水中,用前过滤。
②染色过程脱塑剂2-Methyloxethyl acetate 25min 2次↓Weigerts hematoxylin工作液25min↓蒸馏水漂洗↓自来水漂洗10min↓蒸馏水漂洗↓Poncean-Fuchsin工作液染色17min↓1%醋酸漂洗2次,每次1min↓新鲜过滤的Orange G液染色7min↓1%醋酸漂洗2次,每次1min↓新鲜过滤的Light green染色15min-20min↓1%醋酸漂洗2次,每次1min↓95%酒精脱水1min↓无水酒精脱水2min,2次↓二甲苯清洗2次,每次2min,树脂封片(4)磨片制备磨片是将胫骨中段先用锯片机锯成100μm厚的骨片,锯骨时从胫腓韧带联合近侧端以胫骨干下端与腓骨完全分离为有效骨片,可尽量减少切片所造成的误差。
共锯三片,胫腓结合处为第一片,接下来依次为第二、三片。
在磨砂玻璃上将第二片磨成40μm的薄片,再进行酒精梯度脱水:70%-70%-95%-95%-100%-100%,二甲苯透明后树脂封片,测量皮质骨的各项参数。
2.5.4.3 骨组织形态计量学指标测定(1)测量分析范围胫骨上段测量范围:从生长板往下画出0.5mm,以避开初级海绵体,再从0.5mm处往下画3mm。
见图2.5。
皮质骨测量范围为横断面,见图2.6图2.5 胫骨上段测量范围图2.6 皮质骨测量范围Fig 2.5 Scope of PTM for bone histomorphometry Fig 2.6 Scope of MTM for measure(2)动、静态参数测量和计算本实验所有参数采用国际通用标准骨组织形态计量学术语命名[24-25]。
用半自动图象数字化仪直接测出参数的中英文名称、符号及单位等如表2.3和表2.5所示。
但这些参数还不能直接用于分析骨量、骨结构、骨形成和骨吸收等,要通过国际通用的公式[21]对直接测得的参数计算,才能用于分析。
计算参数的中英文名称、符号及计算公式等如表2.4和表2.6所示。
表2.3松质骨测量参数Tab2.3 Measurement s of PTM cancellous bone中文名称英文名称符号单位骨组织面积Tissue area T.Ar mm2骨小梁面积Trabecular bone area Tb.Ar mm2骨小梁周长Trabecular perimeter Tb.Pm mm单荧光周长Singlelabel perimeter sL.Pm mm双荧光周长Doublelabel perimeter dL.Pm mm双荧光间距Interlabel width Ir.L.Wi um破骨细胞数量osteoclast number N.Oc #破骨细胞周长ostelclast perimeter Oc.Pm mm表2.4松质骨计算参数及计算公式Tab2.4 Calculations of PTM cancellous bone中文名称符号单位公式骨小梁面积百分数%Tb.Ar % Tb.Ar/T.Ar*100骨小梁宽度Tb.Wi um (2000/1.199)(Tb.Ar/Tb.Pm)骨小梁数量Tb.N #/mm (1.199/2)*(Tb.Pm/T.Ar)骨小梁分离度Tb.Sp um (2000/1.199)*(T.Ar-Tb.Ar)/Tb.Pm荧光周长百分数%L.Pm % (dL.Pm±sL.Pm/2)/Tb.pm*100骨矿化沉积率MAR um/d IrL.Wi/intervel骨形成率BFR/BS um/d*100 (L.Pm±sL.Pm/2)*MAR/Tb.Pm*100BFR/BV %/year (dL.Pm±sL.Pm/2)*MAR/1000/Tb.Ar*365*10BFR/TV %/year (dL.Pm±sL.Pm/2)*MAR/1000/T.Ar*365*100Oc.N #/mm N.Oc/Tb.Ar单位骨小梁面积破骨细胞数破骨细胞周长百分率Oc.Pm% % Oc.Pm/Tb.Pm*100表2.5 松质骨测量参数Tab2.5 Histomorphometric measurements of Tx cortical bone中文名称英文名称符号单位骨组织总面积Total tissue area T.Ar mm2骨髓总面积Marrow area Ma.Ar mm2骨外膜面周长Periosteal perimeter P.Pm mm骨内膜面周长EndBGPortical perimeter E.Pm mm骨外膜面单荧光周长Single label perimeter P.sL.Pm mm双荧光周长Double label perimeter P.dL.Pm mm双荧光间距Inter label width P.Ir.L.Wi um骨内膜面单荧光周长Single label perimeter E.sL.Pm mm双荧光周长Double label perimeter E.dL.Pm mm双荧光间距Inter label width E.Ir.L.Wi um骨吸收周长Eroded perimeter Er.Pm mm表2.6皮质骨计算参数及计算公式Tab2.6 Histomorphometric calculations of Tx cortical bone中文名称符号单位公式皮质面积Ct.Ar mm2Tb.Ar-Ma.Ar皮质面积百分率%Ct.Ar % Ct.Ar/T.ar*100骨髓面积百分率%Ma.Ar % Ma.Ar/T.Ar*100骨外膜标记周长百分率%P-L.Pm % (P-dL.Pm+P-sL.Pm/2)/P.Pm*100 骨外膜骨矿化沉积率P-MAR um/d P-Ir.L.Wi/Interval骨外膜骨形成率P-BFR/BS um/d*100 P-L.Pm*P-MAR/P.Pm*100骨内膜标记周长百分率%E-L.Pm % (E-dL.Pm+E-sL.Pm/2)E.Pm*100 骨内膜骨矿化沉积滤E-MAR um/d E-Ir.L.Wi/Interval骨内膜骨形成率E-BFR/BS um/d*100 E-L.Pm*E-MAR/E.Pm*100(3)参数的意义① 静态参数用来评价药物防治效果,描述骨量多少和骨小梁的形态结构。