实验2 蛋白质的分离纯化
蛋白质的分离纯化方法

1、透析和超过滤 w利用蛋白质分子不能透过半透膜将其 与小分子物质分开 w半透膜为玻璃纸或纤维素材料
加
压
血液透析
血液
透析液
小分子溶出 小分子被带出
透析机
利用蛋白质分子不能穿越半透膜的性质,将蛋白提取液置 于透析袋中,透析袋置于纯水,蒸馏水,或缓冲液中,蛋白质 溶液中的小分子物质穿越半透膜,从而实现纯化蛋白质的 目的.
• 从离心管底部钻空,分段收集 样品,实现蛋白质分离
3、凝胶过滤
凝胶一般由葡聚糖制 成,含有很多微孔
小分子蛋白质进入微 孔内,因而滞流时间长
大分子蛋白质不能进 入微孔而径直流出
3、凝胶过滤
(二)利用溶解度差别的纯化方法
1.等电点沉淀 调整溶液pH 不同蛋白在各自 pI处依次沉淀
2.盐溶和盐析 3.有机溶剂分级分离法
w降低介电常数 w争夺水化膜
等电聚焦电泳
双向电泳
(三)利用电荷差异
离子交换层析 蛋白质按照在相应pH条
件下所带电荷的不同而 以不同的速率向下移动 带有更多负电荷的蛋白 质以更快的速率被洗脱 分段收集渗出液,实现蛋 白质的分离
(四)利用对配体的特异生物学 亲和力的纯化方法
具有பைடு நூலகம்强的专一性
亲和色谱颗粒
利用压力或离心力,强 行使水或其他小分子 溶质透过半透膜,而使 蛋白质留在膜上,以达 到纯化的目的(脱盐和 浓缩)
2、密度梯度离心
• 将蔗糖溶液加入离心管中进行 离心建立蔗糖梯度
• 仔细将蛋白质样品(混合物)加 入蔗糖梯度的顶端,再次离心 沉降
• 当蛋白质达到和自己相同的密 度梯度时停止移动
• 于是在不同的蔗糖梯度中存在 的蛋白质不同
蛋白质的分离与纯化

(1)凝胶的选择:
。
(2)方法: 配置凝胶悬浮液:计算并称取一定量的凝胶浸泡于 中充分溶胀
后,配成
。
(3)凝胶色谱柱的装填方法
① 固定:将色谱柱处置固定在支架上
② 装填:将
一次性的缓慢倒入 内,装填时轻轻敲动色谱柱,
使凝胶填装均匀。
③ 洗涤平衡: 装填完毕后,立即用缓冲液洗脱瓶,在 高的操作压下,用
3、具体过程:
相对分子质量 较小的蛋白质
(1)
(2) (3) (4)
(5)
相对分子质量 较大的蛋白质
A B
A
的蛋白质由于
作用进入凝胶颗粒内部而被滞
留;
的蛋白质被排阻在凝胶颗粒外面,在了里之间
迅速通过。
B(1)
混合物上柱;
(2)洗脱开始,
的蛋白质扩散进入凝胶颗粒内;
的蛋白质被排阻于凝胶颗粒之外;
(3)
子
以及分子本身 、
的不同使带电分子产
生不同的
,从而实现样品中各种分子的分离。
3、分类: 琼脂糖凝胶电泳 聚丙稀酰胺凝胶电泳。
测定( 蛋白质相对分子质量 )通常用十二烷基硫酸钠(SDS)—聚丙稀酰胺凝胶
电泳。蛋白质在聚丙烯酰胺凝胶中的迁移率取决于它所带静电荷的多少以及分子的
大小等因素。为了消除静电荷对迁移率的影响可以在凝胶中加入
(4) 透析
2. 凝胶色谱制作
1)凝胶色谱柱的制作
① 取长40厘米,内径1.6厘米的玻璃管,两端需用砂纸磨平。
② 底塞的制作:打孔 挖出凹穴
安装移液管头部 覆
盖尼龙网,再用100目尼龙纱包好。
a、选择合适的的橡皮塞,中间打孔;
b、在橡皮塞顶部切出锅底状的 ,在0.5ml的 头部切
蛋白质的分离纯化方法

蛋白质的分离纯化方法蛋白质是细胞中的重要生物大分子,具有多样的结构和功能。
为了研究蛋白质的性质和功能,需要将蛋白质从混合样品中分离纯化出来。
蛋白质的分离纯化方法有很多种,主要包括离心法、电泳法、层析法和亲和纯化法等。
下面将逐一介绍这些方法及其原理。
1. 离心法离心法是利用离心机将混合物中的蛋白质分离出来。
首先将细胞裂解,得到细胞裂解液,然后进行离心,以将细胞器、胞外物质和亲粒子(如蛋白质颗粒)分离。
离心可以根据不同物质的相对密度和大小进行分层分离,快速旋转离心机可以很好地分离出不同密度的颗粒。
2. 电泳法电泳法是将带电的蛋白质沿着电场移动,根据蛋白质的带电性质和大小分离的方法。
蛋白质可以根据电荷性质分为阴离子蛋白和阳离子蛋白,也可以根据亲水性质分为亲水性蛋白和疏水性蛋白。
电泳法常用的有SDS-PAGE、等电聚焦电泳等。
其中,SDS-PAGE可以根据蛋白质的分子量进行分离。
3. 层析法层析法是通过蛋白质与载体之间的亲和性或者分离介质之间的亲和性进行分离的方法。
层析法主要分为凝胶层析、离子交换层析、亲合层析和大小排阻层析等。
凝胶层析法是利用凝胶的网格结构来分离蛋白质,如凝胶过滤层析、凝胶过渡层析等。
离子交换层析法是利用蛋白质对离子交换树脂的吸附性质进行分离。
亲合层析法是通过亲和柱中的配体与蛋白质的亲和作用进行分离。
大小排阻层析法是根据蛋白质的分子量和形状进行分离。
4. 亲和纯化法亲和纯化法是利用特定的亲合剂与目标蛋白质之间的特异性亲和性进行分离纯化的方法。
亲和纯化主要包括亲和柱层析法、浸没纯化法、亲和剂电泳法等。
亲和柱层析法是将具有亲和填料的柱子与样品接触,通过洗脱再生的操作,将目标蛋白质从其他组分中分离纯化出来。
浸没纯化法是将特定亲合剂浸泡在蛋白质混合物中,使其与目标蛋白质发生亲和结合,然后以特定条件洗脱目标蛋白质。
亲和剂电泳法是负载亲和剂的凝胶片上进行电泳,使蛋白质与亲和剂结合,再通过电泳将其分离纯化出来。
生物化学实验-蛋白质分离纯化

蛋白质分离纯化
离子交换层析
蛋白质分离纯化
离子交换层析
蛋白质分离纯化
离子交换层析
蛋白质分离纯化
小
结
粗分级一般采用盐析、等电点沉淀、有机溶剂分级 等方法;
细分级一般采用层析法,包括凝胶层析、离子交换 层析、吸附层析、亲和层析等方法。必要时,还可 采用电泳法,包括等电聚焦等作为蛋白质的提纯步 骤。
型号:G200、 G150、 G100、 G75、 G50、 G25、 G15 分离大蛋白质、小蛋白质,除盐
琼脂糖凝胶(瑞典Sepharose、美国Bio-GelA)
孔径大,用于分离大分子物质
聚丙烯酰胺凝胶( Bio-GelP)
蛋白质分离纯化
凝胶层析
原理:
1、分子量大的物质不能进入凝胶粒子内部,随洗 脱液从凝胶粒子之间的空隙挤落下来,所以大分子 物质迁移速度快;
注意事项:1、时间相对长对分离有利; 2、也可用来测定蛋白质的等电点。
蛋白质分离纯化
等电聚焦( Isoelectric focusing)
蛋白质分离纯化
蛋白质分离纯化
等电聚焦( Isoelectric focusing)
蛋白质分离纯化
离子交换层析
可分为阳离子交换---与阴离子交换---。 1、树脂类:分离氨基酸,孔径小;
蛋白质分子量的测定
最小分子量测定法 如Mb含Fe为0.335%,则
M=55.8/0.335%=16700。这就是最小分子量。
其实,真实分子量是最小分子量的n倍,n指Fe 的数目,Mb的n=1,所以M=16700;而Hb用其他方法 测得分子量为68000,则说Hb含4个Fe原子。
实验二 血清γ球蛋白的分离纯化与鉴定

二、血清γ球蛋白的分离纯化与鉴定
清蛋白 血 清 球蛋白 β γ pI=7.3 9%~11% 12%~18% >150kD α1 pI=4.9 60%~70% 2%~3.5% 69kD
α2
pI<6
4%~7%
分离依据:蛋白质理化性质的共性和个性
共性:
*生命大分子:透析、超滤、超离心、凝胶层析 *蛋白质溶液有胶体性质:稳定因素为水化膜和电荷→ 盐析/有机溶剂沉淀 *两性电解质和等电点:pH>pI,蛋白质带负电;反之带 正电→电泳、离子交换层析 *有一定的功能:抗原性→免疫沉淀
血清电泳结果
清蛋白(albumin,A):38~48g/L
球蛋白(globulin,G):15~30g/L
A/G:正常值1.5~2.5
电泳鉴定
清蛋白 1 2
γ 加样线
对照
纯化γ蛋白 加样线 样品
注意事项
1.盐析:滴加硫酸铵时边摇边逐滴加入 2.离心:小试管离心,加套管配平。(参考视频) 3.层析:上样(转圈滴加);防止柱床液层干涸;收集
蛋白样品时用载玻片加磺柳酸检测;凝胶再生。
4.浓缩:G-200干胶用纸条少量多次加入,液层高<0.5ml;
用过的G-200干胶倒入收集烧杯,回收利用。
5.电泳:区分正反面;血清点一次,纯化蛋白点3-5次;
点样面朝下,在负极。(参考视频)
预实验结果
凝胶层析原理
大分子:垂直向下运动
流程短
小分子:垂直向下运动 不定向扩散
流程长
交联葡聚糖凝胶
多聚葡萄糖与环氧丙 烷交联而成,网状结 构。珠状颗粒,商品 名为Sephadex G系列。
蛋白质分离纯化设计

蛋白质分离纯化设计1. 简介蛋白质分离纯化是一项重要的实验技术,在生物医药、食品科学、农业等领域有着广泛的应用。
通过对蛋白质进行分离纯化,可以获得单一纯度的蛋白质用于后续研究及应用。
本文将详细介绍蛋白质分离纯化的设计方法和常用技术,包括样品准备、分离方法选择、纯化步骤设计等。
同时,我们还将讨论常见的挑战和解决方案,以及如何评估分离纯化效果。
2. 样品准备在进行蛋白质分离纯化前,首先需要准备好样品。
样品的选择和准备对于后续分离纯化过程非常重要。
2.1 选择合适的样品样品可以来自细胞、组织、体液、培养基等。
在选择样品时,需要考虑到蛋白质的种类、表达水平、目标纯化程度以及后续实验需要。
2.2 样品预处理样品在分离纯化前需要进行预处理,以去除可能干扰纯化过程的杂质。
常用的预处理方法包括细胞破碎、离心、除去非蛋白质成分等。
预处理方法的选择应根据样品类型和后续纯化方法进行优化。
3. 分离方法选择根据蛋白质分离的原理和样品特性,我们可以选择合适的分离方法。
常见的分离方法包括离子交换层析、凝胶过滤、透析、亲和层析等。
3.1 离子交换层析离子交换层析是一种基于蛋白质带电性质的分离方法。
可以根据蛋白质的以阴离子或阳离子带电来选择合适的离子交换树脂,实现不同蛋白质的分离纯化。
3.2 凝胶过滤凝胶过滤是一种基于蛋白质大小的分离方法。
通过选择适当的孔径大小的凝胶,可以分离不同分子大小的蛋白质。
3.3 透析透析是一种基于蛋白质分子量和溶液成分的分离方法。
通过选择适当的膜材料和透析缓冲溶液,可以实现蛋白质与小分子化合物的分离。
3.4 亲和层析亲和层析是一种基于蛋白质与配体之间的特异性结合来分离纯化的方法。
选择合适的亲和配体,可以选择性地结合目标蛋白质,从而实现其分离纯化。
4. 纯化步骤设计在选择合适的分离方法后,需要设计纯化步骤来实现目标蛋白质的分离和纯化。
纯化步骤的设计应根据分离方法的特点和目标蛋白质的性质进行优化。
4.1 样品加载将预处理的样品通过适当的装载方式加载到分离纯化柱中,如使用注射器将样品缓慢注入。
蛋白分离纯化实验报告

一、实验目的1. 掌握蛋白质分离纯化的基本原理和操作方法。
2. 学习不同分离纯化技术的应用。
3. 提高实验操作技能和数据处理能力。
二、实验原理蛋白质是生物体内重要的生物大分子,具有复杂的结构和功能。
蛋白质分离纯化是研究蛋白质结构和功能的重要手段。
本实验采用多种分离纯化技术,包括:材料预处理、细胞破碎、离心分离、沉淀分离、膜过滤分离和色谱分离等,实现对蛋白质的分离纯化。
三、实验材料与仪器1. 实验材料:大肠杆菌细胞、质粒DNA、限制性内切酶、DNA连接酶、PCR产物、琼脂糖、电泳缓冲液、考马斯亮蓝R-250等。
2. 实验仪器:PCR仪、电泳仪、凝胶成像系统、离心机、移液器、玻璃棒、培养箱、无菌操作台等。
四、实验步骤1. 蛋白质提取(1)将大肠杆菌细胞培养至对数生长期。
(2)收集细胞,用玻璃棒搅拌,加入预冷的提取缓冲液,低温条件下进行细胞破碎。
(3)离心分离,取上清液即为蛋白质粗提液。
2. 蛋白质沉淀(1)向蛋白质粗提液中加入一定量的硫酸铵,搅拌溶解。
(2)离心分离,收集沉淀,即为蛋白质沉淀。
3. 蛋白质溶解(1)将蛋白质沉淀溶解于适量的缓冲液中。
(2)调整pH值,使蛋白质处于适宜的溶解状态。
4. 蛋白质分离纯化(1)离子交换色谱:将蛋白质溶液上样至离子交换柱,用不同浓度的盐溶液进行梯度洗脱,收集目标蛋白峰。
(2)凝胶过滤色谱:将蛋白质溶液上样至凝胶过滤柱,用缓冲液进行洗脱,收集目标蛋白峰。
5. 蛋白质鉴定(1)聚丙烯酰胺凝胶电泳:将分离纯化的蛋白质样品进行SDS-PAGE电泳,分析蛋白质分子量。
(2)考马斯亮蓝R-250染色:观察蛋白质条带,判断蛋白质纯度。
五、实验结果与分析1. 蛋白质提取:通过细胞破碎和离心分离,成功提取出大肠杆菌细胞中的蛋白质。
2. 蛋白质沉淀:硫酸铵沉淀法成功地将蛋白质从粗提液中分离出来。
3. 蛋白质溶解:调整pH值后,蛋白质成功溶解于缓冲液中。
4. 蛋白质分离纯化:离子交换色谱和凝胶过滤色谱成功地将目标蛋白从粗提液中分离出来。
蛋白质的提取、分离纯化及定量

实验一氨基酸的别离鉴定——纸层析法实验目的1.学习氨基酸纸层析的根本原理。
2.掌握氨基酸纸层析的操作技术。
实验原理纸层析法是用滤纸作为惰性支持物的分配层析法。
层析溶剂由有机溶剂和水组成,滤纸和水的亲和力强,与有机溶剂的亲和和弱,因此在展层时,水是固定相,有机溶剂是流动相。
将样品点在滤纸上〔原点〕,进展展层,样品中的各种AA在两相溶剂中不断进展分配,由于它们的分配系数不同,不同AA随流动相移动速率就不同,于是将这些AA别离开来,形成距原点距离不等的层析点。
溶质在滤纸上的移动速率用比移〔rate of flow ,Rf〕来表示Rf= 原点到层析点中心的距离〔*〕/原点到溶剂前沿的距离(Y)只要条件〔如温度、展层剂的组成〕不变,*种物质的Rf值是常数。
可根据R f 作为定性依据。
Rf值的大小与物质的构造、性质、溶剂系统、层析滤纸的质量和层析温度等因素有关。
样品中如有多种AA,其中有些AA的Rf值一样或相近,此时只用一种溶剂展层,就不能将它们分开,为此,当用一种溶剂展层后,将滤纸转90度再用另一种溶剂展层,从而到达别离的目的,这种方法叫双向层析。
仪器、试剂1、扩展剂:是水饱和的正丁醇和醋酸以体积比4:1进展混合得混合液。
将20 ml正丁醇和5 ml冰醋酸放入分液漏斗中,与15 ml水混合,充分振荡,静置后分层,放出下层水层,漏斗内即为扩展剂。
取漏斗内的扩展剂约5 ml置于小烧杯中做平衡溶剂,其余的倒入培养皿中备用。
2、氨基酸溶液⑴.单一氨基酸:5%赖氨酸、脯氨酸、苯丙氨酸、⑵.混合氨基酸:各5 ml混合。
3、显色剂:0.1%水合茚三酮正丁醇溶液。
4、层析缸、滤纸〔14*17〕、喷雾器、电吹风实验步骤1.放置平衡溶剂:用量筒量取约5 ml平衡溶剂,放入培养皿中,然后置于密闭的层析缸中。
2.准备滤纸:取层析滤纸〔长17㎝、宽14㎝〕一*。
在纸的一端距边缘2㎝处用铅笔划一条直线,在此直线上每间隔1.5㎝作一记号——点样线。
实验二差速离心法分离纯化蛋白质

实验二差速离心法分离纯化蛋白质一、实验目的1、了解离心机的种类及结构,并能熟练操作。
2、掌握离心机的使用方法及注意事项。
3、掌握差速离心法分离纯化可溶蛋白质的原理及技术。
4、掌握电子天平的使用方法。
二、实验原理1、离心技术:根据颗粒在作匀速圆周运动时受到一个外向的离心力的行为而发展起来的一种分离技术。
当物体围绕一中心轴做圆周运动时,运动物体就受到离心力的作用。
旋转速度越高,运动物体所受到的离心力越大。
如果装有悬浮液或高分子溶液的容器进行高速水平旋转,强大的离心力作用于溶剂中的悬浮颗粒或高分子,会使其沿着离心力的方向运动而逐渐背离中心轴。
在相同转速条件下,容器中的大小不同的悬浮颗粒或高分子溶质会以不同的速率沉降。
经过一定时间的离心操作,就有可能实现不同悬浮颗粒或高分子溶质的有效分离。
离心技术是蛋白质、酶、核酸及细胞亚组分分离纯化的常用方法之一。
2、沉降系数:(sedimentation coefficient,S),1924年Svedberg(离心法创始人--瑞典蛋白质化学家)对沉降系数定义:颗粒在单位离心力场中粒子移动的速度。
沉降系数以时间表示。
用离心法时,大分子沉降速度的量度,等于每单位离心场的速度。
即s=v/ω2r。
s是沉降系数,ω是离心转子的角速度(弧度/秒),r是到旋转中心的距离,v是沉降速度。
沉降系数以每单位重力的沉降时间表示,并且通常为1~200×10^-13秒范围,10^-13这个因子叫做沉降单位S,即1S=10^-13秒. 沉降系数对于生物大分子来说,多数在(1~500)×10-13秒之间。
为应用方便起见,人们规定1×10-13秒为一个单位(或称1S)。
一般单纯的蛋白质在1~20S之间,较大核酸分子在4~100S之间,更大的亚细胞结构在30~500S之间。
生物大分子的沉降系数可通过离心技术进行测定。
对于沉降系数已知的物质,可预计沉降时间。
沉降系数计算公式:(1)、S=(ln(rmax)-ln(rmix))/(ω^2×T)S:沉降系数,10^-13s;ω:角速度,rad/s;rmax:外半径;rmix:内半径;T:离心时间,s。
血清γ-球蛋白的分离纯化与鉴定

实训二血清γ-球蛋白的分离纯化与鉴定目的要求1.了解蛋白质分离提纯的总体思路。
2.掌握盐析法、分子筛层析法、离子交换层析等实验原理及操作技术。
实验原理血清中蛋白质按电泳法一般可分为五类:清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白和γ-球蛋白,其中γ-球蛋白含量约占16%,100ml血清中约含1.2g左右。
首先利用清蛋白和球蛋白在高浓度中性盐溶液中(常用硫酸铵)溶解度的差异而进行沉淀分离,此为盐析法。
半饱和硫酸铵溶液可使球蛋白沉淀析出,清蛋白则仍溶解在溶液中,经离心分离,沉淀部分即为含有γ-球蛋白的粗制品。
用盐析法分离而得的蛋白质中含有大量的中性盐,会妨碍蛋白质进一步纯化,因此首先必须去除。
常用的方法有透析法、凝胶层析法等。
本实验采用凝胶层析法,其目的是利用蛋白质与无机盐类之间分子量的差异。
当溶液通过SephadexG--25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒的网孔,而分子直径小的无机盐能进入凝胶颗粒的网孔之中.因此在洗脱过程中,小分子的盐会被阻滞而后洗脱出来,从而可达到去盐的目的。
脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们等电点的不同可进行分离。
α-球蛋白、β-球蛋白的PI<6.0;γ-球蛋白的PI为7.2左右。
因此在PH6.3的缓冲溶液中,各类球蛋白所带电荷不同。
经DEAE(二乙基氨基乙基)纤维素阴离子交换层析柱进行层析时,带负电荷的α-球蛋白和β-球蛋白能与DEAE纤维素进行阴离子交换而被结合;带正电荷的γ-球蛋白则不能与DEAE纤维素进行交换结合而直接从层析柱流出。
因此随洗脱液流出的只有γ-球蛋白,从而使γ-球蛋白粗制品被纯化。
其反应式如下:用上述方法分离得到γ-球蛋白是否纯净,单一?可将纯化前后的γ-球蛋白进行电泳比较而鉴定之。
试剂和器材1.试剂(1)饱和硫酸铵溶液:称固体硫酸铵(分析纯)850g,置于1000ml蒸馏水中,在70一80℃水温中搅拌溶解。
将酸度调节至pH7.2,室温中放置过夜,瓶底析出白色结晶,上清液即为饱和硫酸铵溶液。
试述蛋白质分离纯化的主要步骤及方法

试述蛋白质分离纯化的主要步骤及方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, suchas educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!蛋白质是细胞中非常重要的生物分子,参与到生物体内的大多数生化反应中。
蛋白质的分离纯化实验报告

蛋白质的分离纯化实验报告一、实验目的1、掌握蛋白质分离纯化的基本原理和方法。
2、学会运用不同的技术手段对蛋白质进行提取、分离和纯化。
3、熟悉蛋白质纯度鉴定的常用方法。
二、实验原理蛋白质是生物体中重要的大分子化合物,其分离纯化是研究蛋白质结构和功能的重要前提。
蛋白质的分离纯化主要依据其物理化学性质的差异,如分子大小、电荷、溶解度、亲和力等。
常见的分离纯化方法包括:1、盐析法:通过向蛋白质溶液中加入中性盐,如硫酸铵,使蛋白质溶解度降低而沉淀析出。
2、凝胶过滤层析:利用凝胶颗粒的多孔网状结构,根据蛋白质分子大小进行分离。
3、离子交换层析:基于蛋白质所带电荷的不同,在离子交换树脂上进行吸附和解吸。
4、亲和层析:利用蛋白质与特定配体之间的特异性亲和力进行分离。
三、实验材料与设备1、材料新鲜的动物组织(如肝脏)各种试剂,包括硫酸铵、磷酸盐缓冲液、离子交换树脂、亲和配体等。
2、设备离心机层析柱紫外分光光度计电泳仪四、实验步骤1、蛋白质的提取将新鲜的动物组织剪碎,加入适量的磷酸盐缓冲液,在冰浴中匀浆。
低温离心(4℃,10000 rpm,20 min),收集上清液,即为粗提的蛋白质溶液。
2、盐析沉淀在上清液中缓慢加入硫酸铵粉末,边加边搅拌,使其饱和度逐渐增加到 50%。
搅拌 30 min 后,低温离心(4℃,10000 rpm,20 min),收集沉淀。
3、凝胶过滤层析装柱:将凝胶颗粒填充到层析柱中,用缓冲液平衡柱子。
上样:将盐析沉淀溶解后,缓慢上样到层析柱中。
洗脱:用缓冲液进行洗脱,收集不同洗脱峰的流出液。
4、离子交换层析装柱:将离子交换树脂填充到层析柱中,用起始缓冲液平衡柱子。
上样:将凝胶过滤层析收集的样品上样到离子交换层析柱中。
洗脱:采用梯度洗脱的方法,逐渐改变缓冲液的离子强度,收集洗脱峰。
5、亲和层析装柱:将亲和配体偶联到层析介质上,填充到层析柱中,用平衡缓冲液平衡柱子。
上样:将离子交换层析收集的样品上样到亲和层析柱中。
实验二 蛋白质的纯化-透析实验

实验二蛋白质的纯化-透析实验【实验目的】1. 学习透析的基本原理和操作;2. 掌握盐析沉淀蛋白质后,蛋白质的脱盐处理技术;3. 了解透析袋的使用方法。
【实验原理】透析是利用小分子能通过而大分子不能通过半透膜的原理而把它们分开的一种重要手段,是食品分离提纯过程中经常使用的基本操作技术之一。
蛋白质是大分子物质,不能透过透析膜而小分子物质可以自由透过。
在分离提纯蛋白质的过程中,常利用透析的方法使蛋白质与其中夹杂的小分子物质分开。
【实验仪器与试剂】烧杯;玻璃棒;离心机;离心管;冰箱;电炉。
1%氯化钡溶液;硫酸铵粉末;1mol/L EDTA;2%NaHCO3。
透析管(宽约2.5cm,长12-15cm)或玻璃纸; 皮筋;鸡蛋清溶液:将新鲜鸡蛋的蛋清与水按1:20混匀,然后用六层纱布过滤。
【实验步骤】1. 透析管(前)处理:先将一适当大小和长度的透析管放在1mol/L EDTA溶液中,煮沸10分钟,再在2%NaHCO3溶液中煮沸10分钟,然后再在蒸馏水中煮沸10分钟即可。
2. 取5ml蛋白质溶液于离心管中,加4g硫酸铵粉末,搅拌使之溶解。
然后在4℃下静置20分钟,出现絮状沉淀。
3. 离心:将上述絮状沉淀液以1000转/分的速度离心20分钟。
4. 装透析管:离心后倒掉上清夜,加5ml蒸馏水溶解沉淀物,然后小心倒入透析管中,扎紧上口。
5. 将装好的透析管放入盛有蒸馏水的烧杯中,进行透析,并不断搅拌。
6. 每隔适当时间(5-10分钟),用氯化钡滴入烧杯的蒸馏水中,观察是否有沉淀现象。
【结果与讨论】记录并解释实验现象。
【思考题】在透析袋处理过程中,EDTA和NaHCO3起何作用?。
蛋白质的表达、分离、纯化实验流程

蛋白质的表达、分离、纯化实验流程蛋白质表达、分离、纯化可以:(1)探索和研究基因的功能以及基因表达调控的机理;(2)供作结构与功能的研究;(3)作为催化剂、营养剂等。
实验步骤一:材料准备1. 实验材料:大肠杆菌BL21、LB 液体培养基、氨苄青霉素、Washing Buffer、Elution Buffer、IPTG、蒸馏水、胰蛋白胨、酵母粉、氯化钠2. 实验仪器:摇床、离心机、层析柱、离心管、移液枪、枪头盒、烧杯、玻璃棒二:实验操作1.试剂准备:2.2. 获得目的基因①PCR 方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR 循环获得所需基因片段。
②通过RT-PCR 方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA 为模板,逆转录形成cDNA 第一链,以逆转录产物为模板进行PCR 循环获得产物。
3. 构建重组表达载体①载体酶切:将表达质粒用限制性内切酶(同引物的酶切位点)进行双酶切,酶切产物行琼脂糖电泳后,用胶回收Kit 或冻融法回收载体大片段。
②PCR 产物双酶切后回收,在T4DNA 连接酶作用下连接入载体。
4. 获得含重组表达质粒的表达菌种①将连接产物转化大肠杆菌DH5α,根据重组载体的标志(抗Amp 或蓝白斑)作筛选,挑取单斑,碱裂解法小量抽提质粒,双酶切初步鉴定。
②测序验证目的基因的插入方向及阅读框架均正确,进入下步操作。
否则应筛选更多克隆,重复亚克隆或亚克隆至不同酶切位点。
③以此重组质粒DNA 转化表达宿主菌的感受态细胞。
5. 氯霉素酰基转移酶重组蛋白的诱导①接种含有重组氯霉素酰基转移酶蛋白的大肠杆菌BL21 菌株于 5 mL LB 液体培养基中(含100 ug/mL 氨苄青霉素),37 ℃震荡培养过夜。
②按1:50 或1:100 的比例稀释过夜菌,一般转接 1 mL 过夜培养物于100 mL(含100 ug/mL 氨苄青霉素)LB 液体培养基中,37 ℃震荡培养至OD600 = 0.6 - 0.8(最好0.6,大约需3 h)。
蛋白质的分离纯化讲解

①从生物材料中分离制备蛋白质,研究其结构与 功能,对于了解生命活动的规律,阐明生命现 象的本质有重大意义。
②工业生产的需要:食品、发酵、纺织、制革等 工业,需要大量的高活性的酶制剂。如用淀粉 酶制造葡萄糖、麦芽糖、糊精以及糖浆等。
③医疗的需要:如用猪胰岛素治疗糖尿病。 ④基因工程的需要
特点
在 pH<8.6 应用
阴离子 DEAE—
常用的离子交换纤维素
的生物亲和力
1、粗分级分离
▪ 主要是利用盐析法、等电点沉淀、有机溶 剂沉淀等方法,使目的蛋白与其它较大量 的杂蛋白分开,这些方法的特点是简便、 处理量大、既能除去大量杂质,又能浓缩 蛋白质,但分辨率低。
(1)盐析
向蛋白质溶液中加入大量的中性盐[(NH4)2SO4, Na2SO4],使蛋白质脱去水化层而聚集沉淀,这种现象称 为盐析。
(NH4)2SO4
血清
50%饱和度
球蛋白
析出
清蛋白
100%饱和 析出
(2)等电点沉淀
蛋白质是两性电解质,其溶解度与其净电荷数 量有关,随溶液pH变化而变化。在溶液pH值 等于蛋白质等电点时,蛋白质的溶解度最小。
不同的蛋白质有不同的等电点,因此通过调节 溶液pH到目的蛋白的等电点,可使之沉淀而 与其它蛋白质分开,从而除去大量杂蛋白。
第四节 蛋白质的层析分离
应用广泛。特征:有一个固定相和一个流动相。 由于待分离的各种物质在这两个相分配系数不 同,当两个相作相对运动时,这些物质在两相 间反复多次分配,结果使其相互分开。
根据两相的状态,层析法可分为:气相层析和 液相层析;按层析原理可分为:吸附层析、分 配层析、离子交换层析、凝胶过滤层析和亲和 层析等。按操作形式分为:柱层析、薄层层析、 纸层析等。
蛋白质的分离和纯化

柱的顶端,不要破坏凝胶面
4.纯度鉴定---SDS-聚丙烯酰胺凝胶 电泳
三、蛋白质提取分离的程序以血红蛋白的分离纯化为例
蛋白质的提取和分离一般分为四步: 1 样品处理:包括洗涤红细胞;血红蛋白释 放;分离血红蛋白溶液, 2 粗分离:薄膜透析法除去分子较小的杂质, 3 纯化:通过凝胶色谱法将分子量较大的杂 质蛋白质除去, 4 纯度鉴定:通过聚丙烯酰胺凝胶电泳鉴定,
酸缓冲液处理的目的是
D
A.防止血红蛋白被O2氧化
B.血红蛋白是一种碱性物质,需要酸中和
C.磷酸缓冲液会加速血红蛋白的提取过程
D.让血红蛋白处在稳定的pH范围内,维持其结 构和功能
5、下面关于对血红蛋白提取和分离的样品的
处理措施中,错误的是
A
A.采集血样后要高速短时间离心获得血细胞
B.洗涤三次后如上清液仍有黄色,可增加洗涤 次数,否则血浆蛋白无法除净,
2、下列关于血红蛋白提取和分离实验中样品
处理步骤的描述,正确的是 C
A.红细胞的洗涤:加入蒸馏水,缓慢搅拌,低速 短时间离心
B.血红蛋白的释放:加入生理盐水和甲苯,置 于磁力搅拌器上充分搅拌
C.分离血红蛋白:将搅拌好的混合液离心、 过滤后,用分液漏斗分离
D.透析:将血红蛋白溶液装入透析袋,然后置 于pH为4.0的磷酸缓冲液中透析12h
1、下列关于DNA和血红蛋白的提取与分离属
于的叙述中,错误的是 A
A.可用蒸馏水涨破细胞的方法从猪红细胞中 提取到DNA和蛋白质
B.用不同浓度的NaCl溶液反复溶解于析出 DNA可去除部分杂质
C.透析法分离蛋白质的依据是利用蛋白质不 能通过半透膜的特性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、装柱(层析柱规格1×20cm)、平衡 :
装柱前将柱下端的出水口关闭,加进5ml(约1/3柱床体积) 20 mmol/L TrisHCl、pH7.3的缓冲液,然后将处理好的DEAE-Sepharose Fast Flow,轻轻搅匀 (注意不能太稀,也不能太稠,刚好呈流质状态)沿玻棒靠近柱管壁慢慢连续 加进柱内至层析柱上端。注意不能带进气泡,待柱内DEAE-Sepharose Fast Flow 凝胶沉降并分出水层后,吸去水层,再补加处理好的DEAE-Sepharose 直到凝胶沉降至稳定高度距层析柱上端约3cm处为止(这时须保持DEAE-
纯化检测仪器连接示意图
部分收集器 层析柱(φ1.0×20㎝ )
2
1
DEAE- Sepharose Fast Flow
梯度混合器
恒流泵
核酸蛋白检测仪 记录仪
1、 50ml 20mmol/L Tris-HCl,pH7.3缓冲液
2、 50ml 20mmol/L Tris-HCl,( 1mol/L NaCl) pH7.3缓冲液
实验二 蛋白质的分离纯化
离子交换柱层析分离纯化蔗糖酶
一、实验目的和要求 1、学习离子交换层析的基本原理; 2、学习离子交换层析分离蛋白质的基本方法和技术; 3、学习蔗糖酶活性检测的基本原理和方法。 二、实验基本原理 1、离子交换层析 离子交换层析是常用的层析方法之一。它是在以离子交换剂 为固定相,液体为流动相的系统中进行的。离子交换剂与水溶液 中离子或离子化合物的反应主要以离子交换方式进行,或者借助 离子交换剂上电荷基团对溶液中离子或离子化合物的吸附作用进 行。这些过程都是可逆的。在某一pH值的溶液中,不同的蛋白质 所带的电荷存在差异,因而与离子交换剂的亲和力就有区别。当 洗脱液的pH改变或者盐的离子强度逐渐提高时,使某一种蛋白质 的电荷被中和,与离子交换剂的亲和力降低,不同的蛋白质按所 带电荷的强弱逐一被洗脱下来,达到分离的目的。
3.5-二硝基水杨酸试剂
蒸馏水 观察颜色
0.5ml
5ml
0.5ml
5ml
100℃水浴5min
收集活力高的蔗糖酶液,测量总体积(ml数) (样品Ⅳ),-20℃保存备用,
六、结果分析讨论
下次实验内容
用正交法测定蔗糖酶活性的最适反应条件
自主实验设计与实践——立题指导,准备填写 《自主实验设计与实践课题申请书》
以及用于SDS-PAGE分析;将其余样品(样品Ⅲ)作离子交换柱层析进一步分离
纯化蔗糖酶(可先取50ul酶液做酶活力检测)。 3、纯化检测仪器连接:
将梯度混合器(100ml梯度杯),层析柱(φ1.0×20㎝ ),恒流泵 (10rpm)
(流速0.2~0.6 ml/min),核酸蛋白检测仪(灵敏度0.5A),记录仪(纸速: 0.5mm/min,50mV)、部分收集器(3~4 ml/管)等按下图连接并设置好。
实验操作方法和步骤
1、离子交换剂准备:(实验室已准备好)
DEAE-Sepharose Fast Flow , 取适量DEAE-Sepharose Fast Flow ,加入0.5mol/L NaOH和0.5mol/L NaCl溶液,轻轻搅拌, 浸泡0.5小时,用布氏漏斗抽滤,并用去离子水洗至近中性,抽 干后,放入小烧杯中,加 0.5 mol/L HCl, 搅匀,浸泡0.5小时,
0.02ml/L Tris-HCl pH7.3缓冲液。洗脱流速不变,每3-4ml接一管,
并留样用于后续实验 ,样品-20℃低温保存备用。
7、蔗糖酶活力检测
空白对照 0.2mol/L乙酸缓冲液,pH4.5 5%蔗糖溶液 分离纯化样品溶液 0.5ml 0.5ml / 样品管 0.5ml 0.5ml 0.02ml 50℃水浴5min
同上,用去离子水洗至近中性,(DEAE-
Sepharose
Fast Flow,用后务必回收)。浸入20mmol/L TrisHCl pH7.3 缓冲液中平衡备用。
2、样品处理:
将乙醇沉淀的蔗糖酶蛋白样品充分溶解于10ml 20mmol/L Tris-HCl pH7.3
缓冲液;4℃ 12000r/min, 离心10分钟,收集样品上清液(样品Ⅲ)测量总体 积(ml数),留取1ml(样品Ⅲ)用于蔗糖酶蛋白含量测定、蔗糖酶活力的测定
离子交换剂是由基质、电荷基团(或功能基团)和反离子构成。 基质 电荷基团 反离子
+
可逆交换
阳离子交换剂
基质
—
电荷基团
+ 反离子
+
溶液中的离子 或离子化合物
可逆交换
阴离子交换剂
基质
+ 电荷基团
—
—
—
溶液中的离子 或离子化合物
反离子
2、酶活性检测 蔗糖酶(β -D-呋喃型果糖苷-果糖水解酶EC 3.2.1.26), 是一种水解酶。它能催化非还原性双糖(蔗糖)的1,2-糖苷键 裂解,将蔗糖水解为等量的葡萄ቤተ መጻሕፍቲ ባይዱ和果糖。同时,每水解1mol 蔗糖,就能生成2mol还原糖。还原糖的测定有多种方法,如采 用3.5-二硝基水杨酸法,其原理是3.5-二硝基水杨酸与还原 糖共热被还原成棕红色的氨基化合物,在一定范围内还原糖的 量和反应液的颜色深度成正比。 本实验在离子交换层析分离纯化的过程中,对分离纯化样 品采用3.5-二硝基水杨酸法来初步判定样品中还原糖含量的多 少,由此来确定并收集蔗糖酶纯化样品。
Fast Flow凝胶;待凝胶自然沉积30 min 后松开层析柱出口,调节流速 1ml/3min;
Sepharose Fast Flow凝胶柱面平整)。用20 mmol/L Tris-HCl、pH7.3的缓冲液
连通层析柱,进行柱平衡,直到流出液与缓冲液的pH一致。 5、加样: 用胶头滴管缓慢将蔗糖酶蛋白样品溶液(样品Ⅲ)加入层析柱中,注意样品顺 着柱壁加入,尽可能保持胶面平整。打开恒流泵,使样品溶液进入胶体。待样 品溶液完全进入胶体后,用少量洗脱缓冲液将残余在层析柱壁上端的样品洗下,
停止加入20mmol/L Tris-HCl pH7.3 缓冲液。待缓冲液液面与胶体表面相切时,
并完全进入胶体后,再加洗脱缓冲液至一定高度,继续用20 mmol/L Tris-HCl、
pH7.3的缓冲液洗脱。
6、洗脱(梯度洗脱法):
待未吸附的杂蛋白洗脱完全后(此时层析柱流出液在核酸 蛋白检测仪上绘出的基线稳定),改用梯度为0-1mol/L NaCl 的 梯度缓冲液进行洗脱。层析柱联上梯度混合器,混合器中分别为 50ml 0.02mol/L Tris-HCl pH7.3缓冲液和50ml含1mol/L NaCl的 洗脱至缓冲溶液流完为止。跟踪测定各管的蔗糖酶活力,将蔗糖 酶活力高的若干管酶液集中,测量总体积(ml数)(样品Ⅳ),