19.1.2函数的图像(第二课时)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.1.2函数的图像(第二课时)
学习目标:
1、知道函数的三种表示方法;
2、能用适当的函数表示法刻画简单实际问题中变量之间的关系;
3、结合对函数关系的分析,尝试对变量的变化规律进行学习重点:
能用适当的函数表示法刻画简单实际问题中变量之间的关系
学习难点:
结合对函数关系的分析,尝试对变量的变化规律进行初步预测教学过程
一、情境导入
通过前面的学习,我们已经知道写出函数的解析式,或者列表格,或者画函数图象,都可以表示具体的函数关系,这三种表示函数的方法分别称为法、法和法。你认为三种表示函数的方法各有什么优点?
二、合作学习
例4、一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度.
t / 时0 1 2 3 4 5
y / 米 3 3.3 3.6 3.9 4.2 4.5 (1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你发现水位变化有什么规律?
(2)水位高度y是否为时间t的函数?如果是,试写出一个符合表中数据的函数解析式,并画出这个函数图象。这个函数图像能表示水位的变化规律吗?
(3)据估计按这种上涨规律还会持续上涨2小时,预测再过2小时水位高度将达到多少米.
三、当堂检测
1.用列表法与解析式法表示n边形的内角和m(单位:度)关于边数n 的函数。
2.
3.用解析式法与图像法表示等边三角形的周长L关于边长a的函数。
4.一条小船沿直线向码头匀速前进。在0min,2min,4min,6min 时,测得小船与码头的距离分别为200m,150m,100m,50m。小船与码头的距离s是时间t的函数吗?如果是,写出函数解析式,并画出函数图像。如果船速不变,多长时间后小船到达码头?
四.课堂小结
本节课你有哪些收获?
五.教学反思