初等数学模型(一PPT课件
合集下载
初等模型_《数学模型》(第三版)电子课件姜启源、谢金星、叶__俊编制共69页文档
![初等模型_《数学模型》(第三版)电子课件姜启源、谢金星、叶__俊编制共69页文档](https://img.taocdn.com/s3/m/6b6ebc3ef8c75fbfc67db246.png)
初等模型_《数学模型》(第三版)电子课 件姜启源、谢金星、叶__俊编制
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至高无个的法。— —西塞 罗
ห้องสมุดไป่ตู้
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至高无个的法。— —西塞 罗
ห้องสมุดไป่ตู้
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
姜启源《数学模型》第四版第二章初等模型-PPT文档资料-课件-PPT文档资料
![姜启源《数学模型》第四版第二章初等模型-PPT文档资料-课件-PPT文档资料](https://img.taocdn.com/s3/m/e4fd996ed1f34693daef3ed2.png)
决定信道长度和线密度大小的主要因素是所用 激光的波长,和驱动光盘的机械形式.
调查和分析 数据容量 • 信道长度
• 线密度 激光波长
• 激光波长 • 驱动形式
• 当光盘运转时激光束要能识别出信道上的凹坑 所携带的信息,必须精确地聚焦.
• 光的衍射使激光束在光盘上形成圆状的光斑.
• 为了提高存储数据的线密度,应该使光斑尽量小, 而光斑的大小与激光波长成正比.
每一圈螺旋线上存储 同等数量的数据信息
各圈螺旋线上数据 的线密度不变
容量取决于最内圈的长 度、线密度以及总圈数
容量取决于固定的线 密度和螺旋线总长度
从光盘的容量比较,CLV优于CAV.
数据读取时间: CLV每圈转速不同,当读出磁头在内外 圈移动时,需要等待光盘加速或减速,而CAV不需要.
对音乐、影像、计算机文件等按顺序播放的信息,多用CLV; 对词典、数据库、人机交互等常要随机查找的信息,多用CAV.
蓝色(DVD) 0.41
28,055,895 22,445
603
CD信道长度在5km以上,容量约680 MB; DVD容量在 GB量级.
影像时间按照每秒钟占用0.62 MB计算 .
模型求解
CAV(恒定角速度)光盘
LCAV
2R1
R2 R1 d
R
2 2
2d
R1=R2/2时LCAV最大
CCAVLCAV
激光器 激光波长 (μm)
shk1, k2
hl d
建模 记单层玻璃窗传导的热量Q2 室
T T
Q2 k1
1Hale Waihona Puke 22dQ1
k1
T1 T2 d(s2)
内 T1
双层与单层窗传导的热量之比
数学建模初等模型ppt课件
![数学建模初等模型ppt课件](https://img.taocdn.com/s3/m/133230d0102de2bd96058846.png)
2.1.1 椅子能在不平的地面上放稳吗
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,可视为数学上的连续
设 曲面;
• 地面相对平坦,使椅子在任意位置至少三
只脚同时着地。
理学院 4
模型构成
xx
用数学语言把椅子位置和四只脚着地的关系表示出来
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
评注和思考 建模的关键 ~ 和 f(), g()的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
理学院 7
xx
2.1.2 分蛋糕问题
妹妹过生日,妈妈做了一块边界形状任意的 蛋糕,哥哥也想吃,妹妹指着蛋糕上的一点 对哥哥说,你能过这一点切一刀,使得切下 的两块蛋糕面积相等,就把其中的一块送给 你。哥哥利问题用归高结等为数如学下知一识道证解明决题了:这个问题,
11
理学院
xx
数学模型为
10
y y1 y2 10 x 41.6 10 x 5 2.4 15 41.6
0 x4
4 x 15 15 x
0.8
t 2.5
计算起来很简单。
理学院 12
xx
2.1.4 蚂蚁逃跑问题
数学建模
(Mathematical Modeling)
1
xx
第二章 初等模型
理学院 2
黑
第二章 初等模型
龙
江
生活中的问题
科
技
极限、最值、积分问题的初等模型
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,可视为数学上的连续
设 曲面;
• 地面相对平坦,使椅子在任意位置至少三
只脚同时着地。
理学院 4
模型构成
xx
用数学语言把椅子位置和四只脚着地的关系表示出来
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
评注和思考 建模的关键 ~ 和 f(), g()的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
理学院 7
xx
2.1.2 分蛋糕问题
妹妹过生日,妈妈做了一块边界形状任意的 蛋糕,哥哥也想吃,妹妹指着蛋糕上的一点 对哥哥说,你能过这一点切一刀,使得切下 的两块蛋糕面积相等,就把其中的一块送给 你。哥哥利问题用归高结等为数如学下知一识道证解明决题了:这个问题,
11
理学院
xx
数学模型为
10
y y1 y2 10 x 41.6 10 x 5 2.4 15 41.6
0 x4
4 x 15 15 x
0.8
t 2.5
计算起来很简单。
理学院 12
xx
2.1.4 蚂蚁逃跑问题
数学建模
(Mathematical Modeling)
1
xx
第二章 初等模型
理学院 2
黑
第二章 初等模型
龙
江
生活中的问题
科
技
极限、最值、积分问题的初等模型
数学建模ppt课件-文档资料
![数学建模ppt课件-文档资料](https://img.taocdn.com/s3/m/080a3651a26925c52cc5bfe7.png)
数学建模
• 数学建模简介 • 大学生数学建模竞赛 • 数学建模的步骤 • 初等数学模型
• 数学建模简介 1、什么是数学模型?
数学模型是对于现实世界的一个特定对象,一个 特定目的,根据特有的内在规律,做出一些必要的假 设,运用适当的数学工具,得到一个数学结构。 简单地说:就是系统的某种特征的本质的数学表 达式(或是用数学术语对部分现实世界的描述),即 用数学式子(如函数、图形、代数方程、微分方程、 积分方程、差分方程等)来描述(表述、模拟)所研 究的客观对象或系统在某一方面的存在规律。
• 大学生数学建模竞赛
大学生数学建模竞赛最早是1985年在美国出现的, 1989年我国大学生开始参加美国的竞赛。经过两 三年的参与,大家认为竞赛是推动数学建模教学 在高校迅速发展的好形式,1992年由中国工业与 应用数学学会数学模型专业委员会组织举办了我 国10城市的大学生数学模型联赛。 • 教育部领导及时发现、并扶植、培育了这一 新生事物,决定从1994年起由教育部高教司和中 国工业与应用数学学会共同主办全国大学生数学 建模竞赛,每年一次。十几年来这项竞赛的规模 以平均年增长25%以上的速度发展。
室 内 T1
Ta T b d l d
室 外 T2
Q1
墙 T 建模 热传导定律 Q k d 双层玻璃模型 T T T T T T 1 a a b b 2 Q k k k 1 1 2 1 d l d
• 从一组数据中可以看出它的蓬勃发展之势:从 1994年196个学校的867支参赛队,到2000年 517个学校的3210支参赛队,再到2019年795个 学校的8492支参赛队,参赛队壮大了近10倍, 2019年竞赛的选手达到25000多名。 2019年竞 赛的选手达到25000多名。 • 2019年全国967所高校一万余支队伍、三万多名 大学生参加2019年度的数学建模竞赛,山东省有 59所高校,近七百支队参加竞赛。
• 数学建模简介 • 大学生数学建模竞赛 • 数学建模的步骤 • 初等数学模型
• 数学建模简介 1、什么是数学模型?
数学模型是对于现实世界的一个特定对象,一个 特定目的,根据特有的内在规律,做出一些必要的假 设,运用适当的数学工具,得到一个数学结构。 简单地说:就是系统的某种特征的本质的数学表 达式(或是用数学术语对部分现实世界的描述),即 用数学式子(如函数、图形、代数方程、微分方程、 积分方程、差分方程等)来描述(表述、模拟)所研 究的客观对象或系统在某一方面的存在规律。
• 大学生数学建模竞赛
大学生数学建模竞赛最早是1985年在美国出现的, 1989年我国大学生开始参加美国的竞赛。经过两 三年的参与,大家认为竞赛是推动数学建模教学 在高校迅速发展的好形式,1992年由中国工业与 应用数学学会数学模型专业委员会组织举办了我 国10城市的大学生数学模型联赛。 • 教育部领导及时发现、并扶植、培育了这一 新生事物,决定从1994年起由教育部高教司和中 国工业与应用数学学会共同主办全国大学生数学 建模竞赛,每年一次。十几年来这项竞赛的规模 以平均年增长25%以上的速度发展。
室 内 T1
Ta T b d l d
室 外 T2
Q1
墙 T 建模 热传导定律 Q k d 双层玻璃模型 T T T T T T 1 a a b b 2 Q k k k 1 1 2 1 d l d
• 从一组数据中可以看出它的蓬勃发展之势:从 1994年196个学校的867支参赛队,到2000年 517个学校的3210支参赛队,再到2019年795个 学校的8492支参赛队,参赛队壮大了近10倍, 2019年竞赛的选手达到25000多名。 2019年竞 赛的选手达到25000多名。 • 2019年全国967所高校一万余支队伍、三万多名 大学生参加2019年度的数学建模竞赛,山东省有 59所高校,近七百支队参加竞赛。
高中必修一数学第二章_基本初等函数(Ⅰ)ppt课件-人教版
![高中必修一数学第二章_基本初等函数(Ⅰ)ppt课件-人教版](https://img.taocdn.com/s3/m/c0635928ba1aa8114431d9de.png)
x-13,x<2.
有两个不同的实根,则实数 k 的取值范围是______.
高中数学
解析:(1)作出
的图象,如
示.再把 f(x)的图象向左平移一个单位长度,可得到 y=
的图象.故选 B.
高中数学
(2)作出函数 f(x)=2x,x≥2,
的简图,如图
x-13,x<2.
方程 f(x)=k 有两个不同的实根,也就是函数 f(x)的图象 =k 有两个不同的交点,所以 0<k<1.
• (4)采用数形结合的方法,通过函数的图象解决
高中数学
比较下列各组数的大小:
(1)0.65.1,5.10.6,log0.65.1;
(2)log712,log812;
1
1
1
1
(3) a=0.22 ,b=0.32 ,c=331)因为 0<0.65.1<1,5.10.6>1,log0.65.1<0,
+
lg 42-lg 16+1-lg 14+log5 35-log
解:(1)原式=53212
3 +
-287-3÷(24)
3 -4
1
+25 ×
-1
=53-23-24+2-1=-22.
高中数学
1
(2)原式=(3-3) -3 + lg 42-2lg 4+1
-lg 4-1+log5
35 7
=3+ lg 4-12+lg 4+log5 5 =3+1-lg 4+lg 4+1
要题型,主要考查幂函数、指数函数、对数函 与性质的应用及差值比较法与商值比较法的应 用的方法有单调性法、图象法、中间搭桥法、 作商法. • (2)当需要比较大小的两个实数均是指数幂或对 可将其看成某个指数函数、对数函数或幂函数 值,然后利用该函数的单调性比较.
初等数论第一章课件
![初等数论第一章课件](https://img.taocdn.com/s3/m/da3522ba763231126fdb11a8.png)
(i)m是任一正整数,则
(am, bm) (a, b)m
(ii)若
是a,
b的任一公因数,则
a
,
b
a, b
,
特别
a (a, b)
,
b (a, b)
1
对于两个以上整数的最大公因数问题,不妨设
a1, a2 , , an是任意n个正整数,令 (a1, a2 ) d2 , (d2 , a3 ) d3, , (dn1, an ) dn.
q及r,使得
a bq r,
b r
2
成立,而且当b是奇数时,q及r是唯一的;当b是偶数时,q及r
有可能是不唯一的。
例
当a 5, b 2时,可有
5 ( 2)( 3)(1),即q 3, r 1;
或5 ( 2)( 2)1,即q 2, r 1
证明分析:作序列
,- 3 b ,- 2 b ,- b ,0, b ,2 b ,3 b , 2 2 2 22 2
2、整除的基本定理
定理1(传递性):ab,bc ac
定理2:若a,b都是m的倍数,则ab都是m的倍数
定理3 若a1 , a2, , an都是m的倍数,q1, q2, , qn 是任意n个整数,则a1q1 a2q2 anqn是m的倍数
3、带余数除法
定理4 若a,b是两个整数,其中b 0,则存在着两个整数 q及r,使得 a bq r, 0 r b () 成立,而且q及r是唯一的。 ()式中的q及r分别叫a被b除所得的不完全商和余数。
[a1, a2 ] m2 ,[m2 , a3 ] m3, ,[mn1, an ] mn. 于是我们有
定理5 a1, a2, , an是n个正整数,则 [a1, a2 , , an ] mn.
数学建模-初等模型讲义
![数学建模-初等模型讲义](https://img.taocdn.com/s3/m/22f098ce58fafab068dc028b.png)
123
2083.3
1341.8
3425.2 256250.0 250365.4
237
2083.3
45.5
2128.8 493750.0 328794.3
238
2083.3
34.1
2117.4 495833.3 328828.5
239
2083.3
240
2083.3
22.7
2106.1 497916.7 328851.2
9
7
9
11.3
4
8.5
21
21 21
ai比惯例 分配的要小
第21席应该分配乙系, 标准1的分配方案:10, 7, 4.
可用列表方法解决标准1(类似可解决标准2与3) 计算 ni 成表, k 1,2, k
1 2 3 4 5 6 7 8 9 10 11 甲 103 51.5 34.3 25.8 20.6 17.2 14.7 12.9 11.4 10.3 9.4 乙 63 31.5 21.0 15.8 12.6 10.5 9.0 7.9 7.0 6.3 5.7 丙 34 17.0 11.3 8.5 6.8 5.7 4.9 4.3 3.8 3.4 3.1
2. 按揭还款
用房产在银行办理的贷款, 该贷款要按照银行规
定的利率支付利息。 贷款形式
商业贷款和公积金贷款. 还款形式
等额本息和等额本金.
如贷款50万, 分20年还清, 年利率r , 问月供是多少?
调整日期
2015.08.26 2015.06.28 2015.05.11 2015.03.01 2014.11.22 2012.07.07 2012.06.09 2011.07.07 2011.04.06 2011.02.09 2010.12.26 2010.10.20 2008.12.23
《初等模型》课件
![《初等模型》课件](https://img.taocdn.com/s3/m/0749bf33a517866fb84ae45c3b3567ec102ddcfa.png)
根据收集到的数据,估计模型的参数,使模型能够更好地拟合实际数据。
模型验证
验证方法
选择合适的验证方法,如交叉验证、Bootstrap等,以评估模型的预测能力和可 靠性。
结果评估
根据验证结果,评估模型的性能,如准确率、误差率等,以便进一步优化和完善 模型。
REPORT
CATALOG
DATE
ANALYSIS
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
初等模型的建立
确定研究问题
明确目的
在建立初等模型之前,首先需要 明确研究的目的和目标,以便有 针对性地收集数据和建立模型。
选择主题
根据研究目的,选择一个具有实 际意义和价值的主题进行深入研 究。主题应具有代表性,能够反 映所研究领域的核心问题。
案例三:决策树模型
01
3. 对决策树进行剪枝以防止过拟合;
02
4. 应用决ห้องสมุดไป่ตู้树进行分类或回归预测。
03
注意事项:决策树模型容易过拟合,因此需要采取适当的措施来控制模型的复 杂度,例如限制树的深度或使用剪枝技术。此外,决策树模型对特征的划分可 能过于简单或复杂,需要根据实际情况进行调整和优化。
REPORT
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
《初等模型》ppt课 件
目录
CONTENTS
• 初等模型简介 • 初等模型的建立 • 初等模型的分析 • 初等模型的实践案例 • 初等模型的未来发展
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
模型验证
验证方法
选择合适的验证方法,如交叉验证、Bootstrap等,以评估模型的预测能力和可 靠性。
结果评估
根据验证结果,评估模型的性能,如准确率、误差率等,以便进一步优化和完善 模型。
REPORT
CATALOG
DATE
ANALYSIS
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
初等模型的建立
确定研究问题
明确目的
在建立初等模型之前,首先需要 明确研究的目的和目标,以便有 针对性地收集数据和建立模型。
选择主题
根据研究目的,选择一个具有实 际意义和价值的主题进行深入研 究。主题应具有代表性,能够反 映所研究领域的核心问题。
案例三:决策树模型
01
3. 对决策树进行剪枝以防止过拟合;
02
4. 应用决ห้องสมุดไป่ตู้树进行分类或回归预测。
03
注意事项:决策树模型容易过拟合,因此需要采取适当的措施来控制模型的复 杂度,例如限制树的深度或使用剪枝技术。此外,决策树模型对特征的划分可 能过于简单或复杂,需要根据实际情况进行调整和优化。
REPORT
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
《初等模型》ppt课 件
目录
CONTENTS
• 初等模型简介 • 初等模型的建立 • 初等模型的分析 • 初等模型的实践案例 • 初等模型的未来发展
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
初等数学研究(PPT课件)
![初等数学研究(PPT课件)](https://img.taocdn.com/s3/m/bfbf96ac27d3240c8547ef91.png)
初等数学研究
感谢您的阅览
初等数学研究(PPT课件)
1
• 数学教育研究表明,人们认识负数比起认识无理数要容易些.但 是,历史有独特的自身发展逻辑.
• 事实上,当人们还普遍怀疑负整数也是一种数时,人们就已经在 研究正的有理数与无理数,甚至已经开始使用复数了.
初等数学研究(PPT课件)
2
• “数系”的历史扩展途径 • “数系”的逻辑扩展途径
• 接着是代数运算的需要,因减法、开方运算的需要产生了负数、无理数 和复数.
• 到了近代,“数”不再只是单个的量的表示,人们为了追求运算的无矛 盾性,接受了理想的“数”,包括复数、四元数、八元数等等.
初等数学研究(PPT课件)
4
“新数”为何最初不被承认?
• 不能够测量 • 并非非有不可 • 不能够理解 • 逻辑基础不清楚
初等数学研究(PPT课件)
5“新数”为何最终获得Fra bibliotek认?“因为在数学中和在其他场合一 样,成功是最高法庭,任何人都得 服从它的裁决.”
D.Hilbert《论 无限》
初等数学研究(PPT课件)
6
• 算法合理性是“新数”获得承认的主要原因 • 算术到代数的演进加速了数系的形成 • 广泛的应用促进广泛的承认 • “理想数” 的思想
初等数学研究(PPT课件)
7
1.2 数系的构造理论
初等数学研究(PPT课件)
8
1.2.1自然数的定义
• 自然数严格的抽象定义是由peano公理给出的,它刻画了自然数 的本质属性,并导出了有关自然数的所有运算和性质。
• Peano公理陈述如下:
• (1)0是自然数;
• (2)每个自然数都有一个后继,a的后继记为a+ ;
感谢您的阅览
初等数学研究(PPT课件)
1
• 数学教育研究表明,人们认识负数比起认识无理数要容易些.但 是,历史有独特的自身发展逻辑.
• 事实上,当人们还普遍怀疑负整数也是一种数时,人们就已经在 研究正的有理数与无理数,甚至已经开始使用复数了.
初等数学研究(PPT课件)
2
• “数系”的历史扩展途径 • “数系”的逻辑扩展途径
• 接着是代数运算的需要,因减法、开方运算的需要产生了负数、无理数 和复数.
• 到了近代,“数”不再只是单个的量的表示,人们为了追求运算的无矛 盾性,接受了理想的“数”,包括复数、四元数、八元数等等.
初等数学研究(PPT课件)
4
“新数”为何最初不被承认?
• 不能够测量 • 并非非有不可 • 不能够理解 • 逻辑基础不清楚
初等数学研究(PPT课件)
5“新数”为何最终获得Fra bibliotek认?“因为在数学中和在其他场合一 样,成功是最高法庭,任何人都得 服从它的裁决.”
D.Hilbert《论 无限》
初等数学研究(PPT课件)
6
• 算法合理性是“新数”获得承认的主要原因 • 算术到代数的演进加速了数系的形成 • 广泛的应用促进广泛的承认 • “理想数” 的思想
初等数学研究(PPT课件)
7
1.2 数系的构造理论
初等数学研究(PPT课件)
8
1.2.1自然数的定义
• 自然数严格的抽象定义是由peano公理给出的,它刻画了自然数 的本质属性,并导出了有关自然数的所有运算和性质。
• Peano公理陈述如下:
• (1)0是自然数;
• (2)每个自然数都有一个后继,a的后继记为a+ ;
数学模型数学论文指导初等模型分配问题
![数学模型数学论文指导初等模型分配问题](https://img.taocdn.com/s3/m/d336259ceefdc8d376ee32b9.png)
人数 100 60 40
席位数 10 6 4
每席位代表的人数 100/10=10 60/6=10 40/4=10
系别 人数 席位数 每席位代表的人数 公平程度
甲 103 10
103/10=10.3
中
乙 63 6
63/6=10.5
差
丙 34 4
34/4=8.5
好
系别 人数 席位数 每席位代表的人数
甲 103 11 103/11=9.36
rB
n1 (n1, n2
)
n2
p2
n2 p1 p1 n1
n1
p2n1 1 p1n2
对B 的相对不公 平值;
建立了衡量分配不公平程度的数量指标 rA , rB
制定席位分配方案的原则是使它们的尽可能的小。
3 建模
模型1
若A、B两方已占有席位数为 n1, n2 , 用相对不公平值
讨论当席位增加1 个时,应该给A 还是B 方。
初等数学模型
❖ 问题一:公平的席位分配问题 ❖ 公平的席位分配是人类社会中相当普遍的一
类权益分配问题,这个问题来源于美国众议 院议员在各州的名额分配问题。
席位分配问题
某校有200名学生,甲系100名,乙系60名,
丙系40名,若学生代表会议设20个席位,问三系各
有多少个席位?
1 问题的提出
按惯例分配席位方案,即按人数比例分配原则
342 Q3 1(1 1) 578
342 Q3 1(1 1) 578
练习 学校共1000学生,235人住在A楼,333人住 在B楼,432住在C楼。学生要组织一个10人 委员会,试用惯例分配方法, d’Hondt方法和 Q值方法分配各楼的委员数,并比较结果。
初等数学模(1)
![初等数学模(1)](https://img.taocdn.com/s3/m/df73340bbb68a98271fefa94.png)
x x 设汽车送第一批旅客行驶 x 千米后让他们下车,此时其他旅客步行了 × 4 = 千米, 60 15 14 他们相差 x 千米,在以后的时间里由于步行的速度都一样,因此两批步行者之间始终 15 14 相差 x 千米,而汽车要在这段时间里来回行驶两趟,每来回一趟所用的时间为 15 14 14 x x 15 + 15 = x ,由于汽车来回两趟所用时间恰好是第一批旅客步行 40 − x 的 60 + 4 60 − 4 32 x 40 − x 32 40 − 32 ⇒ x = 32 千米。于是所需总时间为 + ≈ 2.53 小时。 时间,所以 × 2 = 32 4 60 4
(3)将原问题数学化:① f (θ ) ≥ 0, g (θ ) ≥ 0 ② f (θ ), g (θ ) 都是 θ 的连续函数③由假设(3) ,可见 f (θ ), g (θ ) 中至少有一 个为零,即 f (θ ) ⋅ g (θ ) = 0 。④ f (π ) = g (0) ,
g (π ) = f (0) 。结论是求证:存在 θ 0 ∈ [0, π ] 使
1.1.2.3 建立数学模型 (1)引入合适的变量来刻画椅子位置的挪动。要把椅子放稳, 通常有拖动或转动两种方法,在数学上也就是平移与旋转。然 而,平移是不能真正解决问题的,所以归根结底就是旋转了。 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对 称中心旋转 180 后,椅子仍在原地。把长方形绕它的对称中心 O 旋转,这表示椅子的位置的改变。于是旋转角 θ 这一个量就 可以表示椅子的位置。设椅脚连线为长方形 ABCD,以对角线 AC 所在直线为 x 轴,对称中心 O 为原点,建立平面直角坐标系。 椅子绕 O 点逆时针方向旋转角度 θ 后, 长方形 ABCD 转至 A1B1C1D1 的位置,这样就可以用旋转角 θ 表示出椅子绕点 O 旋转 θ 后的位置。
人教版高中数学基本初等函数(1)复习课(共21张PPT)教育课件
![人教版高中数学基本初等函数(1)复习课(共21张PPT)教育课件](https://img.taocdn.com/s3/m/32b334a527284b73f3425077.png)
2 2
,
1
小结:1、构造两个函数,研究函数图象, 利用数形结合求解;
2、数形结合是解决方程、不等式的重要工具;
3、考查函数思想、数形结合思想、分类讨论思想
四、核心考点 突破练
例2:复习参考题B组第3题 (课后练习)
对于函数f
x
a
2 2x 1
a
R :
1 探索函数f x的单调性;
2是否存在实数a使函数f x为奇函数?
•
: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
初等模型-数学模型
![初等模型-数学模型](https://img.taocdn.com/s3/m/58aac128793e0912a21614791711cc7931b7789e.png)
几何模型
01
02
03
平面几何
平面几何是几何模型的基 础,通过点、线、面等基 本元素描述实际问题,如 三角形、四边形、圆等。
立体几何
立体几何是描述三维空间 中物体形状和位置关系的 数学模型,如长方体、球 体、圆柱体等。
解析几何
解析几何是将几何问题转 化为代数问题的数学模型, 通过代数方法解决几何问 题。
提高数学模学模型具有强大的预测和决策支持功能 ,可以提高决策的科学性和准确性。通过 数学模型的建立和应用,可以解决实际问 题,推动科学技术和社会经济的发展。
影响力
加强数学模型的宣传和推广,提高其在社 会、经济、科技等领域的认知度和影响力 。同时,加强国际交流与合作,推动数学 模型在全球范围内的应用和发展。
感谢观看
THANKS
通过数学模型可以模拟物种进化过程, 解释生物多样性的起源和演化。
在商业决策中的应用
市场预测
通过分析历史数据和市场趋势, 可以建立一个数学模型来预测未
来的市场需求和销售情况。
投资决策
利用数学模型评估投资组合的风 险和回报,帮助投资者做出明智
的投资决策。
供应链管理
通过数学模型优化库存管理、物 流和运输,降低成本并提高效率。
01
02
03
04
解析法
通过数学公式推导求解,适用 于有解析解的简单问题。
数值法
通过数值计算求解,适用于大 多数实际问题。
近似法
通过近似计算求解,适用于难 以精确求解的问题。
模拟法
通过模拟实验求解,适用于难 以建立数学模型的问题。
数学模型的验证与优化
模型验证
通过对比模型的预测结果与实际数据 进行验证,确保模型的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模的意义
1、培养创新意识和创造能力 2、训练快速获取信息和资料的能力 3、锻炼快速了解和掌握新知识的技能 4、培养团队合作意识和团队合作精神 5、增强写作技能和排版技术 6、荣获国家级奖励有利于保送研究生 7、荣获国际级奖励有利于申请出国留学 8、更重要的是训练人的逻辑思维和开放性思考方式
数学建模应当掌握的十类算法
• 8、一些连续离散化方法(很多问题都是实际来的,数据 可以是连续的,而计算机只 认的是离散的数据,因此将 其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的)
• 9、数值分析算法(如果在比赛中采用高级语言进行编程 的话,那一些数值分析中常 用的算法比如方程组求解、 矩阵运算、函数积分等算法就需要额外编写库函数进行调 用)
• 模型应用:应用方式因问题的性质和建模 的目的而异。
应该注意的是:数学建模不只是数学成绩好的
学生的专利,我们每个同学都能利用所学的数学 知识建立相应的模型解决一些实际问题的。同时 数学建模遵循简单化原则:也就是建立的模型越 简单越好,并不一定需要高深的数学知识。数学 建模需要创新精神,需要创造,需要有奇异的想 法,没有不能做,只有不敢想,我们同学的年龄 正处在异想开天的时段,正是进行数学建模的黄 金时段,发挥我们的优势,拼搏一下又没有多少 损失,充其量就是牺牲了一定的休息时间吧!不 尝试谁也不知道自己有没有这方面的长处的!当 然数学建模也培养同学们的团队合作精神,考验 团队的集体智慧!
• 模型求解:利用获取的数据资料,对模型 参数做出计算(或近似计算)或估计。
• 模型分析:对所得的结果进行数学分析。
• பைடு நூலகம்型检验:将模型分析的结果与实际情形 进行比较,以此来验证模型的准确性、合 理性和适用性。如果模型与实际较吻合, 则要对计算结果给出其实际含义,并进行 解释。如果模型与实际吻合较差,则应该修 改假设,再次重复建模过程。
法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
• 6、最优化理论的三大非经典算法:模拟退火法、神经网 络、遗传算法(这些问题是 用来解决一些较困难的最优 化问题的算法,对于有些问题非常有帮助,但是算法的实 现比较困难,需慎重使用)
• 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索 最优点的算法,在很多竞赛 题中有应用,当重点讨论模 型本身而轻视算法的时候,可以使用这种暴力方案,最好 使用一些高级语言作为编程工具)
• 10、图象处理算法(赛题中有一类问题与图形有关,即使 与图形无关,论文中也应该 要不乏图片的,这些图形如 何展示以及如何处理就是需要解决的问题,通常使用 Matlab 进行处理)
竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划
算法来描述,通常使用 Lindo、 Lingo 软件实现)
4、 图论算法(这类算法可以分为很多种,包括最短路、网络流、二分
图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、 动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算
初等数学模型(一)
数学建模的含义
数学建模是一种数学的思考方法,是运用数学的 语言和方法,通过抽象、简化建立能近似刻画并"解 决"实际问题的一种强有力的数学手段。
数学建模就是用数学语言描述实际现象的过程。 这里的实际现象既包涵具体的自然现象比如自由落 体现象,也包涵抽象的现象比如顾客对某种商品所 取的价值倾向。这里的描述不但包括外在形态,内 在机制的描述,也包括预测,试验和解释实际现象 等内容。
我们也可以这样直观地理解这个概念:数学建模 是一个让纯粹数学家(指只懂数学不懂数学在实际 中的应用的数学家)变成物理学家,生物学家,经 济学家甚至心理学家等等的过程。
• 数学模型一般是实际事物的一种数学简化。它常 常是以某种意义上接近实际事物的抽象形式存在 的,但它和真实的事物有着本质的区别。要描述 一个实际现象可以有很多种方式,比如录音,录 像,比喻,传言等等。为了使描述更具科学性, 逻辑性,客观性和可重复性,人们采用一种普遍 认为比较严格的语言来描述各种现象,这种语言 就是数学。使用数学语言描述的事物就称为数学 模型。有时候我们需要做一些实验,但这些实验 往往用抽象出来了的数学模型作为实际物体的代 替而进行相应的实验,实验本身也是实际操作的 一种理论替代。
•
1、 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真
来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确
性,是比赛时必用的方法)
2、 数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到
大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用
Matlab 作为工具)
3、 线性规划、整数规划、多元规划、二次规划等规划类问题(建模
数学建模的步骤
• 模型准备:了解问题的实际背景,明确其 实际意义,掌握对象的各种信息。用数学 语言来描述问题。
• 模型假设:根据实际对象的特征和建模的 目的,对问题进行必要的简化,并用精确 的语言提出一些简单而合理的假设。
• 模型建立:在假设的基础上,用适当的数 学工具来刻划各变量之间的关系,建立相 应的数学结构(尽量简单的数学工具)。
全国大学生数学建模竞赛
• 全国大学生数学建模竞赛是国家教育部高教司和中国工业与 应用数学学会共同主办的面向全国大学生的群众性科技活动, 目的在于激励学生学习数学的积极性,提高学生建立数学模 型和运用计算机技术解决实际问题的综合能力,鼓励广大学 生踊跃参加课外科技活动,开拓知识面,培养创造精神及合 作意识,推动大学数学教学体系、教学内容和方法的改革。 竞赛题目一般来源于工程技术和管理科学等方面经过适当简 化加工的实际问题,不要求参赛者预先掌握深入的专门知识, 只需要学过普通高校的数学课程。题目有较大的灵活性供参 赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包 括模型的假设、建立和求解,计算方法的设计和计算机实现, 结果的分析和检验,模型的改进等方面的论文(即答卷)。 竞赛评奖以假设的合理性、建模的创造性、结果的正确性和 文字表述的清晰程度为主要标准。