八年级数学下册轴对称的坐标表示教案新版湘教版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3 轴对称和平移的坐标表示
第1课时 轴对称的坐标表示
1.在平面直角坐标系中,探索关于x 轴、y 轴对称的点的坐标规律;(重点)
2.利用关于x 轴、y 轴对称的点的坐标的规律,能作出关于x 、y 轴对称的图形.(难点)
一、情境导入
在我们的生活中,对称是一种很常见的现象.把如图所示成轴对称的黄鹤楼图形放在平面直角坐标系中,其对称轴为某条坐标轴.那么,图形上对称的坐标会有什么关系呢?
二、合作探究
探究点一:关于x 轴、y 轴对称的点的坐标
点A (2a -3,b )与点A ′(4,a +2)关于x 轴对称,求a ,b .
解析:此题应根据关于x 轴对称的两个点的坐标的特点:横坐标相同,纵坐标互为相反数,得2a -3与4相等,b 与a +2互为相反数.
解:由点A (2a -3,b )与点A ′(4,a +2)关于x 轴对称得2a -3=4,a +2=-b .所以a =72,b =-112
. 方法总结:在平面直角坐标系中,关于坐标轴对称的点的坐标规律:若A (x ,y )与B (m ,n )关于x 轴对称,则有x =m ,y =-n ;若A (x ,y )与B (m ,n )关于y 轴对称,则有x =-m ,y =n ;若A (x ,y )与B (m ,n )关于原点对称,则有x =-m ,y =-n .
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
探究点二:作图——轴对称变换
如下图所示,△ABC 三个顶点的坐标分别为A (-1,4),B (-3,1),C (0,0),作出△ABC 关于x 轴、y 轴的对称图形.并写出对称点的坐标.
解析:分别作点A ,B ,C 关于x 轴、y 轴的对称点即可.
解:如图所示;
A1(1,4),B1(3,1),A2(-1,-4),B2(-3,-1),C点关于x轴、y轴的对称点的坐标不变,均为(0,0).
方法总结:作对称图形应先确定对称点,再顺次连接各点即可.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题
探究点三:平面直角坐标系中的规律探究
如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2015的坐标为________.
解析:从各点的位置可以发现A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A2015在第二象限,纵坐标和横坐标互为相反数,所以A2015的坐标为(-504,504).故填(-504,504).
方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.
三、板书设计
轴对称的坐标表示
1.关于x轴对称的点横坐标不变,纵坐标互为相反数.点(x,y)关于x轴的对称点的坐标为(x,-y);
2.关于y轴对称的点横坐标互为相反数,纵坐标不变.点(x,y)关于y轴的对称点的坐标为(-x,y).
通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣