高考数学做选择题的技巧及例题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)数学选择题的解题法

1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再

与选择支对照,从而作出选择的一种法。运用此种法解题需要扎实的数学基础。

例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目

标的概率为 ( )

125

27.12536.12554.12581.D C B A 解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。

125

27)106(104)106(333223=⨯+⨯⨯C C 故选A 。 例3、已知F 1、F 2是椭圆162x +9

2

y =1的两焦点,经点F 2的的直线交椭圆于点A 、B ,若|AB|=5,则|AF 1|+|BF 1|等于( )

A .11

B .10

C .9

D .16

解析:由椭圆的定义可得|AF 1|+|AF 2|=2a=8,|BF 1|+|BF 2|=2a=8,两式相加后将

|AB|=5=|AF 2|+|BF 2|代入,得|AF 1|+|BF 1|=11,故选A 。

例4、已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值围是( )

A .(0,1)

B .(1,2)

C .(0,2)

D .[2,+∞)

解析:∵a>0,∴y 1=2-ax 是减函数,∵ log (2)a y ax =-在[0,1]上是减函数。

∴a>1,且2-a>0,∴1

2、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、

特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则

它在一般情况下也不真的原理,由此判明选项真伪的法。用特例法解选择题时,特例取得

愈简单、愈特殊愈好。

(1)特殊值

例5、若sin α>tan α>cot α(24παπ<<-

),则α∈( ) A .(2π-,4π-) B .(4π-,0) C .(0,4π) D .(4π,2

π) 解析:因24παπ<<-,取α=-6

π代入sin α>tan α>cot α,满足条件式,则排除A 、C 、D ,故选B 。

例6、一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( )

A .-24

B .84

C .72

D .36

解析:结论中不含n ,故本题结论的正确性与n 取值无关,可对n 取特殊值,如n=1,

此时a 1=48,a 2=S 2-S 1=12,a 3=a 1+2d= -24,所以前3n 项和为36,故选D 。

(2)特殊函数

例7、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]

上是( )

A.增函数且最小值为-5

B.减函数且最小值是-5

C.增函数且最大值为-5

D.减函数且最大值是-5

解析:构造特殊函数f(x)=

3

5x ,虽然满足题设条件,并易知f(x)在区间[-7,-3]上是增函数,且最大值为f(-3)=-5,故选C 。

例8、定义在R 上的奇函数f(x)为减函数,设a+b ≤0,给出下列不等式:①f(a)·f(-a)≤0;②f(b)·f(-b)≥0;③f(a)+f(b)≤f(-a)+f(-b);④f(a)+f(b)≥f(-a)+f(-b)。其中正确的不等式序号是( )

A .①②④

B .①④

C .②④

D .①③

解析:取f(x)= -x ,逐项检查可知①④正确。故选B 。

(3)特殊数列

例9、已知等差数列{}n a 满足121010a a a ++⋅⋅⋅+=,则有 ( ) A 、11010a a +> B 、21020a a +< C 、3990a a += D 、5151a =

解析:取满足题意的特殊数列0n a =,则3990a a +=,故选C 。

(4)特殊位置

例10、过)0(2>=a ax y 的焦点F 作直线交抛物线与Q 、P 两点,若PF 与FQ 的长分别是q 、p ,则=+q

p 11 ( ) A 、a 2 B 、a 21 C 、a 4 D 、 a

4 解析:考虑特殊位置PQ ⊥OP 时,1||||2PF FQ a

==,所以11224a a a p q +=+=,故选C 。

(5)特殊点

例12、设函数()2(0)f x x x =+≥,则其反函数)(1x f -的图像是 ( )

A 、

B 、

C 、

D 、 解析:由函数()2(0)f x x x =+≥,可令x=0,得y=2;令x=4,得y=4,则特殊

点(2,0)及(4,4)都应在反函数f -1(x)的图像上,观察得A 、C 。又因反函数f -1(x)的定义域为

{|2}x x ≥,故选C 。

(6)特殊程

例13、双曲线b 2x 2-a 2y 2=a 2b 2 (a>b>0)的渐近线夹角为α,离心率为e,则cos

2α等于( ) A .e B .e 2 C .e 1 D .21e

解析:本题是考查双曲线渐近线夹角与离心率的一个关系式,故可用特殊程来考察。

取双曲线程为42x -12y =1,易得离心率e=25,cos 2α=5

2,故选C 。 (7)特殊模型

例14、如果实数x,y 满足等式(x -2)2+y 2=3,那么

x y 的最大值是( ) A .21 B .

33 C .2

3 D .3 解析:题中x y 可写成00--x y 。联想数学模型:过两点的直线的斜率公式k=1212x x y y --,可将问题看成圆(x -2)2+y 2

=3上的点与坐标原点O 连线的斜率的最大值,即得D 。 3、图解法:就是利用函数图像或数学结果的几意义,将数的问题(如解程、解不等式、求最值,求取值围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的法。这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速。 例15、已知α、β都是第二象限角,且cos α>cos β,则( ) A .α<β B .sin α>sin β C .tan α>tan β D .cot αcos β找出α、β的终边位置关系,再作出判断,得B 。 例16、已知a r 、b r 均为单位向量,它们的夹角为60°,那么|a r +3b r |= ( ) A .7 B .10 C .13 D .4 解析:如图,a r +3b r =OB uuu r ,在OAB ∆中,||1,||3,120,OA AB OAB ==∠=∴o u u u r u u u r Q 由余弦定理得|a r +3b r |=|OB uuu r |=13,故选C 。

例17、已知{a n }是等差数列,a 1=-9,S 3=S 7,那么使其前n 项和S n 最小的n 是( )

A .4

B .5

C .6

D .7 解析:等差数列的前n 项和S n =2d n 2+(a 1-2d )n 可表示 为过原点的抛物线,又本题中a 1=-9<0, S 3=S 7,可表示如图, 由图可知,n=52

73=+,是抛物线的对称轴,所以n=5是抛 物线的对称轴,所以n=5时S n 最小,故选B 。

4、验证法:就是将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种法。在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度。

例19、程lg 3x x +=的解0x ∈ ( )

A.(0,1)

B.(1,2)

C.(2,3)

D.(3,+∞)

解析:若(0,1)x ∈,则lg 0x <,则lg 1x x +<;若(1,2)x ∈,则0lg 1x <<,则1lg 3x x <+<;若(2,3)x ∈,则0lg 1x <<,则2lg 4x x <+<;若3,lg 0x x >>,则3 5 7 O n n S O A B a r 3b r b r a r +3b r

相关文档
最新文档