三角形内角和教学设计新部编版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品教学教案设计| Excellent teaching plan
教师学科教案
[20 -20学年度第—学期]
任教学科:________________ 任教年级:________________ 任教老师:________________
xx市实验学校
《三角形内角和》教学设计
教学内容:北师版小学数学四年级下册《三角形内角和》
教材分析:
本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识,这为感受、理解、抽象“三角形的内角和”的性质,打下了坚实的基础。同时,通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。能在小组长带领下,围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,具备了初步的数学交流能力。
教学目标:
1、让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现“三角形内角和等于180 度,”,并能应用规律解决一些实际问题。
2、在探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。
3、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。
教学重点:让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现三角形内角和等于180 度,,并能应用规律解决一些实际问题。教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。
教学用具:表格、课件。学具准备:各种三角形、剪刀、量角器。
一、创设情境揭示课题。
1、复习提问:前面我们已经学习了三角形的一些知识,谁能介绍一下呢?
生回忆三角形的特征,三角形分类,三角形具有稳定性等内容。
2、引入
三角形具有稳定形,三角形家族是一个团结的家族,但今天家族内部却发生了激励的争论。
播放课件,提问:它们在争论什么?什么是三角形的内角和?(板书:内角和)讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。
二、自主探究,合作交流。
(一)提出问题:
1、你认为谁说得对?你是怎么想的?
2、你有什么办法可以比较一下这两个三角形的内角和呢?学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。
(二)探索与发现
1、初步探索,提出猜想。
(1)量一量
①了解活动要求:(屏幕显示)
A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)
B、把测量结果记录在表格中,并计算三角形内角和。
C、讨论:从刚才的测量和计算结果中,你发现了什么?
(引导生回顾活动要求)
②、小组合作。
③、汇报交流。你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?
(引导学生发现每个三角形的三个内角和都在1800,左右。)
(2)提出猜想
刚才我们通过测量和计算发现了三角形内角和都在180 度左右,那你能不能大胆的
猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)2、动手操作,验证猜想这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)引导:1800,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?(1)、小组合作,讨论验证方法。
(2)分组汇报,讨论质疑学生可能会出现的方法:
A、撕拼的方法
把三个角撕下来,拼在一起, 3 个角拼成了一个平角,所以三角形内角和就是 1 800,。
讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?
B、折一折的方法
把三角形的角 1 折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角 1 的顶点互相重合,也证明了三角形内角和等于1800,。讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?
C提问:还有没有其它的方法?
3、回顾两种方法,归纳总结,得出结论。
(1)课件演示:两种方法的展示。
(2)引导学生得出结论。孩子们,三角形内角和到底等于多少度呢?” 学生一定会高兴地喊:“ 1800!
(3)总结方法,齐读结论我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结
论)
(4)解释测量误差为什么我们刚才通过测量,计算出来的三角形内角和不是180 度,呢?那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180 度
(三)、回顾问题:现在你知道这两个三角形谁说得对了吗?(都不对!)为什
么?请大家一起,自信肯定的告诉我。
生:因为三角形内角和等于1800,。(齐读)
三、巩固深化,加深理解。
1、试一试:数学书28页第3题
/ A=180 ° - 90 ° - 30 °
2、练一练:数学书29 页第一题(生独立解决)
/ A=180 ° - 75 ° - 28 °
3、小法官:数学书29 页第二题小结:三角形的形状和大小虽然不同,但是三角
形的内角和都是180 度。
四、回顾课堂,渗透数学方法。
1 、总结:猜想—验证—归纳—应用的数学方法。2、介绍:三角形内角和等于180 度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。
3、课堂延伸活动:探索——多边形内角和板书设计:
探索与发现(一)三角形内角和等于180度猜想验证得出结论应用