2.3报童问题模型资料
报童问题(至多成本分析法)课件
决策变量是报童每天订购的报纸数量, 需要根据市场需求和成本进行权衡。
订购时间
决策变量还包括订购时间,即提前预 测市场需求并做出订购决策。
建立目标函数
最大化利 润
目标函数是最大化报童的利润,即总收入减去总成本。
最小化缺货成本
同时需要考虑缺货成本,即由于报纸供不应求导致的损失。
确定约束条件
库存限制
可以深入研究报童问题的动态变化和不确定性因素,以更好地应对实际 库存管理中的挑战。
THANKS
感谢观看
约束条件包括库存容量限制,即报童每天能够存储的报纸数 量有限。
配送能力
约束条件还包括配送能力,即每天能够送出的报纸数量有限。
04
案例分析
案例选择与数据准备
案例选择
选择某城市的报童作为研究对象,收集其每日销售数据和成本数据。
数据准备
整理数据,包括每日销售量、进货成本、其他相关成本等,确保数据准确性和完 整性。
整和优化。
03
报童问题的至多成本分析法解决 方案
建立数学模型
01
02
03
确定问题类型
报童问题属于典型的动态 规划问题,需要建立数学 模型来描述问题。
定义变量
在数学模型中,需要定义 决策变量、状态变量和成 本函数等。
建立状态转移方程
根据问题的特性,建立状 态转移方程,描述状态之 间的转换关系。
确定决策变量
领域的研究成果。
至多成本分析法的提出为解决类 似库存管理问题提供了新的思路
和方法。
本研究对于企业进行库存管理和 优化资源配置具有重要的实践意
义。
对未来的展望
可以进一步研究至多成本分析法在其他库存管理问题中的应用,拓展其 应用范围。
报童 数学建模
报童诀窍一、问题:报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。
设报纸每份的购进价为b ,零售价为a ,退回价为c ,假设a>b>c 。
即报童售出一份报纸赚a-b ,退回一份赔b-c 。
报童每天购进报纸太多,卖不完会赔钱;购进太少,不够卖会少挣钱。
试为报童筹划一下每天购进报纸的数量,以获得最大收入。
二、模型分析:购进量由需求量确定,需求量是随机的。
假定报童已通过自己的经验或其他渠道掌握了需求量的随机规律,即在他的销受范围内每天报纸的需求量为 r 份的概率是f(r)(r=0,1,2…)有了f(r),a 和b,c 就可以建立关于购进量的优化模型。
三、模型建立:假设每天购进量是n 份,需求量是随机的,r 可以小于,等于或大于n, ,所以报童每天的收入也是随机的。
那么,作为优化模型的目标函数,不能取每天的收入,而取长期卖报(月,年)的日平均收入。
从概率论大数定律的观点看,这相当于报童每天收入的期望值,简称平均收入。
记报童每天购进n 份报纸的平均收入为G(n),如果这天的需求量r<=n,则售出r 份,退回n-r 份;如果需求量人r>n,则r 份将全部售出。
需求量为r 的概率是f(r),则()()()()[]()()()∑∑=∞+=-+----=n r n r r nf b a r f r n c b r b a n G 01问题归结为在()c b a r f ,,,已知时,求n 是G(n)最大。
四、模型求解:购进量n 都相当大,将r 视为连续变量便于分析和计算,这时概率f(r)转化为概率密度函数p(r)()()()()[]()()()⎰⎰∞-+----=n ndr r np b a dr r p r n c b r b a n G 0计算()()()()⎰---=ndrr p c b n np b a dndG 0()()()()dr r p b a n np b a n ⎰∞-+--令0=dndG 得dndG ()()()()()()dr r p b a dr r p c b n np c a n n⎰⎰∞-+---=02得到()()cb b a drr p dr r p nn --=⎰⎰∞n 应满足上式。
报童模型3种例题详解
报童模型3种例题详解报童模型是一种常用的供应链管理模型,用于衡量库存管理的最佳策略。
在这篇文章中,我们将详解报童模型的三种例题,以帮助读者更好地理解这个模型以及它的实际应用。
1. 例题一:基本的报童模型在这个例题中,假设一个报摊要订购一种杂志,供应商提供了每本杂志的成本和销售价格。
报童需要在售罄前进行订购决策,以最大化利润。
首先,我们需要确定售罄概率分布,并计算售罄带来的成本和利润。
然后,我们可以使用期望利润最大化的公式来计算最佳订购数量。
通过解决这个例题,我们可以了解如何应用报童模型来进行库存管理并最大化利润。
2. 例题二:考虑损失销售的报童模型在这个例题中,我们要考虑到如果需求超过库存时带来的损失销售。
与例题一相比,我们需要加入一个额外的指标——失销销售成本。
失销销售成本是指由于库存不足而无法满足需求而导致的损失。
针对这个例题,我们需要计算售罄带来的损失成本,并将其加到总成本中。
然后,同样使用期望利润最大化的公式来计算最佳订购数量。
通过解决这个例题,我们可以了解如何考虑到损失销售成本来优化报童模型,以实现更准确的库存管理。
3. 例题三:考虑折扣的报童模型在这个例题中,我们假设供应商提供了折扣政策。
即在一定的订购数量上能够享受到更低的成本。
通过使用带有折扣的报童模型,我们将计算出能够最大化利润的最佳订购数量。
我们需要结合折扣成本以及其他成本来计算总成本,并使用期望利润最大化的公式来确定最佳订购数量。
通过解决这个例题,我们可以了解如何考虑折扣政策来优化报童模型,并在实践中应用这一模型。
通过上述三个例题的解析,我们可以更加深入地理解报童模型及其在供应链管理中的应用。
这个模型不仅能够帮助我们进行库存管理,还能够优化成本并最大化利润。
在实际业务中,我们可以根据具体情况灵活运用报童模型,以实现更加高效的供应链管理。
报童模型文档
报童模型1. 简介报童模型是运筹学中的一个经典模型,用于解决库存管理中的订货数量决策问题。
它的名称源于报童,因为报童每天需根据自己判断的需求来购买报纸,而这正是报童模型所要解决的问题。
在报童模型中,我们需要确定一个合适的订货数量,以最大化利润或最小化成本。
2. 模型假设在分析报童模型之前,我们需要明确一些基本的假设: -需求是随机的,且符合一定的概率分布(如正态分布、泊松分布等); - 不满足需求的部分将有一定的溢价折价销售; - 不满足的需求无法满足后续补充,即库存不叠加; - 不考虑报童之后的报纸销售。
3. 数学建模我们用以下符号来描述报童模型: - Q:订货数量; - Q:需求量; - Q:成本,包括订货成本和溢价折价销售成本; - Q:报纸售价; - Q:单位库存持有成本。
根据这些符号,我们可以得到报童模型的目标函数和约束条件:目标函数我们的目标是最大化利润或最小化成本,因此我们可以将目标函数定义为:$$ \\max \\left\\{ (P-C) \\cdot \\min\\{Q,D\\} -h \\cdot \\max\\{Q-D,0\\} \\right\\} $$约束条件•不能超出需求量:$$ Q \\ge D $$•订货量必须大于等于0:$$ Q \\ge 0 $$4. 求解方法对于报童模型,我们可以采用多种求解方法,其中常见的方法有以下两种:1. 数值求解方法通过数值方法可以较为准确地求解报童模型。
具体步骤如下: - 根据历史数据或经验,估计需求的概率分布; - 根据概率分布,计算目标函数的期望值; - 对于给定的成本参数和库存持有成本,确定最优的订货数量。
2. 分析解法在某些特殊情况下,可以通过分析解法来求解报童模型。
常见的情况包括: - 需求服从某个特定的概率分布,如泊松分布、正态分布等; - 成本参数和库存持有成本可以通过确定的方法获得。
对于这些情况,我们可以通过求导和设置目标函数关于订货数量的一阶、二阶导数为零来求解最优订货数量。
报童问题模型
§2 报 童 问 题 模 型[问题的提出] 报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回.设报纸每份的购进价为b ,零售价为a ,退回价为c ,应该自然地假设为a >b>c .这就是说,报童售出一份报纸赚a -b ,退回一份赔b-c .报童每天如果购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱.请你为报童筹划一下,他应如何确定每天购进报纸的数量,以获得最大的收入.[问题的分析及假设] 众所周知,应该根据需求量确定购进量.需求量是随机的,假定报童已经通过自己的经验或其它的渠道掌握了需求量的随机规律,即在他的销售范围内每天报纸的需求量为r 份的概率是),2,1,0)(( r r f .有了)(r f 和a ,b ,c ,就可以建立关于购进量的优化模型了.假设每天购进量为n 份,因为需求量r 是随机的,r 可以小于n ,等于n 或大于n ,致使报童每天的收入也是随机的,所以作为优化模型的目标函数,不能是报童每天的收入,而应该是他长期(几个月,一年)卖报的日平均收入.从概率论大数定律的观点看,这相当于报童每天收入的期望值,以下简称平均收入.[模型的建立及求解] 记报童每天购进n 份报纸时的平均收入为G(n),如果这天的需求量r ≤n ,则他售出r 份,退回n-r 份;如果这天的需求量r>n ,则n 份将全部售出.考虑到需求量为r 的概率是)(r f ,所以问题归结为在)(r f ,a ,b ,c 已知时,求n 使G(n)最大.通常需求量r 的取值和购进量n 都相当大,将r 视为连续变量更便于分析和计算,这时概率)(r f 转化为概率密度函数)(r p ,(1)式变成计算令0 dndG .得到使报童日平均收入达到最大的购进量n 应满足(3)式.因为01)(dr r p ,所以(3)式又可表为根据需求量的概率密度)(r p 的图形很容易从(3)式确定购进量n .在图2中用1P ,2P 分别表示曲线)(r p 下的两块面积,则(3)式可记作因为当购进n 份报纸时, n dr r p P 01)(是需求量r 不超过n 的概率,即卖不完的概率:n dr r p P )(2是需求量r 超过n 的概率,即卖完的概率,所以(3)式表明,购进的份数 应该使卖不完和卖完的概率之比,恰好等于卖出一份赚的钱a-b 与退回一份赔b-c 之比.显然,当报童与报社签订的合同使报童每份赚钱和赔钱之比越大时,报童购进的份数就应该越多.。
报童数学建模
报童数学建模 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】报童诀窍一、问题: 报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。
设报纸每份的购进价为b ,零售价为a ,退回价为c ,假设a>b>c 。
即报童售出一份报纸赚a-b ,退回一份赔b-c 。
报童每天购进报纸太多,卖不完会赔钱;购进太少,不够卖会少挣钱。
试为报童筹划一下每天购进报纸的数量,以获得最大收入。
二、模型分析:购进量由需求量确定,需求量是随机的。
假定报童已通过自己的经验或其他渠道掌握了需求量的随机规律,即在他的销受范围内每天报纸的需求量为r 份的概率是f(r)(r=0,1,2…)有了f(r),a 和b,c 就可以建立关于购进量的优化模型。
三、模型建立:假设每天购进量是n 份,需求量是随机的,r 可以小于,等于或大于n,,所以报童每天的收入也是随机的。
那么,作为优化模型的目标函数,不能取每天的收入,而取长期卖报(月,年)的日平均收入。
从概率论大数定律的观点看,这相当于报童每天收入的期望值,简称平均收入。
记报童每天购进n 份报纸的平均收入为G(n),如果这天的需求量r<=n,则售出r份,退回n-r 份;如果需求量人r>n,则r 份将全部售出。
需求量为r 的概率是f(r),则问题归结为在()c b a r f ,,,已知时,求n 是G(n)最大。
四、模型求解:购进量n 都相当大,将r 视为连续变量便于分析和计算,这时概率f(r)转化为概率密度函数p(r)计算令0=dn dG 得dn dG ()()()()()()dr r p b a dr r p c b n np c a n n ⎰⎰∞-+---=02 得到()()c b b a dr r p dr r p n n--=⎰⎰∞0 n 应满足上式。
()10=⎰∞dr r p 使报童日平均收入达到最大的购进量为()ca b a dr r p n --=⎰0 根据需求量的概率密度p(r)的图形可以确定购进量n 在图中用p1,p2分别表示曲线p(r)下的两块面积,则cb b a P P --=21 O nr因为当购进n 份报纸时,()dr r p P n ⎰=01是需求量r 不超过n 的概率; ()dr r p P n ⎰∞=2是需求量r 超过n 的概率,既卖完的概率,所以上式表明,购进的份数n 应使卖不完与卖完的概率之比,恰好等于卖出一份赚的钱a-b 与退回一份赔的钱b-c 之比。
报童问题模型
§ 2报童问题模型[问题的提出]报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回.设报纸每份的购进价为b,零售价为a,退回价为c,应该自然地假设为a>b>c.这就是说,报童售出一份报纸赚a-b,退回一份赔b-c •报童每天如果购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱•请你为报童筹划一下,他应如何确定每天购进报纸的数量,以获得最大的收入.[问题的分析及假设]众所周知,应该根据需求量确定购进量•需求量是随机的,假定报童已经通过自己的经验或其它的渠道掌握了需求量的随机规律,即在他的销售范围内每天报纸的需求量为r份的概率是f(r)(r 0,1,2, ) •有了f(r)和a , b, c, 就可以建立关于购进量的优化模型了.假设每天购进量为n份,因为需求量r是随机的,r可以小于n,等于n或大于n,致使报童每天的收入也是随机的,所以作为优化模型的目标函数,不能是报童每天的收入,而应该是他长期(几个月,一年)卖报的日平均收入.从概率论大数定律的观点看,这相当于报童每天收入的期望值,以下简称平均收入.[模型的建立及求解]记报童每天购进n份报纸时的平均收入为G(n),如果这天的需求量r < n,则他售出r份,退回n-r份;如果这天的需求量r>n ,则n份将全部售出.考虑到需求量为r的概率是f(r),所以问题归结为在f (r) , a, b, c已知时,求n使G(n)最大.通常需求量r的取值和购进量n都相当大,将r视为连续变量更便于分析和计算,这时概率f (r)转化为概率密度函数p(r), (1)式变成计算第163页^ = (a-b)npM-f <b-c)p(r)dr—(a -6) + (a - b) p( r)dr J H令dG 0.得到 dnI p{r)dr Joa-bI />(r Jdr 由 C J n使报童日平均收入达到最大的购进量n 应满足(3)式.因为° p(r)dr 1,所以(3)式又可表为 />(r)dr - a - a c 根据需求量的概率密度 p(r)的图形很容易从(3)式确定购进量 n .在图2中用R , P 2分别表示曲线p(r)下的两块面积,则(3)式可记作Pi _ a ~ b P tb - cn 因为当购进n 份报纸时,p 1 o p(r )dr 是需求量r 不超过 n 的概率,即卖不完的概率:P 2p(r)dr 是需求量r 超过n 的概率,即卖完n 的概率,所以(3)式表明,购进的份数 应该使卖不完和卖完的概率之比,恰好等于卖出一份赚的钱 a-b 与退回一份赔 b-c 之比.显然,当报童与报社签订的合同使报童每份赚钱和赔钱 之比越大时,报童购进的份数就应该越多第164页=-(b - c) />( r)dr +J 0 (4)。
报童问题——精选推荐
报童问题关于报童问题的分析摘要本⽂讨论了单周期的随即贮存模型——报童问题。
通过运⽤插值拟合等基本模型,运⽤概率论与数理统计、数值积分等背景知识,得出每天报纸需求量的概率分布,建⽴报童收益模型,以达到报童最⼤收益为⽬的,使报童每天的买进量与需求量尽可能地吻合,以使损失最少,收益最⼤。
在问题⼀中,⾸先求出概率分布)(r f 。
再设定每天报纸的买进量是定值,并将其代⼊建⽴好的报童收益模型中求出平均收益最⼤值,得出nr r f =)(,7358.33)(=n MaxG ,200=n 。
在问题⼆中,即将第⼀问中的概率分布)(r f 转化为概率密度)(r p ,在matlab ⼯具箱⼦cftool 中计算得出此时概率密度为正态分布,将问题⼀模型中的求和转化为积分,通过对⽬标通过数值积分等⼿段得出报童每天不同买进量下每天平均收⼊,从⽽分析得出每天的最优报纸进货量n 。
其中2)98.54)1.190(()(--=x er p ,=)(n G 672.84,=n 207。
关键词随即贮存,概率分布,概率密度,平均收益,数值积分1、问题重述1.1问题背景在实际⽣产⽣活过程中,经常会遇到⼀些随时间、地点、背景不同⽽发⽣变化的事物,例如报纸的销售的问题。
如果报纸的销售量⼩于需求量,则会给报童带来缺货损失,失去⼀部分潜在客户,⼀部分报纸失销(为简化计算,在本模型中我们忽略缺货损失);如果报纸的销售量⼤于需求量,则会导致⼀部分报纸被退回报社,给报童造成⼀部分退货损失,减少盈利。
所以在实际考虑中,应使报纸的购⼊量尽可能地吻合需求量,减少报童的损失,获得更⼤的盈利。
1.2报童获利途径报童以每份0.3元的价格买进报纸,以0.5元的价格出售。
当天销售不出去的报纸将以每份0.2元的价格退还报社。
根据长期统计,假设已经得到了159天报纸需求量的情况。
对现有数据分析,得出报童每天最佳买进报纸量,使报童的平均总收⼊最⼤。
1.3问题提出现在需⽤数学建模解决以下问题:问题1:若将据报纸需求量看作离散型分布,试根据给出统计数据,求出报纸需求量的分布律,并建⽴数学模型,确定报童每天买进报纸的数量,使报童的平均总收⼊最⼤?问题2:若将据报纸需求量看作连续型分布,试根据给出的统计数据,进⾏分布假设检验,确定该报纸需求量的分布,并建⽴数学模型,确定报童每天买进报纸的数量,使报童的平均总收⼊最⼤?2、模型假设(1)假设报童在以后的⽇⼦⾥需求量概率分布概率密度遵循这159天的规律(2)假设不考虑缺货损失(3)假设报童进报纸量达到⼀定数量后不会产⽣贮存等其他费⽤(4)假设报童每天都能买进计算出来的应进报纸量3、符号说明r报纸需求量(rf报纸需求量概率密度(离散型))p报纸需求量概率密度(连续型)(r)n每天报纸买进量)(n G 报童每天购进n 份报纸的平均收⼊ )(n g报童⼀天的利润收⼊1p n r <时的概率 2p n r >时的概率 i s 每天卖出报纸量 i b每天退回报纸量4、问题分析单周期随机贮存在实际⽣产⽣活中经常遇到,单周期即只订⼀次(缺时也不订),期后可处理余货;随机因素是需求和拖后时间,统计规律为历史资料。
报童问题精编资料
报童问题报童问题:报童每日售报数量是一个随机变量。
报童每售出一份报纸赚k 元。
如报纸未能售出,每份赔h 元。
每日售出报纸份数r 的概率P(r )根据以往的经验是已知的,问报童每日最好准备多少份报纸?分析:这个问题是报童每日报纸的订货量Q 为何值时,赚钱的期望值最大?反言之,如何适当地选择Q 值,使因不能售出报纸的损失及因缺货失去销售机会的损失,两者期望值之和最小。
现在用计算损失期望值最小的办法求解。
解:设售出报纸数量为r ,其概率P(r)为已知设报童订购报纸数量为Q 。
供过于求时(r ≤Q),这时报纸因不能售出而承担的损失,其期望值为:∑=-Qr r P r Q h 0)()(供不应求时(r >Q),这时因缺货而少赚钱的损失,其期望值为:∑∞+=-1)()(Q r r P Q r k综合上述两种情况,当订货量为Q ,损失的期望值为:∑∑∞+==-+-=10)()()()()(Q r Q r r P Q r kr P r Q h Q C由于报童订购报纸的份数只能取整数,r 是离散变量,所以不能用求导数的方法求极值。
为此设报童每日订购报纸份数最佳量为Q ,其损失期望值应有: ① C(Q)≤C(Q+1)② C(Q)≤C(Q-1)从①出发进行推导有∑∑∑∑∞+=+=∞+==--+-+≤-+-21010)()1()()1()()()()(Q r Q r Q r Q r r P Q r k r P r Q h r P Q r kr P r Q h 0)()(0≥-+∑=k r P k h Q rhk k r P Q r +≥∑=0)( 由②出发进行推导有∑∑∑∑∞=-=∞+==+-+--≤-+-Q r Q r Q r Q r r P Q r k r P r Q h r P Q r kr P r Q h )()1()()1()()()()(1010 0)()(10≥-+∑-=k r P k h Q rh k k r P Q r +≤∑-=10)( 报童应准备的报纸最佳数量Q 应按下列不等式确定: ∑∑=-=≤+≤Q r Q r r P h k k r P 010)()( 从赢利最大来考虑报童应准备的报纸数量。
报童模型.doc
缺货损失厌恶的报童问题摘要:报童问题是随机存贮管理的基本问题之一。
在预期理论的框架下,我们通过引入损失厌恶参数,基于损失期望最小原则,对经典的报童问题进行了重新思考,给出了缺货损失厌恶的报童的最优定货量的计算公式及订购量与期望损失关系的数学模型.关键词:存贮管理;预期理论;期望损失1、引言1不确定性决策一直都是决策理论的基本问题之一。
报童问题是随机存贮理论的基本模型之一,国内外关于报童问题的研究已有很长一段时间,人们也从不同的角度得出了一些令大家可接受且比较满意的方案和数学模型。
如Tsan rt.al[1]提出报童问题的均值方差模型,并且得出如果报童可能最大化期望利润,使得利润方差受到限制,那么其最佳订购量总是小于经典报童问题的订购量;Schweitzer, Cachon[2] 提出效用最大化的报童问题,且得出基于偏爱的不同而有不同的效用函数,(这些偏爱对报童的决策进程有着重要影响);Eeckhoudt et.al[5]研究了风险及风险厌恶对报童问题的效应;Porteus[5]通过对敏感度的定量分析,研究了带风险效用和风险厌恶的报童问题;文平[6]关于损失厌恶的报童—预期理论下的报童问题新解一文,基于Kahneman 和Tversky[6]于1979年提出的预期理论,也得出了比较理想的模型。
然而他们中的多数都是从获利期望值最大和期望效用理论的角度来考察的。
但是,报童问题也是一种经典的单阶段存贮问题。
对报童而言,他每一天的报纸都有三种结果:报纸卖不完、不够卖、刚好够卖。
这三种结局只有最后一种情况下才能达到报童的最大利润,因为报童的最大利润是订购量刚好和市场需求一致,即刚好够卖,也刚好卖完。
在过去关于报童问题的种种模型中,都很少考虑到报纸不够卖,即脱销的情况,此时大多是以刚好满足市场需求的情况来处理。
其实不然,对于这类薄利多销的报童问题而言,他们都不希望自己是做保本生意,都希望充分利用好市场,最大限度地获取利润。
报童模型
某批发商准备订购一批圣诞树供圣诞节期间销售。
该批发商对包括订货费在内的每棵圣诞树要支付$2,树的售价为$6。
未售出的树只能按$1出售。
如果他知道节日期间圣诞树需求量的概率分布,问该批发商应该订购多少树?一名报童以每份元的价格从发行人那里订购报纸,然后以元的价格售出。
但是,他在订购第二天的报纸时不能确定实际的需求量,而根据以前的经验,他知道需求量具有均值为50份、标准差为12份的正态分布。
那么,他应当订购多少份报纸呢?假定报童已53份报纸,而另一报贩愿以每份元买入,有多少买多少。
那么,报童应当卖给该报贩多少份报纸呢?基本思路:单周期库存问题决策侧重于定货批量,没有订货时间决策问题;订货量等于需求预测量;库存控制的关键:确定或估计需求量;预测误差的存在导致二种损失(成本):欠储(机会)成本:需求量大于订货量导致缺货而造成的损失;超储(陈旧)成本:需求量小于订货量导致超储而造成的损失;机会成本或超储成本对最佳订货量的确定起决定性的作用。
(1)期望损失最小法比较不同订货量下的期望损失,取期望损失最小的订货量作为最佳订货量。
已知:单位成本:C/件,单位售价:P/件,降价处理:S/件则:单件机会成本:Cu=P – C单件超储成本:Co=C-S当订货量为Q时,期望损失为:式中P(d)为实际需求量为d时的概率某商店挂历需求的分布率:已知,进价为C=50元/每份,售价P=80元/每份。
降价处理S=30元/每份。
求该商店应该进多少挂历为好。
(2)期望利润最大法比较不同订货量下的期望利润,取期望利润最大的订货量作为最佳订货量。
已知:单位成本:C/件,单位售价:P/件,降价处理:S/件则:单件收益:Cu=P - C单件超储成本:Co=C-S当订货量为Q时,期望利润为:式中P(d)为实际需求量为d时的概率某商店挂历需求的分布率:(3)边际分析法考虑:如果增加一个产品订货能使期望收益大于期望成本,那么就应该在原订货量的基础上追加一个产品的订货。
2.3报童问题模型
6
7 8 9 10 11 12 13 14
0.04
0.08 0.09 0.11 0.16 0.20 0.11 0.10 0.04
0.07
0.15 0.24 0.35 0.51 0.71 0.82 0.92 0.96
0.93
0.85 0.76 0.65 0.49 0.29 0.18 0.08 0.04
i 4 k
18
LLBean: Expected profit
Demand d(i) 4 5 6 7 8 9 10 11 12 13 14 15 16 Probability p(i) 0.01 0.02 0.04 0.08 0.09 0.11 0.16 0.20 0.11 0.10 0.04 0.02 0.01 Sum(d(i)xp(i)) Cumulative Prob. Prob. demand greater Expected profit P(i) = Pr( D < d(i) ) 1 - P(i) = Pr( D > d(i) ) if stock d(i) 0.04 0.01 0.99 220.00 0.14 0.03 0.97 274.40 0.38 0.07 0.93 327.60 0.94 0.15 0.85 378.40 1.66 0.24 0.76 424.40 2.65 0.35 0.65 465.00 4.25 0.51 0.49 499.00 6.45 0.71 0.29 523.40 7.77 0.82 0.18 535.80 9.07 0.92 0.08 541.60 9.63 0.96 0.04 541.40 9.93 0.98 0.02 538.80 10.09 0.99 0.01 535.00
报童模型(精品资料)PPT
0.56
-128
1.19
227
0.67
133
0.82
288
0.72
-492
1.46
499
0.59
-396
1.30
-342
1.23
-1314
1.60
1995
0.37
521
0.86
2817
0.57
概率
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
在标准正态分布函数表中查找正态标准值小于等于Z的概率.
Slide ‹#›
应用历史A/F 比率选取需求预测的正态分布函数
▪ 从预测,猜测等得出初始预测值. ▪ 欧耐尔 Hammer 3/2 的初始预测值为 3200 套. ▪ 计算历史数据的 A/F 比率:
A/F 比率
实际需求 预测
▪ 确定正态标准分布的均值:
680
EPIC 2MM S/S FULL
740
EPIC 4/3
1020
WMS EPIC 4/3
1060
JR HAMMER 3/2
1220
HAMMER 3/2
1300
HAMMER S/S FULL
1490
EPIC 3/2
2190
ZEN 3/2
3190
ZEN-ZIP 4/3
3810
WMS HAMMER 3/2 FULL
误差A*/F 比率**
-50
1.56
37
0.69
-3
1.02
7
0.96
报童模型推导过程
报童模型推导过程一、背景介绍报童模型是指在零售店等场景中,为了最大化收益和最小化损失而进行的一种库存管理策略。
其基本思想是在每个订货周期结束时,根据需求量和库存量来决定下一个订货周期的订单量。
这种模型适用于需求不稳定的情况下,但需要考虑到过多的库存会增加成本,过少的库存则会导致销售机会损失。
二、模型假设1. 需求量符合泊松分布;2. 订货时间间隔固定;3. 订货成本和销售收益不考虑时间价值;4. 库存不允许超卖。
三、数学推导1. 假设每个订货周期为T,则需求量D符合参数为λT的泊松分布,即D~Poisson(λT)。
2. 假设每个单位产品的成本为c,每个单位产品的售价为r,则单次订单量Q应该使得期望收益最大化。
因此有:E[profit] = E[revenue] - E[cost]= rE[sales] - cE[order]= rEQ - cQ其中E[sales]表示销售额期望值,E[order]表示订货成本期望值,EQ 表示销售量期望值。
令E[profit]对Q求导数为0,则有:rλT - c = 0Q* = λT/c即最优订单量Q*等于需求率λ乘以订货周期T再除以单位产品的成本c。
3. 由于库存不允许超卖,因此需要保证最小库存量S不小于期望销售量EQ。
因此有:S = EQ = λT4. 最后,由于需求量D符合泊松分布,因此可以通过设置安全库存量来控制超卖的概率。
假设安全库存量为s,则在订货周期内出现超卖的概率为:P(D > Q* + s) = P(D > λT/c + s)= 1 - F(D <= λT/c + s)其中F表示累积分布函数。
如果要控制超卖的概率不超过α,则可以根据泊松分布的性质计算出对应的安全库存量s。
四、实际应用1. 确定订货周期T:根据产品特性和市场需求确定合适的订货周期。
2. 计算最优订单量Q*:根据产品成本和售价计算出最优订单量。
3. 确定最小库存量S:根据需求率和订货周期计算出最小库存量。
知识点2聪明的报童模型
报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回.若每份报纸的购进价为b 元/份,售价为a 元/份;若不能售出,退回价c 元/份.假设a>b>c. 这就是说,报童售出一份报纸赚a-b ,退回一份赔b-c .报童每天如果购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱.请你为报童筹划一下,他应如何确定每天购进报纸的数量,以获得最大的收入.问题的分析众所周知,应该根据需求量确定购进量.需求量是随机的,假定报童已经通过自己的经验或其它的渠道掌握了需求量的随机规律,即在他的销售范围内每天报纸的需求量为r份的概率是),2,1,0()( =r r f .有了)(r f 和a ,b,c,就可以建立关于购进量的优化模型了.模型假设假设每天购进量为n份,因为需求量r是随机的,r可以小于n,等于n或大于n,致使报童每天的收入也是随机的,所以作为优化模型的目标函数,不能是报童每天的收入,而应该是他长期(几个月,一年)卖报的日平均收入.从概率论大数定律的观点看,这相当于报童每天收入的期望值,以下简称平均收入.建模与求解记报童每天购进n 份报纸时的平均收入为)(n G ,如果这天的需求量n r ≤,则他售出r 份,退回r n -份;如果这天的需求量n r >,则n 份将全部售出.考虑到需求量为r 的概率是)(r f ,所以∑∑∞+==-+----=10)()()()])(()[()(n r n r r nf b a r f r n c b r b a n G (5.4.1) 问题归结为在c b a r f ,,),(已知时,求n 使)(n G 最大.通常需求量r 的取值和购进量n 都相当大,将r 视为连续变量更便于分析和计算,这时概率)(r f 转化为概率密度函数)(r p ,(5.4.1)式变成⎰⎰∞-+----=n n dr r np b a dr r p r n c b r b a n G )()()()])(()[()(0 5.4.2)计算⎰⎰∞-+-----=n n dr r p b a n np b a dr r p c b n np b a dndG )()()()()()()()(0 ⎰⎰∞-+--=n n dr r p b a dr r p c b )()()()(0 令0=dndG ,得到 cb b a dr r p drr p nn --=⎰⎰∞)()(0 (5.4.3)使报童日平均收入达到最大的购进量n 应满足(5.4.3)式.因为1)(0=⎰∞dr r p ,所以(5.4.3)式又可以表为ca b a dr r p n --=⎰0)( (5.4.4) 根据需求量的概率密度)(r p 的图形很容易从(5.4.3)式确定购进量n .在图5-4中用21,P P 分别表示曲线)(r p 下的两块面积,则(5.4.3)式可记作ca b a P P --=21(5.4.5)因为当购进n 份报纸时,dr r p P n ⎰=01)( 是需求量r 不超过n 的概率,即卖不完的概率; dr r p P n⎰∞=)(2是需求量r 超过n 的概率,即 卖完的概率,所以(5.4.3)表明,购进的份数n应该使卖不完与卖完的概率之比,恰好等于卖出一份赚的钱b a -与退回一份赔的钱c b -之比.显然,当报童与报社签订的合同使报童每 图5-4 由)(r p 确定n 的图解法 份赚钱与赔钱之比越大时,报童购进的份数就应该越多.评注:在问题的分析中,我们假定报童已经通过自己的经验或其它的渠道掌握了需求量的随机规律,但没有指明其概率的具体分布,其实也可以假定需求量为r份的概率是一个具体的分布,如泊松分布,然后再具体分析计算,其结果也会与上面的讨论结果相近.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这就产生一个问题:订货量过多,出现过剩,会造成损失; 订货量少,又可能会失去销售机会,影响利润,那么应该如何确 定订货策略呢?将这一现象具体到报童销售报纸上,就引发了报 童问题:
报童问题:
报童每天需订购多少份报纸?
问 报童售报:(零售价) a > (购进价) b > (退回价) c 题 售出一份赚 a-b;退回一份赔 b-c
报童问题模型
1、报童问题的提出 2、报童问题所属范畴 3、报童模型的建立与求解 4、报童模型的推广与应用
1、报童问题的提出
在日常生活中,经常会碰到一些季节性强、更新快、不易保 存等特点的物品,如海产、山货、时装、生鲜食品和报纸等,当 商店购进这些商品时,买的数量越多,价格越便宜获利越大。但 买得太多也可能卖不出去,需要削价处理,人力物力都受损;如 果进货太少,又可能发生缺货现象,失去销售机会而减少利润。
High availability =>
larger inventory higher costs risk of obsolescence
12
Newsbvoenydor Model
single period model (one selling season)
(one-time order, e.g. for quantity discount)
14
Determining Optimal Level of Product Availability
• Single peal items with a single order in a season
– One-time orders in the presence of quantity discounts
ddG n(ab)np(n)0n(bc)p(r)dr(ab)np(n) n(ab)p(r)dr (bc)0n p(r)dr(ab)np(r)dr
dG 0 dn
n
0
n
p(r)dr p(r)dr
a b
b c
结果解释
n
0
n
p(r)dr p(r)dr
a b
b c
0 np (r)d r P 1 ,n p (r)d r P 2
每天购进多少份使收入最大?
分 购进太多卖不完退回赔钱 析 购进太少不够销售赚钱少
应根据需求确定购进量
存在一个合适的 购进量
每天需求量是随机的
每天收入是随机的
优化问题的目标函数应是长期的日平均收入 等于每天收入的期望
2、报童问题所属范畴
单周期随机型存贮模型
这种单周期购入—售出(报纸、日历、杂志,各种季节性货物、时 装),并且超出该购入—售出周期商品就会严重贬值的存贮问题,存 贮论中统称为卖报童问题。 这类问题的库存控制策略是以利润期望最大为目标,确定一次购入的 经济订货批量。
n
G ( n ) [a ( b ) r ( b c )n ( r )f( ] r ) ( a b ) n ( r ) f
r 0
r n 1
求n使G(n)最大
求 将r视为连续变量
f(r)p(r)(概率密) 度
解
G ( n ) 0 n [ a b ( ) r ( b c ) n ( r ) p ( r ] ) d n ( a r b ) n ( r ) d pr
报童问题的推广与应用: ➢ 多产品报童问题; ➢ 考虑风险偏好的报童问题; ➢基于需求预测的报童问题; ➢ 考虑采购提前期的报童问题;
Product Availability: Tradeoffs
High availability =>
responsive to customers attract increased sales higher revenue
demand uncertainty order placed (and delivered) before demand is known unmet demand is lost unsold inventory at the end of the period is discard (or
p(r)
取n使
P1 a b P2 b c
P1~卖不完的概率,a-b ~售出一
份赚的钱
P1 P2
P2~卖超的概率,b-c ~退回一
份赔的钱
0
n
r
(ab )n , (bc)n
4、报童问题的推广与应用
在科学的管理方法和手段在管理实践中运用越来越多的今天, 管理者同样需要考虑,怎样改进粗放的管理模式,才能提高企业 的管理水平,从而提高企业的效益。在管理实践中,我们会发现, 与报童问题类似的问题非常多,这样我们就可以将报童问题的研 究方法运用到实践中,通过科学的调查、计算,把过去经验的管 理方法,上升到科学的管理方法。
salvaged at lower value) How much to order?
13
Factors affecting availability
Demand uncertainty Overstocking cost C0
= loss incurred when a unit unsold at end of selling season
3、模型的建立与求解
准
调查需求量的随机规律——每天需求量为 r 的
备
概率 f(r), r=0,1,2…
• 设每天购进 n 份,日平均收入为 G(n)
建
模
• 已知售出一份赚 a-b;退回一份赔 b-c
r n
售出 r, 退回 nr
赚 (a b )r ,赔 (b c )n ( r )
rn
售n 出 , 赚 (ab)n
Understocking cost Cu
= profit margin lost due to lost sale (because no inventory on hand)
Customer/Cycle service level CSL
=level of product availability = Prob(Demand < stock level)
– Continuously stocked items – Demand during stockout is backlogged – Demand during stockout is lost