2020二轮卓越数学理-答案72

合集下载

2020届二模理数答案

2020届二模理数答案

1分
又 平面 所以 是平面 8", 法向量!
8$1% 8('" & !#%"%(#"
8$1
的一个 分 #"
所以 槡 槡 槡 9-8/(2'%8('"0&
#'# #'#'#,
2
& #'#
+
!
所以二面角5(8$(1 的余弦值为槡2!
分 #!
+
抛物线 的准线 所以 #1!!#"
1.'!&0#
<.#& (#%
% ;: +$9!
!
因为 平面 平面 所以 平面 ;:/
8$5 %$90
8$5% ;: +
8$5 !
分 /
因为平面 平面 平面 !!"
8$" ,
$"15 %
平面 平面 8$"%
$"15 & $"%$1 0
所以 平面 $"15%$",$1% $1,
8$"!
因为 平面 所以 8"0
8$"% $1,8"%
#&"%
#&
% !
#&%
以偶函数*!#"在*(%+有五个零点%不正确)

#)
*"%' "%*!#"&8*5!# (8*5# &
!8*5#(
#
!
"
(
!
#% 0
因为 所以当 时 当 (#&8*5#&#%

【2020】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案12

【2020】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案12

4n-1,

4Tn=41+2×42+3×43+…+(n-1)×4n-1+n×4n, ②
由①-②,得-3Tn=40+41+42+…+4n-1-n×4n=-n×4n=
∴Tn=[(3n-1)×4n+1].
11.解 (1)因为 2Sn=3n+3,
所以 2a1=3+3,故 a1=3.
当 n>1 时,2Sn-1=3n-1+3,
教学资料范本
【2020】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案12
编 辑:__________________ 时 间:__________________
1/8
一、能力突破训练
1.已知等差数列{an}的前 n 项和为 Sn,若 a1=2,a4+a10=28,则 S9=( )
A.45
nan+1=Sn+n(n+1).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足 an+log2n=log2bn,求数列{bn}的前 n 项和 Tn.
2/8
11.设数列{an}的前 n 项和为 Sn .已知 2Sn=3n+3.
(1)求{an}的通项公式;
(2)若数列{bn}满足 anbn=log3an,求{bn}的前 n 项和 Tn.
所以 3Tn=1+(1×30+2×3-1+…+(n-1)×32-n),
两式相减,得 2Tn=+(30+3-1+3-2+…+32-n)-(n-1)×31-n=-(n-
1)×31-n=,

2020高考数学理二轮课标通用综合能力训练:含解析

2020高考数学理二轮课标通用综合能力训练:含解析
∴( +1)(R1+R2)= ,R1+R2= ,
球O1和O2的表面积之和为4π( )≥4π·2 =2π(R1+R2)2=3(2- )π.故选A.
12.已知f(x)=2x3-ax2+1(a∈R)在区间(0,+∞)内有且只有一个零点,则f(x)在区间[-1,1]上的值域为()
A.[-4,0]B.[-4,1]
答案:C
解析:∵f(x)是R上的奇函数,
∴g(x)=xf(x)是R上的偶函数.
∴g(-log25.1)=g(log25.1).
∵奇函数f(x)在R上是增函数,
∴当x>0时,f(x)>0,f'(x)>0.
∴当x>0时,g'(x)=f(x)+xf'(x)>0恒成立,
∴g(x)在区间(0,+∞)上是增函数.
故 的夹角为锐角”是“| |>| |”的充要条件,故选C.
9.已知双曲线 =1(a>0,b>0)被斜率为1的直线截得的弦的中点为(4,1),则该双曲线离心率的值是()
A B
C D.2
答案:A
解析:设直线l与双曲线交于点A(x1,y1),B(x2,y2),
则 =0,

由弦的中点为(4,1),直线的斜率为1可知,x1+x2=8,y1+y2=2, =1,
∴c=4.
由题意得,|MF1|=|F1F2|=2c=8.
∵|MF1|+|MF2|=2a=12,
∴|MF2|=4.
设点M的坐标为(x0,y0)(x0>0,y0>0),
则 |F1F2|×y0=4y0.
又 4 =4 ,
∴4y0=4 ,解得y0=

惠州市2020届高三第二次调研考试(理数)

惠州市2020届高三第二次调研考试(理数)

惠州市2020届高三第二次调研考试(理数) 参考答案:数学(理科)一、选择题:1.C2.B3.D4.A5.B6.A7.A8.C9.B10.A11.C12.C1.【解析】设M={x|x>1},N={x|-2≤x≤2},则M∩N=(1,2],故选C。

2.【解析】(1+i)z=1-i,z=(1+i)/(1-i)2=-i,z的共轭复数为z=i,故选B。

3.【解析】n≥2时,Sn-1=1-a^(n-1),Sn=1-a^n,两式相减,整理得Sn-Sn-1=an-1-1,即an-1=2a,a=1/3,故选D。

4.【解析】代数法:cos=|b·c|/(|b||c|),几何法:cos=b·c/|b||c|=b(a-b)/(a-b)^2=b/(a-b),故选A。

5.【解析】①属于系统抽样,故错误;②概率只说明事件发生的可能性,某次试验中不一定发生,所以并不能说明天气预报不科学,故错误;③④正确,故选B。

6.【解析】cos(5π/32)=sin(π/2-5π/32)=-sin(3π/32),故选D。

7.【解析】由集合的包含关系可知选A。

8.【解析】不超过40的素数:2,3,5,7,11,13,17,19,23,29,31,37,共12个数,其中31/2=15.5,故选C。

9.【解析】解法一:定义域为x∈(0,1)∪(1,+∞),故排除A;f(100)>1,排除C;f(40)=3+37=11+29=17+23,共3组数,所以其和等于40的概率为:(3/12)×(1/11)+(3/12)×(1/10)+(3/12)×(1/9)=1/110,故选B。

解法二:设g(x)=x-lnx-1,g(1)=0,g'(x)=1-1/x,当x∈(1,+∞),g(x)>0,g(x)单调增,当x∈(0,1),g(x)<0,g(x)单调减,则g(x)≥g(1)=0.注意:文章中的公式和符号均已修正。

【2020】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案6

【2020】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案6
专题能力训练 6 函数与方程及函数的应用 一、能力突破训练
1.B 解析 由题意得 f(x)单调递增,f(1)=-1<0,f(2)=>0,所以 f(x)=+log2x 的零点落在区间(1,2)内. 2.C 解析 依题意得 g-2<0,g=1>0,则 x2 若 f(x)=1-10x,
则有 x1=0,此时|x1-x2|>,因此选 C. 3.B 解析 设 AD 长为 x cm,则 CD 长为(16-x)cm,
f(x)+f(2-x)= 所以函数 y=f(x)-g(x)=f(x)-3+f(2-x)= 其图象如图所示. 显然函数图象与 x 轴有 2 个交点,故函数有 2 个零点. 13.(1)-1 (2)[2,+∞) 解析 (1)当 a=1 时,f(x)= 当 x<1 时,2x-1∈(-1,1); 当 x≥1 时,4(x-1)(x-2)∈[-1,+∞). 故 f(x)的最小值为-1. (2)若函数 f(x)=2x-a 的图象在 x<1 时与 x 轴有一个交点,则 a>0,并 且当 x=1 时,f(1)=2-a>0,所以 0<a<2. 同时函数 f(x)=4(x-a)(x-2a)的图象在 x≥1 时与 x 轴有一个交点,所 以 a<1. 若函数 f(x)=2x-a 的图象在 x<1 时与 x 轴没有交点,则函数 f(x)=4(x-a)(x-2a)的图象在 x≥1 时与 x 轴有两个不同的交点,当 a≤0 时,函数 f(x)=2x-a 的图象与 x 轴无交点,函数 f(x)=4(x-a)(x-2a)的图象 在 x≥1 上与 x 轴也无交点,不满足题意. 当 21-a≤0,即 a≥2 时,函数 f(x)=4(x-a)·(x-2a)的图象与 x 轴的两 个交点 x1=a,x2=2a 都满足题意. 综上,a 的取值范围为[2,+∞). 14.解 (1)当 0<x≤10 时,W=xR(x)-(10+2.7x)=8.1x--10; 当 x>10 时,W=xR(x)-(10+2.7x)=98--2.7x. 故 W= (2)①当 0<x≤10 时,由 W'=8.1-=0,得 x=9.当 x∈(0,9)时,W'>0;当 x∈(9,10]时,W'<0. 所以当 x=9 时,W 取得最大值, 即 Wmax=8.1×9-93-10=38.6.

2020年高考理科数学(2卷):答案详细解析(word版)

2020年高考理科数学(2卷):答案详细解析(word版)

2020年普通高等学校招生全国统一考试理科数学(II 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,有一项是符合题目要求的.1. (集合)已知集合{}2,1,0,1,2,3U =--,{}1,0,1A =-,{}1,2B =,则()C U A B =A. {}2,3-B. {}2,2,3-C. {}2,1,0,3--D. {}2,1,0,2,3--【解析】∵{1,0,1,2}A B =-,∴(){}C 2,3U AB =-. 【答案】A2. (三角函数)若α为第四象限角,则A. cos20α>B. cos20α<C. sin 20α>D. sin 20α<【解析】α为第四象限角,即π2π2π2k k α-+<<,∴π4π24πk k α-+<<, ∴2α是第三或第四象限角,∴sin 20α<.【答案】D3. (概率统计,同文3)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05. 志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名【解析】该超市某日积压500份订单未配货,次日新订单不超过1600份的概率为0.95,共2100份,其中1200份不需要志愿者,志愿者只需负责900份,故需要900÷50=18名志愿者.【答案】B4.(数列)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块. 下一层的第一环比上一层的最后一环多9块,向外每环依次增加9块. 已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块【解析】设每一层有n 环,由题意可知从内到外每环的扇面形石板块数之间构成等差数列,且19a =,9d =,由等差数列性质可知,n S 、2n n S S -、32n n S S -也构成等差数列,且公差229d n d n '==.因下层比中层多729块,故有2322()()9729n n n n S S S S n ---==,解得9n =. 因此三层共有扇面形石板的块数为327127262726==272799=340222n S S a d ⨯⨯+=⨯+⨯. 【答案】C5. (解析几何,同文8)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A .5 B. 25 C. 35 D. 45【解析】如图A5所示,设圆的方程为222()()x a y b r -+-=,∵ 圆过点(2, 1)且与两坐标轴都相切,∴ 222(2)(1)a b r a b r ==⎧⎨-+-=⎩,解得1a b r ===或5a b r ===, 即圆心坐标为(1,1)或(5,5),圆心到直线230x y --=22211325521⨯--+或22255325=521⨯--+.图A5【答案】B6.(数列)数列()n a 中,12a =,m n m n a a a +=,若1551210...22k k k a a a ++++++=-,则k =A. 2B. 3C. 4D. 5【解析】∵m n m n a a a +=,∴211211n k n k k k a a a a a a a +--===,故有1210111551210...(222)(22)22k k k k k a a a a a ++++++=+++=-=-,∴42k a =又∵2111211112n n n n n n a a a a a a a a ---======,∴ 422k k a ==,∴4k =.【答案】C7.(立体几何)下图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为A.E B.F C.G D.H【解析】由三视图的特点,如图A7所示,该端点在侧视图中对应的点为E.图A7【答案】A8.(解析几何,同文9)设O为坐标原点,直线x a=与双曲线C:22221 x ya b-=(a>0,b>0)的两条渐近线分别交于D,E两点,若ODE∆的面积为8,则C的焦距的最小值为A.4B.8C.16D.32【解析】如图A8所示,双曲线C:22221x ya b-=(a>0,b>0)的渐近线为by xa=±,由题意可知,(,)D a b ,(,)E a b -,∴ 1282ODE S a b ab ∆=⋅==, ∴ 焦距22226422248c a b a a =+=+≥⨯=,当且仅当22a =时,等号成立. 故C 的焦距的最小值为8.图A8【答案】B9.(函数)设函数()ln |21|ln |21|f x x x =+--,则()f xA.是偶函数,且在1(,)2+∞单调递增 B.是奇函数,且在11(,)22-单调递减 C.是偶函数,且在1(,)2-∞-单调递增 D.是奇函数,且在1(,)2-∞-单调递减 【解析】∵()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,∴()f x 是奇函数,∵()ln ||g x x =,1()g x x '=,(即ln ||x 与ln x ,二者的导函数相同) ∴224()2121(21)(21)f x x x x x -'=-=+--+, 当1(,)2x ∈-∞-时,()0f x '<,()f x 在1(,)2-∞-单调递减. 当11()22x ∈-,时,()0f x '>,()f x 在1(,)2-∞-单调递增.当1()2x ∈+∞,时,()0f x '<,()f x 在1(,)2-∞-单调递减. 【答案】D10.(立体几何,同文11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为A .3B .32 C .1 D .32【解析】由题意可知239344ABC S AB ∆==,∴3AB =, 如图A10所示,设球O 的半径为R ,则24π16πR =,∴2R =,设O 在△ABC 上的射影为O 1,则O 1是△ABC 的外接圆的圆心, 故123333O A == O 到平面ABC 的距离22111OO R O A =-=.图A10【答案】C11. (函数,同文12)若2233x y x y ---<-,则A. ln(1)0y x -+>B. ln(1)0y x -+<C. ln ||0x y ->D. ln ||0x y -<【解析】2233x y x y ---<-可化为2323x x y y ---<-,设1()2323x x x x f x -⎛⎫=-=- ⎪⎝⎭,由指数函数的性质易知()f x 在R 上单调递增,∵2323x x y y ---<-,∴ x y <,∴0y x ->,∴11y x -+>,∴In(1)0y x -+>.【答案】A12. (概率统计)0-1周期序列在通信技术中有着重要应用,若序列12...n a a a 满足 {}0,1(1,2,...)i a i ∈=,且存在正整数m ,使得(1,2,...)i m i a a i +==成立,则称其为0-1周期序列,并满足(1,2,...)i m i a a i +==的最小正整数m 为这个序列的周期,对于周期为m 的0-1序列12...n a a a ,11()(1,2,...1)i m i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1的序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A. 11010...B. 11011...C. 10001...D. 11001...【解析】解法一(计数思想):由5111()(1,2,3,4)55i i k i C k a a k +==≤=∑,可得511i i k i a a +=≤∑. 因0=1i i k a a +⎧⎨⎩,故对于每一个(1,2,3,4)k k =,1i i k a a +=的个数不超过1,所以对于所有的(1,2,3,4)k k =,1i i k a a +=的总个数不能超过4.A 选项:1i i k a a +=的个数为236A =,故A 选项不符合题意.B 选项:1i i k a a +=的个数为2412A =,故B 选项不符合题意. D 选项:1i i k a a +=的个数为236A =,故D 选项不符合题意.C 选项:1i i k a a +=的个数为222A =,即151(4)a a k ==和511(1)a a k ==,因此可推出1(1)(4)5C C ==,(2)(3)0C C ==,故C 选项符合题意. 解法二(排除法): 由解法一可知,对于每一个(1,2,3,4)k k =,1i i k a a +=的个数不超过1.A 选项:当2k =时,241a a =,411a a =,故A 选项不符合题意.B 选项:当1k =时,121a a =,451a a =,故B 选项不符合题意.D 选项:当1k =时,121a a =,511a a =,故D 选项不符合题意.C 选项:序列的一个周期内只有两个1,1i i k a a +=的情况只有151(4)a a k ==和511(1)a a k ==,因此可推出1(1)(4)5C C ==,(2)(3)0C C ==,故C 选项符合题意.解法三(答案验证法):按照题设的定义11()(1,2,...1)i mi k i C k a a k m m +===-∑,逐个验证答案,使用排除法,即可得到正确选项. 如A 选项,121(2)(01010)=555C =++++>,排除A 选项,其余的这里不再赘述. 【答案】C二、填空题:本题共4小题,每小题5分,共20分.13.(平面向量)已知单位向量a ,b 的夹角为45°,k -a b 与a 垂直,则k =_______. 【解析】∵()ka b a -⊥,∴22()02ka b a ka a b k -⋅=-⋅=-=,∴22=k . 【答案】22 14.(概率统计)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有 种.【解析】根据题意,先把4名同学分为3组,其中1组有两人,2组各有一人,即从4名同学中任选两人即可,故有24C 种选法;将分成的3组同学安排到3个小区,共有33A 种方法;所以不同的安排方法共有234336=C A 种.【答案】36 15.(复数)设复数1z ,2z 满足122z z ==,则123z z i +,则12z z -=_______.【解析】解法一:在复平面内,用向量思想求解,原问题等价于:平面向量b a ,满足2||||==b a ,且,1)3(=+b a ,求||b a -.∵2222||2||2||||b a b a b a +=-++,∴16||42=-+b a ,∴12||2=-b a ,∴32||=-b a . 即1223-=z z解法二:在复平面内,如图A15所示,因12122==+=z z z z ,则1z ,2z ,12+z z 组成一个等边三角形,所以1z ,2z 之间的夹角为120°,所以22o 1212122cos120=44423-=+-++=z z z z z z .图A15【答案】316.(立体几何,同文16)设有下列4个命题:1P :两两相交且不过同一点的三条直线必在同一平面内.2P :过空间中任意三点有且仅有一个平面.3P :若空间两条直线不相交,则这两条直线平行.4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是_________① 14p p ∧ ② 12p p ∧ ③ 23p p ⌝∨ ④ 34p p ⌝∨⌝【解析】由公理2可知,p 1为真,p 2为假,2p ⌝为真;若空间两条直线不相交,则这两条直线可能平行,也可能异面,所以p 3为假,3p ⌝为真;由线面垂直的定义可知p 4为真;所以①14p p ∧为真命题,②12p p ∧为假命题,③23p p ⌝∨为真命题,④34p p ⌝∨⌝为真命题,故真命题的序号是①③④.【答案】①③④三、解答题:共70分. 解答应写出文字说明、证明过程或演算步骤. 第17~21题为必考题,每个试题考生都必须作答. 第22、23题为选考题,考生根据要求作答.(一)必考题,共60分.17.(12分)(三角函数)ABC ∆中,222sin sin sin sin sin A B C B C --=,(1)求A ;(2)若3BC =,求ABC ∆周长的最大值.【解析】(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,△ 由余弦定理得2222cos BC AC AB AC AB A =+-⋅, △ 由△,△得1cos 2A =-. 因为0πA <<,所以2π3A =. (2)由正弦定理及(1)得23sin sin sin AC AB BC B C A ===,从而 23AC B =,3π)3cos 3AB A B B B =--=-. 故π333cos 323)3BC AC AB B B B ++=+=++. 又π03B <<,所以当π6B =时,ABC △周长取得最大值33+. 18.(12分)(概率统计,同文18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分为面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()1,220i i x y i =⋅⋅⋅,,,,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得()()()()22202020202011111601200-80-9000--800ii i i i i i i i i i xy x xy yx x y y ==========∑∑∑∑∑,,,,.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()(),1,2,,20i i x y i =⋯的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由。

惠州市2020届高三第二次调研考试理科数学试题及答案解析

惠州市2020届高三第二次调研考试理科数学试题及答案解析

x100 的方差为 8 ,则数据 2x1 −1, 2x2 −1 , , 2x100 −1的方差为_________.
15.设 x 、 y 为正数,若 x + y = 1,则 1 + 2 的最小值是
2
xy
,此时 x =

16.已知椭圆
x2 a2
+
y2 b2
= 1(a
b
0) 的短轴长为 2,上顶点为 A ,左顶点为 B ,左、右
D. 31 32
4.已知 a,b 为互相垂直的单位向量,若 c = a − b ,则 cos b, c ( ).
A. 2 2
B. 2 2
C. 3 3
D. 3 3
5.下列说法正确的是( )
①从匀速传递的产品生产流水线上,质检员每 10 分钟从中抽取一件产品进行某项指
标检测,这样的抽样是分层抽样.
②某地气象局预报:5 月 9 日本地降水概率为 90%,结果这天没下雨,这表明天气预
2
,则 sin 2
的值为(
).
A. − 4 2 9
B. − 2 2 9
C. 2 2 9
D. 4 2 9
y x −1,
7.设
p
:
实数
x,
y
满足
(
x
−1)2
+
(
y
−1)2
2

q
: 实数
x,
y
满足
y
1−
x

y 1
则 p 是 q 的( )条件.
A.必要不充分 B.充分不必要
C.充要
D.既不充分也不必要
④异面直线 AB 与 CD 所成角的最大值为 90 .

贵州省卓越联盟2023-2024学年高二下学期期中考试数学试题(含答案)

贵州省卓越联盟2023-2024学年高二下学期期中考试数学试题(含答案)

贵州省卓越联盟2023-2024学年高二下学期期中考试数学注意事项:1.答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需要改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单选题(本大题共8小题,每小题5分,共40分)1.若曲线在处的切线方程为,则( )A .B .C .1D .22.高二某班级4名同学要参加足球、篮球、乒乓球比赛,每人限报一项,其中甲同学不能报名足球,乙、丙、丁三位同学所报项目都不相同,则不同的报名种数有( )A .54B .12C .8D .813.高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉,并且每一-排铁钉数目都比上一排多一个,一排中各个铁钉恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗铁钉间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉如此继续下去,在最底层的5个出口处各放置一个容器接住小球.理论上,小球落入2号容器的概率是多少()A.B .C .D .4.在的展开式中含项的系数是( )A .B .C .240D .605.由数字0,1,2,3,4,5可以组成多少个没有重复数字,并且比400000大的偶数?()A .120种B .144种C .48种D .24种6.用半径为1的圆形铁皮剪出一个圆心角为的扇形,制成一个圆锥形容器,当容器的容积最大时,()()y f x =1x =23y x =-()1f '=3-1-13141215()6112x x x ⎛⎫ ⎝+⎪⎭-3x 192-160-αα=ABCD7.乒乓球,被称为中国的“国球”。

惠州市2020届高三第二次调研考试(理数)

惠州市2020届高三第二次调研考试(理数)

惠州市2020届高三第二次调研考试数学(理科)数学(理科)参考答案一、选择题:1.【解析】1,|22M x x N x x =>=-≤≤,所以12MN =,,故选C .2.【解析】(1)z 1i i +=-,21(1)2z 1(1)(1)2i i ii i i i ---====-++-,z 的共轭复数为z i =,故选B . 3.【解析】11121n n n n S a n S a --=-⎧≥⎨=-⎩时,,两式相减,整理得111,,2a =∴ 所以{}n a 是首项为12,公比为12的等比数列,55111223113212S ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭∴==-,故选D .4.【解析】代数法:222cos ,22(2a a a 鬃-?-<>=====-×--?b c b c b cb b,故选A. 几何法:5.【解析】①属于系统抽样,故错误;②概率只说明事件发生的可能性,某次试验中不一定发生,6.,π2α-≤≤ 2sin 2339∴⎝⎭,故选A. 7.【解析】如图:,由集合的包含关系可知选A .8.【解析】不超过40的素数:2,3,5,7,11,13,17,19,23,29,31,37,共12个数,其中4033711291723=+=+=+,共3组数,所以其和等于40的概率为:2123122C =.故选C . 9.【解析】解法一:定义域为(0,1)(1,)x ∈+∞,故排除A ;(100)0f >,排除C ;1()0100f >,排除D ;故选B .解法二:设()ln 1g x x x =--,(1)0g =,'1()1g x x=-,当(1,)x ∈+∞,'()0g x >,()g x 单调增,当(0,1)x ∈,'()0g x <,()g x 单调减,则()(1)0g x g ≥=.故1()ln 1f x x x =--的定义域为(0,1)(1,)x ∈+∞,且()f x 在(0,1)x ∈上单调增,(1,)x ∈+∞上单调减,()0f x >,故选B .解法三:1()ln 1f x x x =--定义域为(0,1)(1,)x ∈+∞,故排除A ;当0x →时,()1ln 1,0ln 1x x x x --→+∞∴>--,排除D ; 当x →+∞时,1ln 10,0ln 1x x x x -->∴>--,排除C ;故选B . 10.【解析】设椭圆、双曲线离心率分别为1212,c ce e a a ==,设12,PF x PF y ==,由椭圆、双曲线定义得1122122,2x y a x a a x y a y a a +==+⎧⎧∴⎨⎨-==-⎩⎩,在12PF F ∆中,由余弦定理得 ()()()222222120121222122421cos cos 60,,3.222a a c x y c F PF a a xy a a +-+-∠==∴=∴=-又2221212221221,,3,c c ce e a a c a c e a a a ⋅=⋅=∴=∴=∴==故选A. 11. 【解析】①13D ABC ABC V S h -∆=⋅,当平面ADC ⊥平面ABC 时,三棱锥D ABC -的高最大,此时体积最大值为1111324D ABC V -=⨯⨯=,①错误;②设AC 的中点为O ,则由,Rt ABC Rt ADC ∆∆知,OA OB OC OD ===,所以O 为三棱锥D ABC -外接球的球心,其半径为112AC =,所以外接球体积为43π,即三棱锥D ABC -的外接球体积不变,②正确;③由①的解析过程知,三棱锥D ABC -的体积最大值时,平面ADC ⊥平面ABC ,所以二面角D AC B --的大小是090,③错误;④当ADC ∆沿对角线AC 进行翻折到使点D 与点B 的,即BD =在BCD ∆中,222BC BD CD =+,所以CD BD ⊥,又C D A D ⊥,翻折后此垂直关系没有变,所以CD ⊥平面ABD ,所以CD AB ⊥,即异面直线AB 与CD 所成角的最大值为090,④正确. 故选C .12.【解析】当()2x k k Z m πππ=+∈,即212k x m +=时,()f x取得极值存在0x 使[]22020)(m x f x <+成立,亦即存在k 使()()22123120k k m -++<成立,因此,只需()()2123k k -+最小即可,即0k =或1k =-时不等式成立即可,所以23120m -+<,即24m >,所以()(),22,m ∈-∞-⋃+∞. 故选C .二.填空题:本题共4小题,每小题5分,共20分,其中第15题第一空3分,第二空2分。

【2020】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案11

【2020】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案11

请说明理由.
专题能力训练 11 等差数列与等比数列
一、能力突破训练
1.D 解析 因为 a4+a10+a16=30,所以 3a10=30,即 a10=10,所以 a18-
2a14=-a10=-10.故选 D.
2.A 解析 由题意得 log2(a2·a3·a5·a7·a8)=log2=5log2a5=5,所以
(1)求{an}的通项公式;
(2)求 Sn,并求 Sn 的最小值.
11.已知数列{an}是等比数列.设 a2=2,a5=16.
(1)若 a1+a2+…+a2n=t(+…+),n∈N*,求实数 t 的值;
2/6
(2)若在之间插入 k 个数 b1,b2,…,bk,使得,b1,b2,…,bk,成等差数列,求
4/6
所以当 n=4 时,Sn 取得最小值,最小值为-16. 11.解 设等比数列{an}的公比为 q,由 a2=2,a5=16,得 q=2,a1=1.
(1)∵a1+a2+…+a2n=t(+…+), =t,即=t 对 n∈N*都成立,∴t=3. (2)=1,, 且,b1,b2,…,bk,成等差数列, ∴公差 d==-,且=(k+1)d, 即-1=(k+1),解得 k=13.
∵a3,a4,a8 成等比数列,∴(a1+3d)2=(a1+2d)(a1+7d),即 3a1d+5d2=0. ∵d≠0, ∴a1d=-d2<0,且 a1=-d. ∵dS4==2d(2a1+3d)=-d2<0,故选 B. 5.D 解析 由已知得=2,则{an+1}是公比为 2 的等比数列,所以 a4+1=(a2+1)·22=12.所以 a4=11.故选 D. 6.16 解析 因为 S10==40⇒ a1+a10=a3+a8=8,a3>0,a8>0,所以 a3·a8=16, 当且仅当 a3=a8=4 时取等号. 7.64 解析 由已知 a1+a3=10,a2+a4=a1q+a3q=5, 两式相除得, 解得 q=,a1=8, 所以 a1a2…an=8n,抛物线 f(n)=-n2+n 的对称轴为 n=-=3.5, 又 n∈N*,所以当 n=3 或 4 时,a1a2…an 取最大值为=26=64. 8 解析 由题意知 解得 xz=y2=y2,x+z=y, 从而-2=-2= 9.(1)证明 由 an+1=3an-2n 可得 an+1-2n+1=3an-2n-2n+1=3an-3·2n=3(an-2n). 又 a2=3a1-2,则 S2=a1+a2=4a1-2, 得 a2+S2=7a1-4=31,得 a1=5,则 a1-21=3≠0. 故{an-2n}为等比数列. (2)解 由(1)可知 an-2n=3n-1(a1-2)=3n,∴an=2n+3n, ∴Sn==2n+1+ 10.解 (1)设{an}的公差为 d,由题意得 3a1+3d=-15. 由 a1=-7 得 d=2. 所以{an}的通项公式为 an=2n-9. (2)由(1)得 Sn=n2-8n=(n-4)2-16.

上海高三下学期卓越考(二)数学试题(解析版)

上海高三下学期卓越考(二)数学试题(解析版)

交大附中2022学年第二学期高三年级数学卓越考(二)2023.4一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 若,,则是的______条件.():1,2x α∈[]:0,2x β∈αβ【答案】充分非必要 【解析】【分析】判断集合和之间的关系,即可判断出答案. ()1,2[]0,2【详解】由于是的真子集,故是的充分非必要条件, ()1,2[]0,2αβ故答案为:充分非必要2. 若是纯虚数,则的值为__________. 34(sin )(cos 55z i θθ=-+-tan θ【答案】 34-【解析】【详解】分析:由纯虚数的概念得,结合可得解.305405sin cos θθ⎧-=⎪⎪⎨⎪-≠⎪⎩221sin cos θθ+=详解:若是纯虚数, 34sin cos 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭则, 305405sin cos θθ⎧-=⎪⎪⎨⎪-≠⎪⎩又由,可得. 221sin cos θθ+=34sin cos 55θθ==-,所以. sin 3tan cos 4θθθ==-故答案为. 34-点睛:本题主要考查了纯虚数的概念及同角三角函数的基本关系,属于基础题. 3. 已知幂函数f (x )的图象经过点(2,4),则f (x )为______函数.(填奇偶性) 【答案】偶【解析】【分析】根据幂函数的概念设出的解析式,然后代点求出,再用函数奇偶性定义判断()f x ()f x x α=α奇偶性.【详解】因为函数是幂函数,所以可设,()f x ()f x x α=又f (2)=4,即2a =4,解得a=2,∴,∴,()2f x x =()()22()f x x x f x -=-==∴f(x )为偶函数. 故答案为偶.【点睛】本题主要考查了幂函数的基本概念,以及利用定义法判定函数的奇偶性,其中解答中熟记幂函数的基本概念,熟练应用函数奇偶性的定义判定是解答的关键,着重考查了推理与运算能力,属于基础题.4. 若双曲线经过点,且渐近线方程是y =±x ,则双曲线的方程是________. 13【答案】2219x y -=【解析】 【分析】利用渐近线方程为,设双曲线的方程是,代入点即可求解13y x =±229x y λ-=【详解】根据渐近线方程为,设双曲线的方程是,因为双曲线过点,所以13y x =±229x y λ-=,所以双曲线的方程为9219λ=-=2219x y -=故答案为:2219x y -=5. 已知命题:“非空集合的元素都是集合的元素”是假命题,给出下列四个命题: M P ①的元素不都是的元素; ②的元素都不是的元素; M P M P ③中有的元素;④ 存在,使得;M P x M ∈x P ∉其中真命题的序号是________(将正确的序号都填上). 【答案】①④ 【解析】【分析】从命题的否定入手.【详解】命题:“非空集合的元素都是集合的元素”是假命题,则命题:“非空集合的元素不都是M P M 集合的元素”是真命题,说明集合中至少有一个元素不属于集合,或者中就没有集合中的元P M P M P 素,因此②③错误,①④正确.故答案为①④.【点睛】本题考查真假命题的理解,对一个假命题,可从反面入手,即它的否定为真命题入手,理解起来较方便.6. 一个袋中装有5个球,编号为1,2,3,4,5,从中任取3个,用X 表示取出的3个球中最大编号,则______. ()E X =【答案】4.5 【解析】【分析】求出可能取值和概率,再根据公式进行计算即可.X ()E X 【详解】从中任取3个球,共有,,,,,,,()123,,()124,,()125,,()134,,()135,,()145,,()234,,,,10中情况, ()235,,()245,,()345,,所以可能取值为,X 345,,,,, ()1310P X ==()3410==P X ()635105===P X 所以. ()1339345101052E X =⨯+⨯+⨯=故答案为:. 4.57. 函数的部分图象如图所示,则____.tan()42y x ππ=-()OA OB AB +⋅=【答案】6 【解析】【详解】试题分析:由图可知,,∴ .(2,0)A (3,1)B ()(5,1)(1,1)6OA OB AB +⋅=⋅=考点:正切型函数的图象与平面向量的数量积运算.【方法点睛】本题主要考查了正切型函数的图象与平面向量的数量积运算,属于中档题.本题解答的关键观察图象发现分别是函数轴右侧的第一个零点和函数值为的点,即可求得,A B tan(42y x ππ=-y 1的坐标,进而求得向量的坐标,根据平面向量数量积的坐标运算即可求得答案.,A B (),OA OB AB +8. 如果一个球的外切圆锥的高是这个球半径的倍,那么圆锥侧面积和球的表面积的比值为______. 3【答案】 32【解析】【分析】设球的半径为,则圆锥的高为,取圆锥的轴截面,其中为圆锥的顶点,设球心为r 3r ABC A ,作出图形,分析可知为等边三角形,求出,利用圆锥的侧面积公式以及球体的表面积公O ABC AB 式可求得结果.【详解】设球的半径为,则圆锥的高为,取圆锥的轴截面,其中为圆锥的顶点, r 3r ABC A 设球心为,如下图所示:O设圆分别切、于点、,则为的中点,O AB AC E D D BC 由题意可得,,则, OD OE r ==3AD r =322AO AD OD r r r OE =-=-==又因为,所以,,同理可得,所以,,OE AB ⊥π6BAD ∠=π6CAD ∠=π3BAC ∠=又因为,故为等边三角形,故, AB AC =ABCπsin 3AD AB ===所以,圆锥的侧面积为,2ππ6πAB BD r ⨯⨯=⨯=因此,圆锥侧面积和球的表面积的比值为.226π34π2r r =故答案为:. 329. 已知某产品的一类部件由供应商A 和B 提供,占比分别为和,供应商A 提供的该部件的良品率110910为,供应商B 提供的该部件的良品率为.若发现某件部件不是良品,那么这个部件来自供应商B 910710的概率为______(用分数作答)【答案】 2728【解析】【分析】利用全概率公式,条件概率公式求解即可. 【详解】设“某件部件不是良品”为事件, A “这个部件来自供应商B ”为事件,B , ()11932810101010100P A =⨯+⨯= , ()93271010100P AB =⨯=. ()()()2728P AB P B A P A ∴==故答案为:272810. 已知,函数,的最小正周期为,将的图()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭()y f x =x ∈R π()y f x =像向左平移个单位长度,所得图像关于轴对称,则的值是______.π02ϕϕ⎛⎫<< ⎪⎝⎭y ϕ【答案】## π81π8【解析】【分析】由周期求出,即可求出的解析式,再根据三角函数的变换规则得到平移后的解析式,最ω()f x 后根据对称性得到的值. ϕ【详解】,函数的最小正周期为,, ()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭()y f x =2ππT ω==2ω∴=.π()sin 24f x x ⎛⎫=+ ⎪⎝⎭将的图像向左平移个单位长度,可得的图像,()y f x =ϕπsin 224y x ϕ⎛⎫=++ ⎪⎝⎭根据所得图像关于轴对称,可得,,解得,, y ππ2π42k ϕ+=+Z k ∈ππ28k ϕ=+Z k ∈又,则令,可得的值为. π02ϕ<<0k =ϕπ8故答案为:. π811. 如图,椭圆的中心在原点,长轴在x 轴上.以、为焦点的双曲线交椭圆于C 、D 、、1AA A 1A 1D 1C四点,且.椭圆的一条弦AC 交双曲线于E ,设,当时,双曲线的离心112CD AA=AE EC λ=2334λ≤≤率的取值范围为______.e ≤≤【解析】【分析】由题意设,则可设,根据向量的共线求得点坐标,代()()1,0,,0A c A c -,,,22c c D h C h ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭E 入双曲线的方程,结合离心率化简可得,求出的表达式,结合条件可列22221x y a b-=2221e e λλ+=-λ不等式,即可求得答案.【详解】设,则设,(其中为双曲线的半焦距,为C .到轴()()1,0,,0A c A c -,,,22c c D h C h ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭c h D x 的距离),,则,即, AE EC λ=AE EC λ∴= (,)()2,E E E E x c y h x cy λ--+=, ()()˙22,1211E E c c c y h x λλλλλλ-+-∴===+++即点坐标为,E ()()2,211c h λλλλ⎛⎫- ⎪ ⎪++⎝⎭设双曲线的方程为,将代入方程,得①,22221x y a b -=c a e =222221e x y c b-=将,E 代入①式,整理得, (,)2c C h ()()2,211c h λλλλ⎛⎫- ⎪ ⎪++⎝⎭2˙2222222)(121,(1441e h e h b b λλλλ--=-+=+消去,得,所以, 22h b 2221e e λλ+=-22213122e e e λ-==-++由于.所以,故 2334λ≤≤22331324e ≤-≤+2710,e e ≤≤≤≤e ≤≤12. 将关于x 的方程(t 为实常数,)在区间上的解从小到大依次记为()2sin 2π1x t +=01t <<[)0,∞+,设数列的前n 项和为,若,则t 的取值范围是______.12,,,,n x x x {}n x n T 20100πT ≤【答案】1150,,626⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】先根据三角函数的周期性得出满足的关系,然后再根据的对称性可得结果. 12,x x 12,x x 【详解】由得,则方程的解即为函数()2sin 2π1x t +=()1sin 2π2x t +=()2sin 2π1x t +=图象与直线交点的横坐标, ()sin 2πy x t =+12y =因为函数的周期为,()sin 2πy x t =+πT =所以是以x 1为首项,为公差的等差数列,135,,x x x π是以x 2为首项,为公差的等差数列,246,,,x x x π所以,所以, 201234201210()90π100πT x x x x x x x =+++++=++≤ 12πx x +≤令得, π2π=π()2x t k k ++∈Z πππ=242k t x +-因为,所以,[)0,x ∈+∞[)2ππ,x t t +∈+∞由函数图象的对称性知,x 1与对应的点关于函数图象的某条对称轴()sin 2πy x t =+2x ()sin 2πy x t =+对称, 因为, 01t <<所以当,即时,可知x 1与对应的点关于直线对称,此时满足π0π6t <≤106t <≤2x ππ=42t x -成立;12πx x +≤当,即时,可知x 1与对应的点关于直线对称,此时由π5ππ66t <≤1566t <≤2x 3ππ=42t x -得, 123πππ2x x t +=-≤12t ≥所以; 1526t ≤≤当,即时,可知x 1与对应的点关于直线对称,此时不满足5πππ6t <<516t <<2x 5ππ=42t x -;12πx x +≤综上,或. 106t <≤1526t ≤≤故答案为:.1150,,626⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦【点睛】思路点睛:涉及同一函数的不同自变量值对应函数值相等问题,可以转化为直线与函数图象交点横坐标问题,结合函数图象性质求解.二、选择题(本大题共有4题,满分18分,第13,14题每题4分,第15,16题每题5分)13. 设a R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的 ∈A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【详解】试题分析:运用两直线平行的充要条件得出l 1与l 2平行时a 的值,而后运用充分必要条件的知识来解决即可.解:∵当a=1时,直线l 1:x+2y ﹣1=0与直线l 2:x+2y+4=0, 两条直线的斜率都是﹣,截距不相等,得到两条直线平行, 故前者是后者的充分条件, ∵当两条直线平行时,得到,解得a=﹣2,a=1, ∴后者不能推出前者,∴前者是后者的充分不必要条件. 故选A .考点:必要条件、充分条件与充要条件的判断;直线的一般式方程与直线的平行关系.14. 已知平面,,直线,若,,则αβl αβl αβ⋂=A. 垂直于平面的平面一定平行于平面 βαB. 垂直于直线的直线一定垂直于平面l αC. 垂直于平面的平面一定平行于直线 βlD. 垂直于直线的平面一定与平面,都垂直 l αβ【答案】D 【解析】【详解】选D.由α⊥β,α∩β=l ,知:垂直于平面β的平面与平面α平行或相交,故A 不正确;垂直于直线l 的直线若在平面β内,则一定垂直于平面α,否则不一定,故B 不正确;垂直于平面β的平面与l 的关系有l ⊂β,l ∥β,l 与β相交,故C 不正确;由平面垂直的判定定理知:垂直于直线l 的平面一定与平面α,β都垂直,故D 正确.15. 已知抛物线上一点到其焦点的距离为5,双曲线的左顶()220y px p =>()()1,0M m m >2221xy a-=点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值为( ) A.B.C.D.13141912【答案】A 【解析】 【分析】由得抛物线方程,在抛物线上求得坐标,再根据双曲线一条渐近线与直线152p+=M M AM 平行可得答案.【详解】根据题意,抛物线上一点到其焦点的距离为5,22(0)y px p =>(1,)(0)M m m >则点到抛物线的准线的距离也为5,即,解得, M 2px =-152p +=8p =所以抛物线的方程为,则,所以,即M 的坐标为, 216y x =216m =4m =14(,)又双曲线的左顶点,一条渐近线为,2221x y a-=(),0A a -1y x a =而,由双曲线的一条渐近线与直线平行,则有,解得. 41AM k a =+AM 411a a =+13a =故选:A16. 已知函数是定义域在R 上的奇函数,且当时,,则关()y f x =0x >()()()230.02f x x x =--+于在R 上零点的说法正确的是( ) ()y f x =A. 有4个零点,其中只有一个零点在内()3,2--B. 有4个零点,其中只有一个零点在内,两个在内 ()3,2--()2,3C. 有5个零点,都不在内()0,2D. 有5个零点,其中只有一个零点在内,一个在 ()0,2()3,+∞【答案】C 【解析】【分析】解法一:先研究时,零点的情况,根据零点的情况,以及函数图象的平0x >()()23y x x =--移,即可得出时零点的个数.然后根据奇函数的对称性以及特性,即可得出答案;解法二:求解方程0x >,也可以得出时零点的个数. 然后根据奇函数的对称性以及特性,即可得出答案.()0f x =0x >【详解】解法一:根据对称性可以分三种情况研究(1)的情况,是把抛物线与轴交点为向上平移了0.02,则与0x >()f x ()()23y x x =--x ()()2,0,3,0x 轴交点变至之间了,所以在之间有两个零点;()2,3()2,3(2)当时,,根据对称性之间也有两个零点 0x <()()()230.02f x x x =-++-()3,2--(3)是定义在R 上的奇函数,故, ()f x ()00f =所以有五个零点. 解法二:(1)直接解方程的两根 ()()230.020x x --+=也可以得两根为,都在之间; x =()2,3(2)当时,,根据对称性之间也有两个零点 0x <()()()230.02f x x x =-++-()3,2--(3)是定义在R 上的奇函数,故, ()f x ()00f =所以有五个零点. 故选:C .【点睛】方法点睛:先求出时,零点的情况.然后根据奇函数的性质,即可得出答案.0x >三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤17. 2020年全面建成小康社会取得伟大历史成就,决战脱贫攻坚取得决定性胜利.某市积极探索区域特色经济,引导商家利用多媒体的优势,对本地特产进行广告宣传,取得了社会效益和经济效益的双丰收,某商家统计了7个月的月广告投入x (单位:万元)与月销量y (单位:万件)的数据如表所示: 月广告投入x /万元 1 2 3 4 5 6 7 月销量y /万件 28323545495260(1)已知可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明,并求y 关于x 的线性回归方程;(2)根据(1)的结论,预计月广告投入大于多少万元时,月销量能突破70万件.(本题结果均按四舍五入精确到小数点后两位)【答案】(1),线性相关程度相当高;. 0.99r =75151ˆ147yx =+(2)当月公告投入大于万元时,月销售量能突破万件. 9.0470【解析】【分析】(1)利用相关系数的公式求得的值,得出相关性相当高,再求得和的值,即可求得回归直r ˆbˆa 线的方程;(2)结合(1)中的回归方程,根据题意列出不等式,即可求解. 【小问1详解】解:由表格中的数据,可得, 1(1234567)47x =⨯++++++=,1(28323545495270)437y =⨯++++++=,77722111()28,()820,()()150ii i i i i x x y y x x y y ===-=-=--=∑∑∑可相关系数为,70.99x y r ==≈所以与的线性相关程度相当高,从而用线性回归模型能够很好地拟合与的关系,y x y x 又由,可得, 71721()()7514()ii ii x x y y r x x ==--==-∑∑75151ˆˆ434147a y bx =-=-⨯=所以关于的线性回归方程为. y x 75151ˆ147yx =+【小问2详解】解:要使得月销售量突破万件,则,解得, 707515170147x +>2269.0425x >≈所以当月公告投入大于万元时,月销售量能突破万件.9.047018. 如图,在四棱锥中,底面是平行四边形, 平面P ABCD -ABCD 90,ACB PA ∠=⊥ 是的中点.,1,ABCD PA BC AB F ===BC(1)求证: 平面;DA ⊥PAC (2)试在线段上确定一点,使平面,并求三棱锥的体积. PD G //CG PAF A CDG -【答案】(1)证明见解析;(2). 112【解析】【分析】(1)因为四边形是平行四边形,所以,所以,因为ABCD 90ACB DAC ∠=∠= DA AC ⊥平面,则又,故平面.PA ⊥ABCD ,PA DA ⊥AC PA A ⋂=DA ⊥PAC (2)取的中点为,构造平行四边形,可证得平面.此时,高为的一半,所以体积PD G //CG PAF PA 为. 1111111332212A CDG G ACD ACD V V S h --∆∴==⋅⋅=⨯⨯⨯⨯=【小问1详解】因为四边形是平行四边形,平面,ABCD 90,,ACB DAC DA AC PA ∴∠=∠=∴⊥⊥ABCD DA ⊂平面,ABCD 又平面,,PA DA ∴⊥,AC PA A DA =∴⊥ PAC【小问2详解】设的中点为,连接,在平面内作于点,则, PD G ,AG CG PAD GH PA ⊥H //GH AD 且,由已知可得,且,连接,则四边形为平行12GH AD =////FC AD GH 12FC AD GH ==FH FCGH 四边形,平面平面,平面,//,GC FH FH ∴⊂ ,PAF CG ⊄PAF //CG ∴PAF 为的中点时,平面,设为的中点, 连接,则,G ∴PD //CG PAF S AD GS //GS PA 且平面,平面, 11,22GS PA PA ==⊥ ABCD GS ∴⊥ABCD.11111··11332212A CDG G ACD ACD V V S GS --∴===⨯⨯⨯⨯= 19. 甲、乙两地相距1004千米,汽车从甲地匀速驶向乙地,速度不得超过120千米/小时,已知汽车每小时的运输成本(以1元为单位)由可变部分和固定部分组成:可变部分与速度v (千米/小时)的立方成正比,比例系数为2,固定部分为a 元.()0a >(1)把全部运输成本y 元表示为速度v (千米/小时)的函数,并指出这个函数的定义域; (2)为了使全部运输成本最小,汽车应以多大速度行驶? 【答案】(1) (]()2100420,120a y v v v ⎛⎫=+∈ ⎪⎝⎭(2)答案见解析 【解析】【分析】(1)求出汽车从甲地匀速行驶到乙地所用时间,根据货车每小时的运输成本可变部分和固定部分组成,可求得全程运输成本以及函数的定义域; (2)对求导,分两种情况讨论单调性,从而可求得最小成本时对应的速度. 210042a y v v ⎛⎫=+ ⎪⎝⎭【小问1详解】由题意得,每小时运输成本为 , 全程行驶时间为 小时, ()32a v +1004v所以全部运输成本; (]()3210042001004(2),12a y v v v a v v ⎛⎫+⎪=∈+ ⎝=⎭【小问2详解】由(1)知,求导得,210042a y v v ⎛⎫=+ ⎪⎝⎭3224100441004a v a y v v v -⎛⎫'=-+=⨯ ⎪⎝⎭令,解得, 30,40y v a '=-=v =,即时,,递减; 120<304120a <<⨯0v <<200,1042a y v y v ⎛⎫=+ ⎪⎝<⎭',递增, 120v <≤200,1042a y v y v ⎛⎫=+ ⎪⎝>⎭'此时,当,有最小值; v =y,即时,,递减; 120≥34120a ≥⨯0120v <≤200,1042a y v y v ⎛⎫=+ ⎪⎝<⎭'此时,当,有最小值.120v =y综上,为了使全部运输成本最小,当时,汽车应以千米/小时行驶;当304120a <<⨯v =时,汽车应以千米/小时行驶.34120a ≥⨯120v =20. 已知是平面内的两个定点,且,动点到点的距离是10,线段的垂直平分线A B 、8AB =M A MB l 交于点,若以所在直线为轴,的中垂线为轴建立直角坐标系. MA P AB x AB y (1)试求点的轨迹的方程;P C (2)直线与点所在曲线交于弦,当变化时,试求的面积的()40R mx y m m --=∈P C EF m AEF △最大值.【答案】(1)221259x y +=(2) 15【解析】【分析】(1)根据几何关系将距离转化为,结合椭圆定义即可求解;10PA PB +=(2)先判断直线过定点且斜率不能为0,则三角形的底为定值,即求三角形的高的最大值,联12y y -立直线与椭圆方程,将斜率转化为三角形式,结合三角公式化简,用基本不等式求解即可. 【小问1详解】以为轴,中垂线为轴,则,AB x ABy ()()4,0,4,0A B -由题意得,, 108PA PB PA PM AB +=+==>所以点的轨迹是以为左右焦点,长轴长为10的椭圆,P ,A B 设椭圆的方程为,焦距为2c ,()222210x y a b a b+=>>所以,解得,22221028a c a b c =⎧⎪=⎨⎪=+⎩534a b c =⎧⎪=⎨⎪=⎩所以点的轨迹的方程为P C 221259x y +=【小问2详解】由得过定点,显然,40mx y m --=()4y m x =-()4,0B 0m ≠联立 ()224,1259y m x x y ⎧=-⎪⎨+=⎪⎩得恒成立. 2297225810,Δ0y y m m ⎛⎫++-=>⎪⎝⎭所以,, 12227272925925m my y m m+=-=-++212228181925259m y y m m =-=-++所以12y y -===因为为直线斜率,所以令m tan ,tan 0,m θθ=≠所以22122290tan 90tan 125tan 925tan 9sin y y θθθθθ-==⋅++2222290sin 190sin 19015.99cos 25sin sin 916sin sin 416sin sin θθθθθθθθθ=⋅=⋅=≤=+++即 时 当且仅当916sin ,sin θθ=3sin ,4θ=1215,4max y y -=()115815.24AEF max S =⨯⨯=△【点睛】思路点睛:圆锥曲线的面积最值问题多采用直线与圆锥曲线联立方程组,运用韦达定理结合基本不等式计算的方法,本题为简化计算,还可以采用三角换元,将直线斜率与三角函数巧妙联系从而更快求解。

2020年全国2卷 理科数学真题(pdf版含解析)

2020年全国2卷 理科数学真题(pdf版含解析)

2020年全国2卷理科数学真题(解析版)一、选择题:(每小题5分,共60分)1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则=)(B A C U ()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A 【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A.考点:集合的运算2.若α为第四象限角,则()A.cos2α>0 B.cos2α<0 C.sin2α>0 D.sin2α<0【答案】D 【详解】当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误;当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误;由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确;故选:D.考点:三角函数的正负性3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名 B.18名C.24名D.32名【答案】B【详解】由题意,第二天新增订单数为50016001200900+-=,故需要志愿者9001850=名.故选:B 考点:统计与概率4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S --,因为下层比中层多729块,所以322729n n n n S S S S -=-+,即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+即29729n =,解得9n =,所以32727(9927)34022n S S +⨯===.故选:C 考点:等差数列5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为()A.5 B.25 C.355D.455【答案】B【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线230x y --=的距离均为22555d -==;所以,圆心到直线230x y --=的距离为25.故选:B.考点:直线与圆6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=- ,则k =()A.2B.3C.4D.5【答案】C【详解】在等式m nm n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=,所以,数列{}n a 是以2为首项,以2为公比的等比数列,则1222n n n a -=⨯=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++⋅-⋅-∴+++===-=--- ,1522k +∴=,则15k +=,解得4k =.故选:C.考点:数列的运算7.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【答案】A【详解】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E 故选:A 考点:三视图8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B【详解】 2222:1(0,0)x y C a b a b -=>>∴双曲线的渐近线方程是b y xa=± 直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩故(,)D a b 联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩故(,)E a b -∴||2ED b=∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =当且仅当a b ==取等号∴C 的焦距的最小值:8故选:B.考点:双曲线9.设函数()ln |21|ln |21|f x x x =+--,则f (x )()A.是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,22-单调递减C.是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减【答案】D【详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.考点:函数的奇偶性与单调性10.已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.3B.32C.1D.32【答案】C【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=⨯-=⨯-=,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C.考点:外接球11.若2233x y x y ---<-,则()A.ln(1)0y x -+>B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【详解】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,∴,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;∴与1的大小不确定,故CD 无法确定.故选:A.考点:构造函数,单调性12.0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是()A 11010 B.11011 C.10001 D.11001【答案】C【详解】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;故选:C 考点:周期性二、填空题:本题共4小题,每小题5分,共20分.13.已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】2【详解】由题意可得:211cos 452a b →→⋅=⨯⨯=,由题得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.故答案为:2.考点:平面向量的运算14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【详解】 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种故答案为:36.考点:排列组合15.设复数1z ,2z 满足12||=||=2z z ,12i z z +=+,则12||z z -=__________.【答案】【详解】122z z == ,可设12cos 2sin z i θθ=+⋅,22cos 2sin z i αα=+⋅,()()122cos cos 2sin sin z z i i θαθα∴+=+++⋅=+,()()2cos cos 2sin sin 1θαθα⎧+=⎪∴⎨+=⎪⎩,两式平方作和得:()422cos cos 2sin sin 4θαθα++=,化简得:1cos cos sin sin 2θαθα+=-()()122cos cos 2sin sin z z iθαθα∴-=-+-⋅====故答案为:考点:复数的运算16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.考点:点线面位置关系三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求ABC 周长的最大值.【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴ 周长的最大值为3+18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,202180i i x x =-=∑(,2021)9000i i y y =-=∑(,201)800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)niix y x y --∑((=1.414.【详解】(1)样区野生动物平均数为201111200602020ii y ==⨯=∑,地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(,)i i x y的相关系数为20()0.943iix x y y r --=≈∑(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.19.已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22bAB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x c y c=⎧⎨=±⎩,4CD c ∴=,43CD AB = ,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<Q ,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,b =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cxx y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去),由抛物线的定义可得25533cMF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.20.如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F.(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【详解】(1) ,M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴在ABC 中,M 为BC 中点,则BC AM ⊥又 侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BB MN BC⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN∴BC ⊥平面1A AMN又 11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF=11//B C EF∴//EF BC∴又BC ⊥ 平面1A AMN∴EF ⊥平面1A AMN EF ⊂ 平面11EB C F ∴平面11EB C F ⊥平面1A AMN(2)连接NP//AO 平面11EB C F ,平面AONP ⋂平面11EB C F NP=∴//AO NP根据三棱柱上下底面平行,其面1A NMA ⋂平面ABC AM =,面1A NMA ⋂平面1111A B C A N=∴//ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m >)可得:ON AP =,6NP AO AB m=== O 为111A B C △的中心,且111A B C △边长为6m∴16sin 6033ON m=⨯⨯︒=故:3ON AP m==//EF BC∴AP EPAM BM=∴3EP =解得:EP m=在11B C 截取1B Q EP m ==,故2QN m= 1B Q EP =且1//B Q EP∴四边形1B QPE 是平行四边形,∴1//B E PQ由(1)11B C ⊥平面1A AMN故QPN ∠为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得:PQ ===sin10QN QPN PQ ∴∠===∴直线1B E 与平面1A AMN 所成角的正弦值:10.21.已知函数f (x )=sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性;(2)证明:()f x ≤(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤34nn .【详解】(1)由函数的解析式可得:()32sin cos f x x x =,则:()()224'23sin cos sin f x x x x =-()2222sin 3cos sin x x x =-()222sin 4cos 1x x =-()()22sin 2cos 12cos 1x x x =+-,()'0f x =在()0,x π∈上的根为:122,33x x ππ==,当0,3x π⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增,当2,33x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x <单调递减,当2,3x ππ⎛⎫∈⎪⎝⎭时,()()'0,f x f x >单调递增.(2)注意到()()()()22sinsin 2sin sin 2f x x x x x f x πππ+=++==⎡⎤⎣⎦,故函数()f x 是周期为π的函数,结合(1)的结论,计算可得:()()00f f π==,23228f π⎛⎫⎛⎫=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭,223228f π⎛⎫⎛⎫⎛⎫=⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,据此可得:()max 8f x =⎡⎤⎣⎦,()min8f x =-⎡⎤⎣⎦,即()338f x ≤.(3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x x x233333sin sin 2sin 4sin 2nx x x x ⎡⎤=⎣⎦()()()2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n nnx x x x x x x x -⎡⎤=⎣⎦232sin sin 2888n x x ⎡⎤≤⨯⨯⨯⨯⨯⎢⎥⎣⎦238n⎡⎤⎛⎫⎢⎥≤ ⎪ ⎪⎢⎥⎝⎭⎣⎦34n⎛⎫= ⎪⎝⎭.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【详解】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭;设所求圆圆心的直角坐标为(),0a ,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式4)(≥x f 的解集;(2)若4)(≥x f ,求a 的取值范围.【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .绝密★启用前2020年普通高等学校招生全国统一考试(原卷板)理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则AC U ()(B)A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}2.若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为()A.5B.5C.5D.4556.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=- ,则k =()A.2B.3C.4D.57.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A.EB.FC.GD.H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.329.设函数()ln |21|ln |21|f x x x =+--,则f (x )()A.是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,22-单调递减C.是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减10.已知△ABC 是面积为4的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.B.32C.1D.211.若2233x y x y ---<-,则()A.ln(1)0y x -+>B.ln(1)0y x -+<C.ln ||0x y ->D.ln ||0x y -<12.0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是()A.11010B.11011C.10001D.11001二、填空题:本题共4小题,每小题5分,共20分.13.已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.15.设复数1z ,2z 满足12||=||=2z z,12i z z +=+,则12||z z -=__________16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求ABC 周长的最大值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,202180i i x x =-=∑(,2021)9000i i y y =-=∑(,201)800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)niix y x y --∑((=1414.19.已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.20.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.21.已知函数f(x)=sin2x sin2x.(1)讨论f(x)在区间(0,π)的单调性;(2)证明:()8f x ;(3)设n∈N*,证明:sin2x sin22x sin24x…sin22n x≤3 4 n n.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式4)(≥x f 的解集;(2)若4)(≥x f ,求a 的取值范围.参考答案一、选择题1.A.2.D.3.B4.C5.B.6.C.7.A8.B.9.D.10.C.11.A.12.C二、填空题13.2.14.36.15.16.①③④.三、解答题17.【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+18.【详解】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑,地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(,)i i x y的相关系数为20()0.943i i x x y y r --=≈∑(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.19.【详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x c x y a b a b c =⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22b AB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x c y c =⎧⎨=±⎩,4CD c ∴=,43CD AB = ,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<Q ,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,b =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去),由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.20.【详解】(1) ,M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴在ABC 中,M 为BC 中点,则BC AM⊥又 侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BB MN BC⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN∴BC ⊥平面1A AMN又 11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又 11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF∴//EF BC∴又BC ⊥ 平面1A AMN∴EF ⊥平面1A AMNEF ⊂ 平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)连接NP//AO 平面11EB C F ,平面AONP ⋂平面11EB C F NP =∴//AO NP根据三棱柱上下底面平行,其面1A NMA ⋂平面ABC AM =,面1A NMA ⋂平面1111A B C A N =∴//ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m >)可得:ON AP =,6NP AO AB m=== O 为111A B C △的中心,且111A B C △边长为6m∴16sin 603ON =⨯⨯︒=故:ON AP == //EF BC ∴AP EP AM BM =∴3EP =解得:EP m=在11B C 截取1B Q EP m ==,故2QN m= 1B Q EP =且1//B Q EP∴四边形1B QPE 是平行四边形,∴1//B E PQ由(1)11B C ⊥平面1A AMN故QPN ∠为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得:PQ ===sin10QN QPN PQ ∴∠===∴直线1B E 与平面1A AMN 所成角的正弦值:10.21.【详解】(1)由函数的解析式可得:()32sin cos f x x x =,则:()()224'23sin cos sin f x x x x =-()2222sin 3cos sin x x x =-()222sin 4cos 1x x =-()()22sin 2cos 12cos 1x x x =+-,()'0f x =在()0,x π∈上的根为:122,33x x ππ==,当0,3x π⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增,当2,33x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x <单调递减,当2,3x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增.(2)注意到()()()()22sinsin 2sin sin 2f x x x x x f x πππ+=++==⎡⎤⎣⎦,故函数()f x 是周期为π的函数,结合(1)的结论,计算可得:()()00f f π==,23228f π⎛⎫⎛⎫=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭,223228f π⎛⎫⎛⎫⎛⎫=⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,据此可得:()max 8f x =⎡⎤⎣⎦,()min 8f x =-⎡⎤⎣⎦,即()338f x ≤.(3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x x x 233333sin sin 2sin 4sin 2nx x x x ⎡⎤=⎣⎦ ()()()2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n nx x x x x x x x -⎡⎤=⎣⎦232sin sin 2888n x x ⎡⎤≤⨯⨯⨯⨯⨯⎢⎥⎣⎦ 23338n ⎡⎤⎛⎫⎢⎥≤ ⎪ ⎪⎢⎥⎝⎭⎣⎦34n ⎛⎫= ⎪⎝⎭.22.【详解】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭;设所求圆圆心的直角坐标为(),0a ,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=.23.【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .。

安徽省卓越县中联盟2019_2020学年高二数学12月素质检测试题理[含答案]

安徽省卓越县中联盟2019_2020学年高二数学12月素质检测试题理[含答案]

立方米, w 至少定为高多二少数?学(理) 第 3 页 (共 4 页)
(Ⅱ)假设同组中的每个数据用该组区间的右端点值代替.当 w =3 时,试完成该 10000
位居民该月水费的频率分布表,并估计该市居民该月的人均水费.
组号 1
2
3
4
5
6
7
8
分组 2, 4 4,6 6,8 8,10 10,12 12,17 17, 22 22, 27
1 2
x
1成立.
(Ⅰ)若 p 为真命题,求 m 的取值范围;
(Ⅱ)若 p∧q 为假,p∨q 为真,求 m 的取值范围.
19.在正项等比数列{an}中,a1=1 且 2a3,a5,3a4 成等差数列. (Ⅰ)求数列的通项公式;
(Ⅱ)若数列{bn}满足 bn
n an
,求数列{bn}的前
n
项和
Sn.
20.我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了节约用水,市民用
频率
21.如图,已知梯形 ABCD 中, AD ∥ BC , AB AD ,矩形 EDCF 平面 ABCD ,且 AB BC DE 2, AD 1 . (Ⅰ)求证: AB AE ; (Ⅱ)求证: DF ∥平面 ABE ; (Ⅲ) 求二面角 B EF D 的正切值.
22.已知曲线 C 上的任意一点到两定点 F1 1, 0 、F2 1, 0 距离之和为 4 ,直线 l 交曲线 C 于
D.2
12.已知正四面体的中心与球心 O 重合,正四面体的棱长为 2 6 ,球的半径为 5 ,则正四
面体表面与球面的交线的总长度为 ( )
A. 4
B. 8 2
C.12 2
D.12
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分.请把正确答案填在题中横线上)

浙江省杭州市金华卓越联盟2023-2024学年高二上学期12月阶段联考试题 数学含答案

浙江省杭州市金华卓越联盟2023-2024学年高二上学期12月阶段联考试题 数学含答案

2023学年第一学期金华卓越联盟12月阶段联考高二年级数学试题(答案在最后)考生须知:1.本卷共4页满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、学号和姓名;考场号、座位号写在指定位置;3.所有答案必须写在答题纸上,写在试卷上无效;4.考试结束后,只需上交答题纸.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.准线方程为2y =的抛物线的标准方程是()A.24x y =B.24x y =-C.28x y= D.28x y=-2.直线210x ay +-=和直线()3110a x ay ---=垂直,则a =()A.1B.12C.1或12D.1或12-3.已知在等比数列{}n a 中,4816a a ⋅=,则6a 的值是()A.4B.-4C.±4D.164.如图,在三棱台111ABC A B C -中,且112AB A B =,设1,,AB a AC b AA c ===,点D 在棱11B C 上,满足112B D DC = ,若AD xa yb zc =++,则()A.11,,163x y z === B.111,,632x y z ===C.11,,136x y z === D.111,,362x y z ===5.已知等差数列{}n a 的前n 项和为n S ,且202220230,0S S ><,则下列说法错误的是()A.10120a <B.10110a >C.数列{}n a 是递减数列D.{}n S 中1010S 最大6.已知圆221:20(0)C x ax y a -+=>,直线:0l x +=,圆1C 上恰有3个点到直线l 的距离等于1,则圆1C 与圆222:(1)(1C x y -+=的位置关系是()A.内切B.相交C.外切D.相离7.已知圆22:(4)1C x y +-=上有一动点P ,双曲线22:197x y M -=的左焦点为F ,且双曲线的右支上有一动点Q ,则PQ QF +的最小值为()A.1- B.5C.7+ D.58.阅读材料:空间直角坐标系O xyz -中,过点()000,,P x y z 且一个法向量为(),,n a b c =的平面α的方程为()()()0000a x x b y y c z z -+-+-=,阅读上面材料,解决下面问题:已知平面α的方程为21x y z -+=,点()3,1,1Q -,则点Q 到平面α距离为()A.6B.2C.102D.34二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知()()2,2,2,1,2,1a b =-=-,则下列说法正确的是()A.()1,4,1a b +=-B.a∥bC.a b⊥D.cos ,23a ab -=10.已知直线()():2220l mx m y m m R ++--=∈,圆22:(1)(2)25C x y -+-=,点P 为圆C 上的任意一点,下列说法正确的是()A.直线l 恒过定点()1,1B.直线l 与圆C 恒有两个公共点C.直线l 被圆C 截得最短弦长为D.当1m =-时,点P 到直线l 距离最大值是52+11.已知数列{}{},n n a b 满足()*123111,23n n n a a a a b n N S n++++=∈ 是{}n a 的前n 项和,下列说法正确的是()A.若2n a n n =+,则232n n nb +=B.若n b n =,则{}n a 为等差数列C.若1n b n =+,则{}n a 为等差数列D.若2nn b =,则()122nn S n =-⋅+12.已知抛物线2:4C y x =的焦点为F ,准线l 与x 轴交于点M ,过M 的直线l 与抛物线C 相交于()()1122,,,A x y B x y 两点,点D 是点A 关于x 轴的对称点,则下列说法正确的是()A.124y y =- B.4AF BF +的最小值为10C.,,B F D 三点共线D.0MB MD ⋅> 三、填空题:本题共4小题,每题5分,共20分.13.在空间直角坐标系O xyz -中,已知点()()3,1,4,2,1,5M N -,则MN =__________.14.过点()0,0作圆22:430C x y y +-+=的两条切线,切点为A B 、,则劣弧长 AB =__________.15.如图,已知正方形0000A B C D 的边长为2,分别取边00000000,,,D A A B B C C D 的中点1111,,,A B C D ,并连接形成正方形1111A B C D ,继续取边11111111,,,D A A B B C C D 的中点2222,,,A B C D ,并连接形成正方形2222A B C D ,继续取边22222222,,,D A A B B C C D 的中点3333,,,A B C D ,并连接形成正方形3333,A B C D ,依此类推;记011A A B 的面积为1122,a A A B 的面积为2,a ,依此类推,()*1n n n A A B n N -∈ 的面积为n a ,若12310231024n a a a a +++=,则n =__________.16.设12F F 、是椭圆2222:1(0)x y C a b a b +=>>的左、右焦点,点,P Q 为椭圆C 上的两点,且满足21260,2PF Q PF QF ∠==,则椭圆C 的离心率为__________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)如图,在长方体1111ABCD A B C D -中,12,3,4AB AD AA ===,点,E F 分别为棱1,AB DD的中点,(1)求证:1C F ⊥平面BCF ;(2)求直线1C F 与平面1DEC 所成角的正弦值.18.(本题满分12分)已知数列{}n a 满足11a =,点()*111,n n n N a a +⎛⎫∈⎪⎝⎭在直线210x y -+=上.(1)求证:数列11n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求出{}n a 的通项公式;(2)求满足11635n a ≤≤的n 的取值构成的集合.19.(本题满分12分)已知动点P 与两个定点()()1,0,4,0A B 的距离的比是2.(1)求动点P 的轨迹C 的方程;(2)直线l 过点()2,1,且被曲线C截得的弦长为l 的方程.20.(本题满分12分)已知等差数列{}n a 前n 项和为n S ,满足343,10a S ==.数列{}n b 满足12b =,*112,n n n nb a n N b a ++=∈.(1)求数列{}{},n n a b 的通项公式;(2)设数列{}nc 满足()*1(1)32,n n n n n c n N a b +-+=∈,求数列{}n c 的前n 项和n T .21.(本题满分12分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为正方形,2,,AB PA E F ==分别为,PB PD 的中点.(1)求平面CEF 与底面ABCD 所成角的余弦值;(2)求平面CEF 与四棱锥P ABCD -表面的交线围成的图形的周长.22.(本题满分12分)已知双曲线C 的中心为坐标原点,上顶点为()0,2,离心率为2.(1)求双曲线C 的渐近线方程;(2)记双曲线C 的上、下顶点为12,,A A P 为直线1y =上一点,直线1PA 与双曲线C 交于另一点M ,直线2PA 与双曲线C 交于另一点N ,求证:直线MN 过定点,并求出定点坐标.2023学年第一学期金华卓越联盟12月阶段联考高二年级数学参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.D 【解析】242pp =⇒=,又抛物线开口向下,所以抛物线的方程为28,D x y =-正确.2.C 【解析】()()311201a a a a -⋅+⋅-=⇒=或1,C 2a =正确.3.C 【解析】2486616,4,C a a a a ⋅==∴=±正确.4.A 【解析】1111111111111212,,3333AD AA A D A D A B A C AD AA A B C =+=+∴=++又111111111,,,2263A B a A C b AA c AD a b c ===∴=++,A 正确.5.D【解析】()()120222022101110121011101220221011002a a S a a a a +==+>⇒+>()1202320231012101220232023002a a S a a +==<⇒<,则10110a >所以数列{}n a 单调递减,{}n S 中1011S 最大.D 正确.6.B 【解析】圆上3个点到直线的距离是1,则圆心到直线的距离应是1,12aa a -∴=-,则2a =,圆1C 的圆心为()2,0,半径是2,圆2C 的圆心为(,半径是1,则12C C =,所以两圆的位置关系是相交.B 正确.7.D【解析】圆心()0,4C ,取双曲线的左焦点()224,0,1,6F PQ QC QF QF ≥-=+ ,则()22216555PQ QF QC QF QC QF CF +≥-++=++≥+=PQ QF ∴+的最小值为5+,D 正确.8.A 【解析】平面α的法向量()1,1,2n =-,在平面α上任取一点()1,0,1A -,则()4,1,0QA =- ,556A 66QA n d n ⋅=== 正确.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分.9.ACD 【解析】()1,4,1a b +=- ,选项A 正确,a b λ≠ ,选项B 错误;()()2122210a b -⋅+⋅+⋅-=∴⊥选项C 正确;()12324,2,4cos ,23236a b a a b -=--∴->==⋅,选项D 正确,正确答案是A.C.D 10.ABD【解析】直线():2220l m x y y +-+-=,所以恒过定点()1,1.选项A 正确;因为定点()1,1在圆C 内,所以直线l 与圆C 恒有两个公共点.选项B 正确;l 被圆C 截得的最短弦长22516-=,选项C 错误;当1m =-时,:0l x y -=,点P 到直线l 25522+=+,选项D 正确.正确答案是A.B.D11.ABD 【解析】当2n a n n =+,则11n a n n =+,所以()221322n n n n n b +++==,选项A 正确;已知12311123n a a a a n n++++= ,当1n =时,11a =,当2n ≥时,12311111231n a a a a n n -++++=-- ,则(11,1n n a a n n n=∴==时也成立),所以{}n a 为等差数列,选项B 正确;已知123111123n a a a a n n++++=+ ,当1n =时,12a =,当2n ≥时,1231111231n a a a a n n -++++=- ,则(11,1n n a a n n n=∴==时不成立),所以{}n a 不是等差数列,选项C 不正确;已知123111223n n a a a a n++++= ,当1n =时,12a =,当2n ≥时,112311112231n n a a a a n --++++=- ,则1112,2(1n n n n a a n n n--=∴=⋅=时不成立),所以12,1;2,2n n n a n n -=⎧=⎨⋅≥⎩当1n =时,12S =,1n =时,12112,222322n n a S n -==+⋅+⋅++⋅ ()2122222122n n n S n n -=⋅+⋅++-⋅+⋅ ()()22314122022222212212n n n nnn S n n n ----=++++-⋅=+⋅=-⋅-- 所以()122,1nn S n n =-⋅+=时也成立,选项D 正确.正确答案是A.B.D 12.CD【解析】设直线:1l x my =-,联立方程组224,4401y x y my x my ⎧=-+=⎨=-⎩,则121244y y m y y +=⎧⎨=⎩,选项A 不正确;221212144y y x x =⋅=,所以()121244114559AF BF x x x x +=+++=++≥=当且仅当2142x x ==时等号成立,所以4AF BF +的最小值为9,选项B 不正确;()11,D x y -,设:l x ny t =+,联立方程组224,440y x y ny t x ny t ⎧=--=⎨=+⎩,则121244y y my y t -+=⎧⎨-=-⎩,所以1t =,即直线BD 过点F ,选项C 正确;对于D 选项,()()22111,,1,MB x y MD x y =+=+-,22121212114214440MB MD x x x x y y m m ∴⋅=+++-=+-++=+>,选项D 正确.正确答案是C.D三、填空题:本题共4小题,每题5分,共20分.6【解析】()1,2,1,1416MN MN =-∴=++=.14.23π【解析】圆C :22(2)1x y +-=,2,63COB COA ACB ππ∠∠∠∴==∴=,故劣弧长 23AB π=.15.10【解析】由题意可知三角形的面积构成首项为12,公比为12的等比数列,12311122110231,1012102412nnn a a a a n ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭∴+++==-=∴=-.16.219【解析】如图,过1F 作12F M QF = ,连接2MF ,因为122PF QF = ,所以12260F PF PF Q ∠∠==,设2QF t =,则11222,,22,2PF t MF t PF a t MF a t ===-=-,在2PMF 中,222222||||PM PF PM PF MF +-=,即22222294846644t a at t at t a at t +-+-+=-+,化简得1210859,,99a t PF a PF a ===,所以100648021299c +-==,所以离心率219c a =.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【解析】(1)方法一:因为F 是1DD 的中点,所以111112,D F D C FD DC D FC ==== 和FDC 是等腰直角三角形,所以1145D FC CFD ∠∠==,1C F CF ∴⊥,因为BC ⊥平面111,CDD C C F ⊂平面11CDD C ,所以1BC C F ⊥,,BC CF ⊂平面11BCF C F ∴⊥平面BCF方法二:以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴建立空间直角坐标系,()()()()()()()110,3,0,2,3,0,0,0,2,0,2,4,2,0,0,0,2,2,0,2,2,C B F C CB CF C F ==-=--所以111440,0,C F CF C F CB C F ⋅=-=⋅=∴⊥平面BCF ;(2)()()13,1,0,0,2,4DE DC == ,设平面1DEC 的法向量为(),,n x y z =,则130240DE n x y DC n y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,所以取()2,6,3n =- ,又()10,2,2C F =--,11132sin cos ,14||C F n C F n C F n θ⋅∴=== .直线1C F 与平面1DEC所成角的正弦值为14.18.【解析】(1)由已知得111212121,21111n n n n nn a a a a a a ++++=+∴==++,且11120a +=≠,所以数列11n a ⎧⎫+⎨⎬⎩⎭是等比数列,112n n a ∴+=,则1;21n n a =-(2)因为11635n a ≤≤,所以111,52163,626463215n n n ≤≤≤-≤∴≤≤-,得2log 66n ≤≤,又因为*n N ∈,所以n 的取值构成的集合是{}3,4,5,6.19.【解析】(1)设点(),P x y=,化简得2210210x y x +-+=,所以动点P 的轨迹C 的方程为22(5)4x y -+=;(2)由(1)可知点P 的轨迹C 是以()5,0为圆心,2为半径的圆,可计算得圆心()5,0到直线l的距离1d ==,①当直线l 的斜率不存在时,圆心到直线l 的距离是3,不符合条件,②当直线l 的斜率存在时,设直线l 的方程为()12y k x -=-,即210kx y k --+=,所以1d ==,化简得229611k k k ++=+,解得0k =或34k =-,所以直线l 的方程是1y =或34100x y +-=.20.【解析】(1)设数列{}n a 的公差为1123,4610a d d a d +=⎧∴⎨+=⎩,解得11,1,n a d a n ==∴=.()11211,2n n n n b n b n b b n n ++++=∴= ,且121b =,所以n b n ⎧⎫⎨⎬⎩⎭是等比数列,2,2n nn n b b n n∴=∴=⋅(也可用累乘法求{}n b 的通项公式)(2)()()()()1111(1)3211(1)(1)(1)12212212n n n nn n n n n n n c n n n n n n ++++⎛⎫-+--==-+=- ⎪ ⎪+⋅⋅+⋅⋅+⋅⎝⎭,()1111(1)212n n n T n ++∴=---+⋅21.【解析】(1)以A 为原点,以AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,平面ABCD 的法向量为()0,0,1m =,()()()()()2,2,0,1,0,1,0,1,1,1,2,1,1,1,0C E F CE EF =--=- ,设平面CEF 的法向量为(),,n x y z = ,所以200CE n x y z EF n x y ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩ ,所以取()1,1,3n = ,所以cos ,||||11m n m n m n ⋅〈〉=== ,所以平面CEF 与底面ABCD所成角的余弦值为11;(2)由对称性可知平面CEF 与棱PA 交于一点,设交点()()40,0,,1,0,1,1330,3Q t QE t QE n t t =-⋅=+-=∴= ,103QE QF ∴==又CE CF ==,所以围成的图形的周长为2103+22.【解析】(1)设双曲线方程为22221(0,0)y x a b a b-=>>,由上顶点坐标可知2a =,则由52c e a ==可得225,1c b c a ==-=,双曲线的渐近线方程为2y x =±.(2)由(1)可得()()120,2,0,2A A -,设()()1122,,,M x y N x y ,设直线MN 的方程为y kx m =+,与2214y x -=联立可得()2224240k x kmx m -++-=,且()22Δ1640k m =-+>,则212122224,44km m x x x x k k --+==--,()2212122248,44k m m y y y y k k -+-∴+==--设()1213,1,,A P A P P t k k t t∴=-=,2111233,4A P A P MA MA MA k k k k k ∴=-=-⋅= ,得2212MA NA k k ⋅=-2221221222441641612,124y y k m m k x x m ++---+-∴⋅=-=--,化简得22(2)3,4m m +=-。

【2020】高考数学(理科,天津课标版)大二轮复习:综合能力训练 含答案

【2020】高考数学(理科,天津课标版)大二轮复习:综合能力训练 含答案
其中正确的是 .(填写所有正确结论的编号)
三、解答题(本大题共6小题,共80分)
15.(13分)△ABC的内角A,B,C的对边分别为a,b,c.已知sin(A+C)=8sin2.
(1)求cos B;
(2)若a+c=6,△ABC的面积为2,求b.
16.(13分)已知数列{an}中,a1=2,且an=2an-1-n+2(n≥2,n∈N*).
(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.
19.(14分)已知椭圆C:=1(a>b>0)的左、右焦点F1,F2与椭圆短轴的一个端点构成边长为4的正三角形.
(1)求椭圆C的标准方程;
(2)过椭圆C上任意一点P作椭圆C的切线与直线F1P的垂线F1M相交于点M,求点M的轨迹方程;
(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.
18.(13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.
(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
A.(0,2]B.[-1,0)C.[2,4)D.[1,4)
2.设直线x+y=1与抛物线y2=2px(p>0)交于A,B两点,若OA⊥OB,则△OAB的面积为( )
A.1B.C.D.2
3.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( )
【2020】高考数学(理科,天津课标版)大二轮复习:综合能力训练 含答案

惠州市2020届高三第二次调研考试理科数学试卷含答案

惠州市2020届高三第二次调研考试理科数学试卷含答案

④在回归直线方程 y? 0.1x 10 中,当解释变量 x 每增加 1 个单位时,预报变量 y? 增加 0.1 个单位.
A.①②
3 6.若 cos
2
B.③④
C .①③
1 ,且
≤ ≤ ,则 sin 2 的值为(
3
2
2
D .②④ )
42
A.
9
22
B.
9
22
C.
9
42
D.
9
y≥ x 1
7.设 p :实数 x, y 满足 ( x 1)2 ( y 1)2 ≤ 2 , q :实数 x, y 满足 y ≤ 1 x ,则 p 是 q 的(
ABC 的外接球体积不变;
③三棱锥 D ABC 的体积最大值时,二面角 D AC B 的大小是 60 ;
④异面直线 AB 与 CD 所成角的最大值为 90 .
其中正确的是(

A.①②④
B.②③
C .②④
D .③④
12.设函数 f (x)


3 sin
x
,若存在
f ( x) 的极值点 x0 满足 x02
x y
a1 a1
a2 a2
,在
△ PF1F2
中,由余弦
定理得:
cos F1PF2 cos60
x2 y2 (2c)2 2(a12 a22) 4c2 2(a12 a22 ) 4a1a2 (a1 a2 )2 a1 a2 1
2xy
2(a12 a22 )
2(a12 a22 )
a12 a22
a1 a2 2
a1 3a2 , c2 a1a2 3a22 , c 3a2 ,
3b2 ,由 e1e2

惠州市2020届高三第二次调研考试 理科数学参考答案与评分细则

惠州市2020届高三第二次调研考试 理科数学参考答案与评分细则
惠州市 2020 届高三第二次调研考试
理科数学参考答案与评分细则
一、选择题:
题号 1
2
3
4
5
6
7
8
9 10 11 12
答案 C
B
DA
B
A
A
C
B
A
C
C
1.【解析】 M = x x 1, N = x | −2 x 2 ,所以 M N = (1,2 ,故选 C.
2.【解析】 (1+ i) z =1− i , z = 1− i = (1− i)2 = −2i = −i , z 的共轭复数为 z = i ,故选 B. 1+ i (1+ i)(1− i) 2
18.(本小题满分 12 分)
【解析】(1)将
n
= 1代入
an+1
=
1+
1 n
an
+
n +1 ,得 n
a2
=
2a1
+
2
……………………2 分

a1
= 1,
a2
=
8 3
,得

=
3.
……………………………………………………………4 分
(2)由 an+1
=
1
+
1 n
an
+

5
=
22
+
c2

2

2c



3 8

整理得
2c 2

3c

2
=
0
……………10 分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档