高中数学讲义微专题10 函数零点的个数问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题10 函数零点的个数问题
一、知识点讲解与分析:
1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点
2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。 (1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”(假设()f x 连续) ① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号
3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一
4、函数的零点,方程的根,两图像交点之间的联系
设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若
()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()()
,g x h x 交点的横坐标,其范围和个数可从图像中得到。
由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。(详见方法技巧) 二、方法与技巧:
1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。例如:对于方程
ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫
>< ⎪⎝⎭
即可判定
其零点必在1,12⎛⎫
⎪⎝⎭
中
2、函数的零点,方程的根,两函数的交点在零点问题中的作用 (1)函数的零点: 工具:零点存在性定理
作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。
缺点:方法单一,只能判定零点存在而无法判断个数,且能否得到结论与代入的特殊值有关 (2)方程的根: 工具:方程的等价变形
作用:当所给函数不易于分析性质和图像时,可将函数转化为方程,从而利用等式的性质可对方程进行变形,构造出便于分析的函数
缺点:能够直接求解的方程种类较少,很多转化后的方程无法用传统方法求出根,也无法判断根的个数
(3)两函数的交点: 工具:数形结合
作用:前两个主要是代数运算与变形,而将方程转化为函数交点,是将抽象的代数运算转变为图形特征,是数形结合的体现。通过图像可清楚的数出交点的个数(即零点,根的个数)或者确定参数的取值范围。
缺点:数形结合能否解题,一方面受制于利用方程所构造的函数(故当方程含参时,通常进行参变分离,其目的在于若含x 的函数可作出图像,那么因为另外一个只含参数的图像为直线,所以便于观察),另一方面取决于作图的精确度,所以会涉及到一个构造函数的技巧,以及作图时速度与精度的平衡(作图问题详见:1.7 函数的图像)
3、在高中阶段主要考察三个方面:(1)零点所在区间——零点存在性定理,(2)二次方程根分布问题,(3)数形结合解决根的个数问题或求参数的值。其中第(3)个类型常要用到函数零点,方程,与图像交点的转化,请通过例题体会如何利用方程构造出函数,进而通过图像解决问题的。 三、例题精析:
例1:直线y a =与函数3
3y x x =-的图象有三个相异的交点,则a 的取值范围为 ( ). A .()2,2- B .[]2,2- C .[)2,+∞ D .(],2-∞-
思路:考虑数形结合,先做出3
3y x x =-的图像,
()()'233311y x x x =-=-+,令'0y >可解得:1x <-或
1x >,
故3
3y x x =-在()(),1,1,-∞-+∞单调递增,在()1,1-单调递减,函数的极大值为()12f -=,极小值为()12f =-,
做出草图。而y a =为一条水平线,通过图像可得,y a =介于极大值与极小值之间,则有在三个相异交点。可得:()2,2a ∈- 答案:A
小炼有话说:作图时可先作常系数函数图象,对于含有参数的函数,先分析参数所扮演的角色,然后数形结合,即可求出参数范围。
例2:设函数()()2
22ln 1f x x x x =+-+,若关于x 的方程()2
f x x x a =++在[]0,2上恰
有两个相异实根,则实数a 的取值范围是_________
思路:方程等价于:()()2
2
22ln 12ln 1x x x x x a a x x +-+=++⇒=-+,即函数y a
=与()()2ln 1g x x x =-+的图像恰有两个交点,分析
()g x 的单调性并作出草图:()'21
111
x g x x x -=-
=
++ ∴令()'0g x >解得:1x > ()g x ∴在()0,1单调递
减
,
在
()
1,2单调递增,
()()()112ln2,00,222ln3g g g =-==-,由图像可得,水平线y a =位于()()1,2g g 之
间时,恰好与()g x 有两个不同的交点。 ∴12ln222ln3a -<≤- 答案:12ln222ln3a -<≤-
小炼有话说:(1)本题中的方程为()2
2
22ln 1x x x x x a +-+=++,在构造函数时,进行
了x 与a 的分离,此法的好处在于一侧函数图像为一条曲线,而含参数的函数图像由于不含x 所以为一条水平线,便于上下平移,进行数形结合。由此可得:若关于x 的函数易于作出图像,则优先进行参变分离。所以在本题中将方程转变为()2ln 1a x x =-+,构造函数
()()2ln 1g x x x =-+并进行数形结合。