蒸汽锅炉爆炸后果分析及对策

蒸汽锅炉爆炸后果分析及对策
蒸汽锅炉爆炸后果分析及对策

最新一起燃气锅炉爆炸事故案例汇编

一起燃气锅炉炉膛爆炸事故案例 一、事故概况 2002年2月10日下午,南京师范大学4t/h燃气锅炉在调试过程中发生炉膛爆炸事故,造成死亡1人,重伤1人,轻伤2人,均为调试人员。 南京师范大学锅炉房要进行改造,将原来的燃煤锅炉换成2台燃气锅炉,l台2t/h,另1台4t/h,由南京锅炉厂总承包。2月10日17时30分左右,2t/h锅炉调试初步完成,接着调试4t/h,18时10分,几次点火点不着,再点火时即发生炉膛爆炸。爆炸后,燃烧器盖板飞落在锅炉前方5m处,燃烧器点火电缆、电离棒已断成几节,2块后烟道挡板飞到锅炉房北墙上后掉落到地上,2块前烟道挡板飞出锅炉房。该锅炉为卧式内燃回火管锅炉。 二、事故原因 1.调试过程中,违反操作程序,将气密性检验装置WDK3/01短接,避开检测程序后强行启动点火程序。 2.装在DMV双电磁阀上点火管路接头为非原配件,其制作质量不合格,导致DMV双电磁阀内漏。 由于上述两方面的原因,在调试过程中,有大量煤气从主气管路和点火旁路进入锅炉,刚开始因为点火风量与煤气压力,浓度匹配不佳而点不着火。经过一段时间,煤气和空气混合物到达爆炸极限

(5%~35%),烟气流程总容积17.97m3,l.0m3的煤气就能达到爆炸极限,调试人员强行启动点火程序,一点火炉膛即发生爆炸。 三、预防同类事故的措施 1、严格执行持证上岗制度,同时要求操作人员按照操作规程进行作业; 2、燃油、燃气锅炉在调试过程中要仔细检查,发现异常立即停炉,避免事故的发生。 四、燃气锅炉操作规程的学习 1启动、升压、供汽 1.1启动前的准备工作 1.1.1内外部检查:确认锅炉本体、燃烧机、附属设备状态良好;安全附件、各阀门,仪表等作用灵活,位置正确; 1.1.2检查线路电压是否符合要求,各种开关位置是否正常,分别启动水泵、燃烧机的风机、油泵等各种辅机的运行是否正常。 1.1.3锅炉上水:打开排空阀,使水位上至正常水位(略低于中水位)。 1.2启动 1.2.1燃气锅炉为程序启动,按下控制柜上的启动按钮,燃烧机风机电机进入程序启动,首先进行炉膛吹扫,时间通常为2分钟左右,然后自动点火,稳定燃烧。 1.2.2点火完毕后根据所需要的负荷调整燃烧量,锅炉投入正常运行。

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模拟分析法 超压: 1) TNT 当量 通常,以TNT 当量法来预测蒸气云爆炸的威力。如某次事故造成的 破坏状况与kgTNT 炸药爆炸所造成的破坏相当,则称此次爆炸的威力 为kgTNT 当量。 蒸气云爆炸的TNT 当量W N T 计算式如下: VWn=1.8 XaX WX Q/Q TNT 式中,W N T —蒸气云的TNT 当量(kg ) a —蒸气云的TNT 当量系数,正己烷取 a =0.04; W —蒸气云爆炸中烧掉的总质量(kg ) Q —物质的燃烧热值(kJ/kg ), 正己烷的燃烧热值按48.27 X 106J/kg ,参与爆炸的正己烷按最大 使用量792kg 计算,则爆炸能量为38.23 X 109J 将爆炸能量换算成TNT 当量q , —般取平均爆破能量为 4.52 X 106J/kg ,因此 W N T = 1.8 XaX WX Q /q TNT + =1.8 X 0.04X 792X 48.27 X 106/4.52 X 106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预 测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死 亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺 出血而死亡的概率为0.5,它与爆炸量之间的关系为: =11.3 m R 1 13.6 如 0.37 13.6 420.43 0.37 1000 1000

重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数 人可能死亡或受伤。其内径就是死亡半径R,外径记为R,代表该处 人员因冲击波作用耳膜破损的概率为0.5,它要求的冲击波峰值超压 为44000Pa。冲击波超压P按下式计算: P =0.137Z-3 +0.119Z-2 +0.269Z-1-0.019 44000 44000 P 0.434 F0 101325 E 3 式中: P ――冲击波超压,Pa; Z――中间因子,等于0.996 ; E――蒸气云爆炸能量值,J ; P0——大气压,Pa,取101325 得R2=32.7m 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R2,外径R3, 表示外边界处耳膜因冲击波作用破裂的概率为0.01,它要求的冲击波峰值超压为17000Pa冲击波超压P按下式计算: -3 -2 -1 P =0.137Z 3 +0.119Z2 +0.269Z1-0.019 c 17000 17000 c“c r 5 1 UO R 101325 Z -R31 E 3 P -冲击波超压,Pa; Z—中间因子,等于 1.672 ; E—蒸气云爆炸能量值,J ; P0-大气压,Pa,取 101325

蒸汽锅炉事故分析与处理论文

蒸汽锅炉事故分析与处理 【摘要】在分析锅炉缺水与满水故障的基础上,可有效提高锅 炉运行的安全性。【关键词】锅炉缺水满水 abstract: on the basis of analyzed the failure of the boiler dry and full of water, it can effectively improve the safety of the boiler operation.key words: boiler ;full of water ;shortage in water 中图分类号:tk22 文献标识码:a 文章编号:蒸汽锅炉具有 工作压力大 , 介质温度高 , 运行工况复杂等特点 , 其事故种类 呈现出多种多样形式。本文主要就缺水与满水事故进行分析,由于 锅炉种类多样,本文针对的主要是蒸汽锅炉。一、锅炉缺水事故在锅炉运行中,锅炉水位低于最低安全水位而危及锅炉安全运行的现象,称为缺水事故。缺水事故可分为轻微缺水和严重缺水两种。如 水位在最低安全水位线以下,但还能看见,或虽然已看不见水位,但 对允许采用“叫水法”的锅炉进行“叫水”后水位很快出现时, 属于轻微缺水。如水位已看不见,用“叫水法”也不能出现时,属于严重缺水。锅炉缺水事故,如果处理不当,会造成设备严重损坏,如 果在锅炉严重缺水的情况下进水,就会导致锅炉爆炸。这是因为锅 炉缺水后,一方面钢板被干烧而过热,甚至烧红,使强度大为下降, 另一方面由于过热后的钢板温度与给水的温度相差极为悬殊,钢板 先接触水的部位因遇冷急剧收缩而龟裂,在蒸汽压力的作用下,龟 裂处随即撕成大的破口,汽水从破口喷射出来,即造成爆炸事故。 1.

2018事故案例分析:某化工厂爆炸事故原因分析

2018事故案例分析:某化工厂爆炸事故原因分析 一、单项选择题(共25题,每题2分,每题的备选项中,只有1个事最符合题意) 1、物体打击、机械伤害、火灾和高出坠落类似事故的分类依据是__。 A.事故危险的严重程度 B.导致事故的直接原因 C.事故类别 D.职业健康的标准 2、[2011年考题]锅炉结渣是指渣在高温下黏结于受热面、炉墙、炉排之上并越积越多的现象。结渣会使受热面吸热能力减弱,降低锅炉的出力和效率。下列措施中能预防锅炉结渣的是。 A:控制炉膛出口温度,使之不超过灰渣变形温度 B:降低煤的灰渣熔点 C:提高炉膛温度,使煤粉燃烧后的细灰呈飞腾状态 D:加大水冷壁间距 E:立即转移账户上的资金 3、某商厦1993年10月竣工投入使用。商厦共6层,其中地下2层、地上4层,耐火等级为二级,占地面积3 500平方米,建筑面积8 200平方米,高20.4米。商厦地下2层是家具商场和货物仓库。家具商场主要经营红木家具、沙发、席梦思床垫、办公桌椅等。地下1层主要经营副食品、百货等。地上1层主要经营小五金、小家电、文体用品、服装、日用品等;2层主要经营服装;3层仅有一些货架摊位;4层东侧和南侧为办公区,北侧有一间会议室,西侧为某歌舞厅KTV 包间,中部为某歌舞厅大厅。火灾当晚歌舞厅内有400余人。2008年12月25日20时许,员工王某在地下1层中部进行焊接操作时,电焊火花顺着钢板上的孔洞掉落到地下2层中部,引起楼梯上的沙发塑料泡沫等物品起火。王某等人发现起火后,用室内消火栓通过孔洞向1层浇水扑救,但火势没有得到有效控制,反而越来越大,他就同其他职工一起逃离现场。21时35分公安消防支队接到报警后,相继调集31辆消防车、200多名消防人员赶赴火场,随后又请调公安、武警等单位协同作战。由于这次火灾起火部位在该商厦的最底层,东北和西北两个楼梯间上下贯通,着火后形成烟囱效应,在风压的作用下,大量有毒烟雾很快扩散到整个大楼。火灾发生后,该商厦有关人员盲目采取了全楼断电措施,楼内又未设置消防应急照明灯,致使全楼漆黑一片,给扑救火灾和人员营救带来了极大的困难。公安消防部队在火灾扑救中,共营救遇险人员106人。22时50分将火控制,26日0时37分将火彻底扑灭。这起火灾事故造成309人死亡、7人受伤,直接财产损失275.3万元。手提式灭火器宜设置在挂钩、托架上或灭火器箱内,其顶部离地面高度应小于m。 A:1.00 B:1.50 C:2.00 D:2.50 E:3.00

论文-天津港爆炸事故后果分析

化学品爆炸后果分 析 —以天津港爆炸为例

前言 本报告通过对天津港爆炸事故现场数据以及现场爆炸情况、范围的收集,应用事故调查分析的方法,通过模拟计算来分析天津港爆炸事故的后果。本报告说明了了事故经过、原因、人员伤亡和直接经济损失,认定了事故性质,提出了对有关责任人员和责任单位的处理建议,分析了事故暴露出的突出问题和教训,提出了加强和改进工作的意见建议。

2015年8月12日,位于天津市滨海新区天津港的瑞海国际物流有限公司(以下简称瑞海公司)危险品仓库发生特别重大火灾爆炸事故。通过反复的现场勘验、检测鉴定、调查取证、模拟实验、专家论证,查明了事故经过、原因、人员伤亡和直接经济损失,认定了事故性质和责任,提出了对有关责任人员和责任单位的处理建议,分析了事故暴露出的突出问题和教训,提出了加强和改进工作的意见建议。 调查认定,天津港“8·12”瑞海公司危险品仓库火灾爆炸事故是一起特别重大生产安全责任事故。 一、事故基本情况 (一)事故发生的时间和地点。 2015年8月12日22时51分46秒,位于天津市滨海新区吉运二道95号的瑞海公司危险品仓库(北纬39°02′22.98″,东经117 °44′11.64″。地理方位示意图见图1)运抵区(“待申报装船出口货物运抵区”的简称,属于海关监管场所,用金属栅栏与外界隔离。由经营企业申请设立,海关批准,主要用于出口集装箱货物的运抵和报关监管)最先起火,23时34分06秒发生第一次爆炸,23时34分37秒发生第二次更剧烈的爆炸。事故现场形成6处大火点及数十个小火点,8 月14日16时40分,现场明火被扑灭。 (二)事故现场情况。 事故现场按受损程度,分为事故中心区(航拍图见图2)、爆炸冲击波波及区。事故中心区为此次事故中受损最严重区域,该区域东至跃进路、西至海滨高速、南至顺安仓储有限公司、北至吉运三道,面积约为54万平方米。两次爆炸分别形成一个直径15米、深1.1米的月牙形小爆坑和一个直径97米、深2.7米的圆形大爆坑。以大爆坑为爆炸中心,150米范围内的建筑被摧毁。

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT 当量 通常,以TNT 当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT 炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT 当量。 蒸气云爆炸的TNT 当量W TNT 计算式如下: W TNT =×α×W f ×Q f /Q TNT 式中,W TNT —蒸气云的TNT 当量(kg) α—蒸气云的TNT 当量系数,正己烷取α=; W f —蒸气云爆炸中烧掉的总质量(kg) Q f —物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg ,参与爆炸的正己烷按最大使用量792kg 计算,则爆炸能量为×109J 将爆炸能量换算成TNT 当量q ,一般取平均爆破能量为×106J/kg ,因此 W TNT = ×α×W f ×Q f /q TNT + =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R 1,外径记为R 2,代表该处 0.37 0.37 1420.4313.613.610001000TNT W R ?? ??== ? ??? ??

人员因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa 。冲击波超压P ?按下式计算: P ?=++式中: P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R 2,外径R 3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值 超压为17000Pa 。冲击波超压P ?按下式计算: P ?=++P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R 3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m 。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K ——取值为5. 6 6 /121/3TNT 431751??? ???? ?? ?????+= TNT W KW R 0440********.434 101325P P ?===2 1 3 0R Z E P =?? ? ?? 01700017000 0.168101325P P ?===313 0R Z E P =?? ???

锅炉常见爆炸原因

常见事故的种类有缺水事故、爆炸事故、蒸发受热面爆管事故、过热器爆管事故、省煤器管破裂、炉膛爆炸 1、缺水事故 这是工业锅炉中常见的多发事故,据统计,全国发生的严重缺水事故,约占锅炉事故总数的56%。锅炉发生严重缺水事故时,会使锅炉受压部件大面积变形破坏,如果处理不当,还会导致开裂爆炸。如:一台DZG2-0.686-WⅡ的锅炉因当班司炉工下半夜睡着发生锅炉严重缺水事故造成锅炉受压部件损坏。锅炉缺水时,会出现以下现象:(1)水位表看不见水位,水位表的玻璃管(板)发白;(2)水位报警器发出低水位声光报警讯号;(3)有过热器的锅炉,过热蒸汽温度上升;(4)装有流量计的锅炉,蒸汽流量大于给水流量;(5)严重时,锅炉房闻到烧焦味和冒烟;(6)炉膛内受热面变形,以至发生爆管或拉脱胀管。 处理办法是,发生锅炉缺水后,应立即停止供给燃料,停止送风,并应立即查明是轻微缺水还是严重缺水,若是轻微缺水,且不是因给水系统故障、受压泄漏或排污泄漏造成,则可以继续进水到正常水位,投入正常运行。如果是严重缺水,则必须按紧急停炉办法处理,并严禁再往锅内进水。 锅炉缺水事故的预防措施是:(1)司炉工人应培训后持相应类别证件上岗,有些企业在聘用司炉工时,没有看司炉工操作证件的类别,以及证件是否超期等等。司炉工必须有较高操作水平和较强的工作责任心,根据锅炉缺水事故原因分析,70%左右的缺水事故是因司炉工违反劳动纪律或操作失误造成的;(2)必须定时冲洗、保养水位表,防止出现假水位;(3)必须在2T/h以上的锅炉上安装水位报警器,并应定期检修保养,保持灵敏可靠;(4)必须做好锅炉的运行记录和维修保养记录。 2、爆炸事故 锅炉爆炸事故是破坏力极大,后果极为严重,会给人身及财产带来巨大损失的恶性事故。这种事故在我国还没有杜绝,在锅炉事故总数中占有一定比例,其主要原因是:(1)使用单位业主违反中华人民共和国《特种设备安全监察条例》以及《蒸汽锅炉安全技术监察规程》等安全法规,私自制造土锅炉或购置已报废的锅炉使用;雇佣未经培训持证的司炉工;锅炉长期没有定期检验等等。这些是当今造成锅炉爆炸事故的主要原因,如2003年我市城乡结合部一家私营粉干厂发生的锅炉爆炸事故,即为自制的土锅炉,幸好无人员伤亡。(2)锅炉受压部件损坏后没有及时发现和修理。如我市一外资化工企业的一台10T/h沸腾锅炉在定期检验时,发现沸腾管已严重磨损减薄,要求修理后运行,但由于企业生产任务紧,锅炉未经换管修理就投入运行,结果造成锅炉爆管事故。 (3)压力表、安全阀等安全保护装置不全或没有送有资质的检验部门进行校验,以致在锅炉超压时不起保护作用。这是发生锅炉超压爆炸的又一重要原因。据有关报道,历年来因超压引起的锅炉爆炸事故,没有一台锅炉的安全阀,在锅炉爆炸以前能自动起跳,起泄压保护作用的;(4)司炉工失职或操作失误。这种原因引起的锅炉事故也是很多的。如锅炉点火升压后,司炉工没有及时将主汽阀门打开,导致锅炉超压爆炸;

锅炉爆炸事故应急救援演练记录通用范本

内部编号:AN-QP-HT429 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 锅炉爆炸事故应急救援演练记录通用 范本

锅炉爆炸事故应急救援演练记录通用范 本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 根据《中华人民共和国消防法》及国家有关法律、法规之规定,切实做好防爆工作,及时有效准确的处理各类突发爆炸事故,保障公民生命人身安全和公共财产安全,将爆炸事故造成的各类损失减少到最低限度,特制定我公司爆炸应急工作与预案: 总指挥由胡惠新担任,救援组组长张启光担任,负责现现场保护、人员救护的任务。现场抢救由张华军负责,全面负责爆炸现场人员的疏散、抢救工作。物资供应组由李直担任,负责防爆设施、器材及其他物资的供应。

蒸汽云爆炸伤害半径计算模型

C.7蒸汽云爆炸模型分析 该工程建设项目原料罐区设100m 3异丁烯储罐2台,如1台不慎发生爆裂,发生火灾爆炸,其气体泄漏量计算公式如下: gh p p p A C Q d L 220+??? ? ??-=ρ 式中: Q L ——液体泄漏速度,kg/s ; C d ——液体泄漏系数; A ——裂口面积,m 2; ρ——泄漏介质密度,kg/m 3; P ——容器内介质压力,Pa ; P 0——环境压力,Pa ; g ——重力加速度; h ——裂口之上液位高度,m 。 现假设异丁烯储罐破裂形成80mm ,宽20mm 的长方形裂口,裂口之上液位高度忽略,泄漏时间取1min ,液体密度取670kg/m 3,环境大气压取0.1MPa ,介质压力取0.6MPa ,液体泄漏系数取0.5。经计算,异丁烯泄漏速度为1.695kg/s ,泄漏量为101.7kg 。 根据荷兰应用科研院提供的蒸汽云爆炸冲击波伤害半径计算公式计算伤害半径: ()3 /1C S H V N C R ??= 式中: R ——损害半径,m ;

C S——经验常数,取决于损害等级,具体损害等级见表C-5; N——效率因子,一般取10%; V——参与爆炸的可燃气体体积,m3; H C——高热值,kJ/m3,取240771.7 kJ/m3; 表C-5 损害等级表 损害 等级 Cs 人员伤害设备损坏备注 1 0.03 1%死亡于肺部伤害 >50%耳膜破裂 >50%被碎片击伤。 重创建筑物和设备 2 0.06 1%耳膜破裂。 1%被碎片击伤。 造成建筑物外表的可 修复性破坏 3 0.15 被玻璃击伤玻璃破碎 4 0.4 10%玻璃破碎 通过现假设异丁烯储罐破裂并泄漏1min,计算出泄漏量为101.7kg,折算成气体体积为40599.7704m3。异丁烯的高热值取120772.321kJ/m3。 结合表C-5中C S的值,带入公式,计算出不同损害等级的半径如下: 表C-6 损害半径表 损害 等级 Cs 人员伤害设备损坏损害半径(m)备注 1 0.03 1%死亡于肺部伤害 >50%耳膜破裂 >50%被碎片击伤 重创建筑物和设备23.66 2 0.06 1%耳膜破裂 1%被碎片击伤 造成建筑物外表的可 修复性破坏 47.32 3 0.15 被玻璃击伤玻璃破碎118.3 4 0.4 10%玻璃破碎315.42 从伤害模型的计算结果可以看出:当异丁烯储罐泄漏,假设泄漏时间1min,泄漏的异丁烯全部气化,在爆炸中心周边23.66m范围内

汽油蒸气云爆炸计算表

4、出现爆炸、火灾事故造成人员伤亡的范围 本评价项目采用事故模拟法进行分析计算,鉴于油罐采取了地下直埋措施,密闭自流卸油,油品管道采用无缝钢管焊接地下直埋敷设,加油枪具有自封功能,可有效避免泄漏事故的发生。 根据事故案例,在油罐空置时,由于处理不当,聚积于罐内汽油蒸气与空气混合形成爆炸混合气体,由于处理不当遇到延迟点火发生蒸气云爆炸事故,造成冲击波,其损害半径、设备损坏、人员伤害情况计算如下:。 以油罐为爆源,当汽油发生蒸气云爆炸事故时, 根据荷兰应用科研院(TNO)(1979)建议,可按下式预测蒸汽云爆炸的冲击波的损害半径:R=C S(NE)1/3 式中 R(损害半径)m; E (爆炸能量)KJ,可按下式计算:E= V·Hc V 参与反应的可燃气体的体积,m3 H C(可燃气体的高燃烧热值)kJ/m3 查表: Hc(汽油)=1365.5 (kJ/mol)=60959.8kJ/m3。 N(效率因子),其值与燃烧浓度持续展开所造成损耗的比例和燃烧所得机械能的数量有关,一般取N=10% C S(经验常数)取值:0.03~0.4mJ-1/3。 R=C S(NE)1/3= Cs(10%×30×60659.9×103)1/3 = C S×263.03 把经验常数代入上式,得出破坏半径、设备损坏、人员伤害情况见下表:

表5-1 30m3汽油蒸气云爆炸模拟计算结果一览表 液氨蒸气云爆炸后果模拟分析说明 通过以上模拟计算表明,如30m3汽油蒸气与空气混合形成爆炸混合气体,发生蒸气云爆炸事故,造成冲击波,其损害半径、设备损坏、人员伤害情况的后果叙述如下: (1)造成半径为9.36 米范围内的建筑物和设备受到重创;1%的人员死亡于肺部伤害、50%以上的人员耳膜破裂、50%以上的人员被碎片击伤。损害等级为一级。 (2)造成半径为18.71 米范围内的建筑物和设备受到外表可修复性的破坏;1%的人员耳膜破裂、1%的人员被碎片击中。损害等级为二级。 (3)造成半径为46.78 米范围内玻璃破碎,人员被玻璃击伤。损害等级为三级。 (4)半径124.41 米范围内造成10%的玻璃破碎。损害等级为四级。 所以,在 9.36米的范围内,最好无其它设备、设施和操作人员,从而避免和减少由于发生蒸汽云爆炸形成的冲击波造成的人员伤亡

蒸汽锅炉爆炸危险性分析及预防措施

仅供参考[整理] 安全管理文书 蒸汽锅炉爆炸危险性分析及预防措施 日期:__________________ 单位:__________________ 第1 页共11 页

蒸汽锅炉爆炸危险性分析及预防措施 引言 动力车间有3台DG35-3.82/450-Y油气混烧锅炉,生产3.5MPa、450℃蒸汽,是为装置生产提供热能动力的设备,常被誉为总厂的心脏。锅炉在正常运行时,系统中储存着大量的热能,它不仅要承受高温高压,还要承受介质侵蚀和飞灰磨损,工作环境比较恶劣,万一由于某些原因促使储能意外释放,就会造成巨大的财产损失及人员伤亡,属于具有潜在爆炸危险的重大危险源。而且,动力车间的锅炉自投入运行已将近20个年头了,正步入设备寿命的后半期,其运行危险性尤为突出。因此,对锅炉爆炸危险性进行分析,并采取相应的预防措施,以确保避免锅炉爆炸恶性事故的发生,显得尤为必要。 一锅炉爆炸的机理 锅炉爆炸是锅炉系统中储存的大量能量意外瞬间释放,转化为机械能的现象。在锅炉运行过程中,由于受压元件的某些部位超过了材料的极限强度,薄弱处发生断裂,或是由于炉膛燃爆导致某些锅炉受压部件损坏,使得储存在锅炉中的水及蒸气立即从破口处冲出来,发生锅炉爆炸。此时,由于锅内压力瞬间降至外界大气压力,锅内的饱和水立即剧烈汽化、膨胀,蒸汽也随之剧烈膨胀,造成压力再次升高,破口进一步扩大。由于从破口处冲出的汽、水有很高的速度,形成强烈的冲击波,当与空气或地面接触后,便会产生强大的反作用力,使锅炉腾空而起或朝反作用力 的方向运动、翻滚。锅炉爆炸时所释放的能量除了很少一部分消耗在撕裂钢板、将部分碎片以及与锅炉相连的汽水管道、阀门和本体抛离原地外,其余大部分能量将以冲击波的形式作用于周围环境,造成建筑 第 2 页共 11 页

锅炉事故案例

新密市某镇造纸厂锅炉爆炸事故 1998年9月16日下午4时10分,新密市某镇造纸厂一台WNG4—1.2MPa(卧式内燃回火管)型锅炉在运行中爆炸,造成1人死亡,1人重伤的重大事故,直接经济损失30多万元。 该锅炉系鞍山锅炉厂生产,1982年11月制造,出厂编号A82075,1996年9月移装到该镇造纸厂,当年10月投入运行。 一、事故发生经过 9月16日上午10时30分,当班锅炉操作工周国亭对锅炉进行点火升压。1个多小时后,锅炉压力达到0.2MPa,因为纸机车间没有生产(此时纸厂已停电),操作工周国亭就擅自脱离工作岗位回家吃饭,中午1时多才返回工作岗位,开始操作锅炉。当锅炉压力升至0.3MP时,开始向车间供气。下午2时50分左右。因整个造纸厂全部停电,锅炉也停止运行。当第二次来电时,因锅炉房灯泡不亮,周国亭让相邻锅炉房操作工张少华照看自己操作的锅炉,他去找锅炉班长领灯泡,就在周国亭返回距锅炉房20多米远时,锅炉突然爆炸,时间是下午4时10分。 二、事故原因分析 事故发生后,新密市人事劳动局锅检所对锅炉爆炸现场进行了勘查和对锅炉的损坏情况进行了全面的检查,结果如下: 1.现场勘查情况是: 锅炉爆炸后,强烈的冲击波造成锅炉房全部倒塌,相邻21.4米的另一锅炉房门横梁倒塌,周围的车间、库房遭受不同程度的破坏。 2.爆炸锅炉情况是: (1)锅炉前烟箱盖冲出距锅炉本体15米远;后烟箱盖冲出4米;炉门、炉条分别冲出距锅炉本体28米和46.4米;操作工张少华倒卧在距锅炉正前方向26米处。 (2)锅炉前管板烟管以上区域,存在着明显的过热现象,在炉胆的正上方大面积已变色,存在着严重过烧现象。

爆炸后果分析(DOC)

重大事故后果分析方法:爆炸 爆炸是物质的一种非常急剧的物理、化学变化,也是大量能量在短时间内迅速释放或急剧转化成机械功的现象。它通常借助于气体的膨胀来实现。 从物质运动的表现形式来看,爆炸就是物质剧烈运动的一种表现。物质运动急剧增速,由一种状态迅速地转变成另一种状态,并在瞬间内释放出大量的能。 一般说来,爆炸现象具有以下特征: (1)爆炸过程进行得很快; (2)爆炸点附近压力急剧升高,产生冲击波; (3)发出或大或小的响声; (4)周围介质发生震动或邻近物质遭受破坏。 一般将爆炸过程分为两个阶段:第一阶段是物质的能量以一定的形式(定容、绝热)转变为强压缩能;第二阶段强压缩能急剧绝热膨胀对外做功,引起作用介质变形、移动和破坏。

按爆炸性质可分为物理爆炸和化学爆炸。物理爆炸就是物质状态参数(温度、压力、体积)迅速发生变化,在瞬间放出大量能量并对外做功的现象。物理爆炸的特点是:在爆炸现象发生过程中,造成爆炸发生的介质的化学性质不发生变化,发生变化的仅是介质的状态参数。例如锅炉、压力容器和各种气体或液化气体钢瓶的超压爆炸。化学爆炸就是物质由一种化学结构迅速转变为另一种化学结构,在瞬间放出大量能量并对外做功的现象。例如可燃气体、蒸气或粉尘与空气混合形成爆炸性混合物的爆炸。化学爆炸的特点是:爆炸发生过程中介质的化学性质发生了变化,形成爆炸的能源来自物质迅速发生化学变化时所释放的能量。化学爆炸有3个要素:反应的放热性、反应的快速性和生成气体产物。 从工厂爆炸事故来看,有以下几种化学爆炸类型: (1)蒸气云团的可燃混合气体遇火源突然燃烧,是在无限空间中的气体爆炸; (2)受限空间内可燃混合气体的爆炸; (3)化学反应失控或工艺异常造成压力容器爆炸; (4)不稳定的固体或液体爆炸。 总之,发生化学爆炸时会释放出大量的化学能,爆炸影响范围较大,而物理爆炸仅释放出机械能,其影

蒸气云爆炸伤害模型

液化石油气蒸气云爆炸伤害模型 采用TNT当量法估计蒸气云爆炸的严重度。如果某次事故造成的破坏状况与xkgTNT爆炸造成的破坏状况相当,则称此次爆炸的威力为xkgTNT当量。 1)TNT当量 用TNT当量来预测蒸气云爆炸严重程度的原理是:假定一定百分比的蒸气参与了爆炸,对形成冲击波有实际的贡献,并以TNT当量来表示蒸气云爆炸的威力。计算公式见式中的各参数单位及意义见表。 TNTffTNT QQWWα8.1= 式 表3-2 参数对照表 W TNT蒸气云的TNT当量 kg α蒸气云的TNT当量系数 -- W f蒸气云中燃料的总质量 kg

Q f燃料的燃烧热 MJ/kg Q TNT TNT的爆热 MJ/kg R 死亡半径 m 备注α=4℅,1.8为地面爆炸系数 液化石油气的燃烧热Q f=45.217-46.055MJ/kg 煤气的燃烧热Q f=8.38-8.79MJ/kg TNT的爆热Q TNT=4.12~4.69 MJ/kg (1)该企业液化石油气为116t,故TNT当量计算如下:kgQQWW TNTffTNT64.8432552.4116000636.4504.08.1α8.1=×××== 因此,该危险源的爆炸事故的严重度相当于84325.64kgTNT爆炸造成的破坏状况。 死亡半径R1: 通过TNT当量计算可知,液化石油气储罐发生蒸气云爆炸所造成的死亡半径如下: ()()mWR TNT17.701000/64.843256.131000/6.1337.037.01=×=×= 重伤半径R2: 019.0-269.0119.0137.0Δ1-2-3-ZZZp S++= 231020064.0)(RpERZ==,TNTTNT QWE×=,0p=101000pa =169.7m 2R 轻伤半径R3: 019.0-269.0119.0137.0Δ1-2-3-ZZZp S++= 331030064.0)(RpERZ==,TNTTNT QWE×=,0p=101000pa =225.6m 3R 财产损失半径R4 []61231)/3175(1/6.4TNTTNT WWR+×= =4.6×43.85/1.00024 =201.71m

蒸汽锅炉爆炸事故应急救援预案1

蒸汽锅炉爆炸事故应急救援预案 1.锅炉事故特征 1.1锅炉概况 该锅炉是为生产车间提供生产用的蒸汽锅炉,型式为立式火管锅炉。 1.2危险性分析 1.2.1蒸汽锅炉在运行中遇特殊情况可出现超压、缺水、爆管等事故。如处理不当会引起锅炉爆炸事故。 1.2.2锅炉爆炸时锅炉的锅筒发生破裂,锅内一定压力的汽水混合物从破裂处迅速冲出,其能量立即释放,瞬时降为大气压力而迅速膨胀汽化,产生巨大的作用力和冲击波。一声巨响炉体被抛起吊车驾驶室被损坏,附近人员遭到严重伤害。 1.2.3锅炉爆炸的破坏力主要取决于爆炸时的压力和饱和水的容积。 1.2.4爆炸原因

(1)锅炉运行压力超过锅炉承受压力。因违章操作、锅炉安全附件失灵或安全联锁装置失效,而使运行压力超过锅炉的承受压力,而破裂造成爆炸。 (2)锅炉受压元件自身缺陷或损坏,降低了自身的承受压力而造成破裂爆炸。 2.应急处置 2.1危险源监控 锅炉的监控,蒸汽锅炉定时进行巡回检查并随时监视压力、水流、温度及燃烧情况以控制锅炉运行状况。并及时采取措施保证安全。 2.2蒸汽锅炉运行中遇特殊情况的处理: 2.2.1锅炉缺水 现象:锅炉缺水时,水位表内水位低于极限水位而不可见,锅炉排烟温度升高,缺水严重时,炉顶产焦湖味,从炉门可看到烧红的水冷壁管,炉管变形甚至爆管,可听到爆破声,蒸汽和烟气从炉门看火门喷出。 处理:判断为严重缺水时,应紧急停炉,严重缺水锅炉严禁向锅炉进水。立即停止供给燃料,将炉排前部煤扒出炉

外,将炉排撤出,使燃烧快速落入渣斗,用水浇灭,炉火熄灭后,开启炉门促使加速冷却。注意:严禁向锅炉给水,不得采取措施迅速降压,防止事故扩大,不得采取向炉膛浇水灭火的方法熄炉火。 2.2.2锅炉超压 现象:汽压急剧上升,超过许可工作压力,压力表指针超过“红线”,安全阀动作后,压力仍在升高,发出超压报警信号,蒸汽温度升高面蒸汽流量减少。 处理:迅速减弱燃烧,手动开启安全阀或放空阀,加大给水、加大排污(此时要注意保持锅炉正常水位),降低锅水温度从而降低锅炉汽包压力。 2.2.3锅炉爆管 现象:水冷壁管爆破可听到明显的爆破声或喷气声,炉膛由负压燃烧变为止压燃烧,并且有炉烟和蒸汽从炉门等不严密处喷出,虽给水量增大,但正常水位难维持且气压降低,给水量不正常地大于蒸汽量,排烟温度降低,烟囱冒白烟,炉膛温度降低,甚至熄灭,锅炉底部有水流出。 处理:炉管破裂不严重且能保持水位,事故不至扩大时,可短时间降低负荷运行,严重爆管且水位无法维持,必须紧

山西锅炉爆炸事故案例

山西锅炉爆炸事故案例 2000年11月28日4时30分,山西省文水县嘉宝酒业有限公司一台锅炉造成2人死亡,2人重伤,2人轻伤。直接经济损失30万元,间接损失20万元。 1.事故发生主要经过 2000年11月21日,文水县嘉宝酒业有限公司从交城县安定村鑫宇焊接厂拉回一台锅炉。锅炉的钢板、封头、冲天管、火管是由嘉宝酒业有限公司自备,由交城县安定村鑫宇焊接厂制造成没有任何附件的立式火管蒸汽锅炉,经嘉宝酒业有限公司维修人员开孔安装了安全阀、压力表、水位计、上水、主汽管、排污附件后,就位安装。于2000年11月27日上午安装完成,接着进行了0.7~0.9MPa的冷态试压两次后,调整了安全阀,公司领导安排司炉人员下5点开始点火煮炉,晚上10点压火,司炉人员下班,2000年11月28日4时,早班司炉工上班开如启动锅炉,通火升温,大约在4时30分左右突然一声巨响,锅炉发生了爆炸,炉体骤然释放出强大气流,锅炉失稳倒落在距锅炉原地6地米外的空地上,烟囱落在距锅炉本体10余米处的空地上断为数节,锅炉底部在灰坑炸成一个1.5×4米的大坑,原炉的燃煤灰四周飞落,在声的4人2人死亡,2人重伤,距锅炉较远的2人也不同程度地受了轻伤。 2.事故前设备状况 事故发生后,通过现场勘察,向有关当事人和群众调查了解该锅炉是嘉宝酒业有限公司从太原买回两个废旧碟形封头(Φ2200×10)和(Φ108×6)的钢管,榆次制做两个封头。(2500×14、 2200×14),交城购买10mm钢板,由交城县安定村鑫宇焊接厂制做的

一台(6200×2500)立式火管锅炉,装有安全阀一个,压力表一个,水位计两个,排污阀一组,从锅炉的设计、制造、安装直到投入使用,均无任何资料、图纸、材质证明,也未向有关部门输过任何手续,属非法制造锅炉。 3.事故破坏情况 锅炉的爆炸点是在上烟室上封头,与冲天管的角焊缝根部初裂,尔后沿碟形封头两端撕开长1700MM的大口,未撕开的部分有明显的不规则向下鼓包变形,烟囱的第一道法兰螺栓断开折成数段,炉坑下部炸出一个1.5×4m的大坑,由于没有锅炉房,没有造成建筑物的损失。通过事故调查了解,该锅炉是私自设计、土法制造、自行安装投入使用的非法私造锅炉,各个环节均没有任何资料与合法手续,整个制造、安装,使用过程中的人员都没有经过专业方面的培训学习,锅炉知识比较溃乏。是造成这次事故的主要原因。 从锅炉的状况看,属粗制滥造,所有材料均非锅炉专用,特别是上烟箱的两个封头,是从原废旧化工设备上割下来的,外表面有黄色漆防腐涂层内表面腐蚀比较严重,部分部位的腐蚀凹坑接近板厚的一半,从断口看,钢板已成层状断面,没有塑性变形,氢脆明显,且与冲天管直角焊口连接,结构极不合理,焊缝超宽,且有较长而深的咬边。碟形封头水平直面较大,板材较薄,在变形外向受力的情况下,鼓包变形直到从焊口根部开裂,继而向两端撕开,导致大量汽流向烟管、烟囱涌出,是形锅炉爆炸事故的直接原因。 锅炉在制造完工后,在无任何科学依据的情况下,进行了两次0.7~0.9MPa的冷态水压试验,操作方法是用锅炉多级给水泵加压,也未保压,难以发现缺陷。锅炉安全阀定压与工

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模 拟分析法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT当量 通常,以TNT当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT当量。 蒸气云爆炸的TNT当量W TNT计算式如下: W TNT=×α×W f×Q f/Q TNT 式中,W TNT—蒸气云的TNT当量(kg) α—蒸气云的TNT当量系数,正己烷取α=; W f—蒸气云爆炸中烧掉的总质量(kg) Q f—物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg,参与爆炸的正己烷按最大使用量 792kg计算,则爆炸能量为×109J 将爆炸能量换算成TNT当量q,一般取平均爆破能量为×106J/kg,因此 W TNT= ×α×W f×Q f /q TNT+ =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R1,外径记为R2,代表该处人员

因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa。 ?按下式计算: 冲击波超压P ?=++式中: P ?——冲击波超压,Pa; P Z——中间因子,等于; E——蒸气云爆炸能量值,J; P0——大气压,Pa,取101325 得R2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R2,外径R3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值超压为17000Pa。冲击波超压P?按下式计算: ?=++P?——冲击波超压,Pa; P Z——中间因子,等于; E——蒸气云爆炸能量值,J; P0——大气压,Pa,取101325 得R3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K——取值为5. 6 正常泄露: 从原料危险性及最大储存使用量两方面综合考虑,选取甲醇的存储为研究对象进行蒸汽云爆炸事故后果模拟分析。

锅炉爆管典型事故案例及分析

锅炉典型事故案例及分析 第一节锅炉承压部件泄露或爆破事故大型火力发电机组的非停事故大部分是由锅炉引起的。随着锅炉机组容量增大,“四管”爆泄事故呈现增多趋势,严重影响锅炉的安全性,对机组运行的经济性影响也很大。有的电厂因过热器、再热器管壁长期超温爆管,不得不降低汽温5~10℃运行;而主汽温度和再热汽温度每降低10℃,机组的供电煤耗将增加0.7~1.1g/kWh;主蒸汽压力每降低1MPa,将影响供电煤耗2g/kWh。为了防止锅炉承压部件爆泄事故,必须严格执行《实施细则》中关于防止承压部件爆泄的措施及相关规程制度。 一.锅炉承压部件泄露或爆破的现象及原因 (一)“四管”爆泄的现象 水冷壁、过热器、再热器、省煤器在承受压力条件下破损,称为爆管。 受热面泄露时,炉膛或烟道内有爆破或泄露声,烟气温度降低、两侧烟温偏差增大,排烟温度降低,引风机出力增大,炉膛负压指示偏正。 省煤器泄露时,在省煤器灰斗中可以看到湿灰甚至灰水渗出,给水流量不正常地大于蒸汽流量,泄露侧空预器热风温度降低;过热

器和再热器泄露时蒸汽压力下降,蒸汽温度不稳定,泄露处由明显泄露声;水冷壁爆破时,炉膛内发出强烈响声,炉膛向外冒烟、冒火和冒汽,燃烧不稳定甚至发生锅炉灭火,锅炉炉膛出口温度降低,主汽压、主汽温下降较快,给水量大量增加。 受热面炉管泄露后,发现或停炉不及时往往会冲刷其他管段,造成事故扩大。 (二)锅炉爆管原因 (1)锅炉运行中操作不当,炉管受热或冷却不均匀,产生较大的应力。 1)冷炉进水时,水温或上水速度不符合规定;启动时,升温升压 或升负荷速度过快;停炉时冷却过快。 2)机组在启停或变工况运行时,工作压力周期性变化导致机械应 力周期性变化;同时,高温蒸汽管道和部件由于温度交变产生热应力,两者共同作用造成承压部件发生疲劳破坏。 (2)运行中汽温超限,使管子过热,蠕变速度加快 1)超温与过热。超温是指金属超过额定温度运行。超温分为长期 超温和短期超温,长期超温和短期超温是一个相对概念,没有严格时间限定。超温是指运行而言,过热是针对爆管而言。过热可分为长期过热和短期过热两大类,长期过热爆管是指金属在应力和超温温度的长期作用下导致爆破,其温度水平要比短期过热的水平低很多,通常不超过钢的临界点温度。短期过热爆管是指,在短期内由于管子温度升高在应力作用下爆破,其

蒸气云爆炸模型

5.4.1 蒸气云爆炸模型分析 蒸气云爆炸能产生多种破坏效应,如冲击波超压、热辐射、碎片作用等,但最危险、破坏力最强的是冲击波的破坏效应。常见的冲击波伤害-破坏准则有:超压准则、冲量准则、压力-冲量准则等。本次评价采用超压准则。 蒸气云爆炸的超压使用TNT 当量法进行计算。蒸气云爆炸的TNT 当量可用下式估算: TNT f f TNT Q Q W W α8.1= 式中:1.8:地面爆炸系数; α:蒸气云的TNT 当量系数,0.04; W f :液化石油气形成的蒸汽云中参与爆炸的燃料的质量, kg ; Q f :燃料的燃烧热,kJ/kg ; Q TNT :TNT 的爆热,4520kJ/kg ; W TNT :蒸气云的TNT 当量,kg ; 根据项目单位提供的资料,液化石油气成份为50%的丙烷、50%的丁烷。查物质系数和特性表可知,丙烷燃烧热Hc/(103Btu.lb -1)为19.9,丁烷燃烧热Hc/(103Btu.lb -1)为19.4,则: 液化石油气的燃烧热Q f =19.9×103×0.5+19.4×103×0.5=19.7×103(Btu/lb )=19.7×103×1.055÷0.454=45779(kJ/kg ) 液化石油气密度取0.51t/m 3,充装系数取0.9,设泄露的液化石油

气形成的蒸汽云中参与爆炸的总体积百分数为30%,假设这个Ⅱ级供应站6m 3的液化石油气全部泄露(实际是不可能全部泄露的)。则: 6m 3的液化石油气全部发生泄漏时,液化石油气形成的蒸汽云中参与爆炸的燃料的质量W f =6×0.51×103×0.9×30%=826(kg ) W TNT =1.8×0.04×826×45779/4520=602.3(kg ) ①死亡区 该区内的人员如缺少防护,则被认为将无例外地蒙受严重伤害或死亡,其内径为零,外径记为R 0,表示外圆周处人员因冲击波作用导致肺出血而死亡的概率为50%,它与爆炸量间的关系由下式确定: 37.00)1000/(6.13TNT W R 式中:W TNT 为爆源的TNT 当量,kg 。 代入W TNT =602.3(kg ,TNT ) 得死亡半径R 0=11.3m 可以认为该圆周内没有死亡的人数正好等于圆周外死亡的人数,即死亡区内的人员将全部死亡,而死亡区外的人员将无一死亡。这一假设在破坏效应随距离急剧衰减的情况下是近似成立的。 ②重伤区 该区内的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R 0,外径记为R 1,代表该处人员因冲击波作用耳膜破裂的概率为50%,它要求冲击波峰值超压为44000Pa 。冲击波超压△Ps 可按下式计算: △Ps=0.137Z-3+0.119Z-2-0.019

相关文档
最新文档