常见的几个偏微分方程的解法参考文献汇总

合集下载

偏微分方程求解方法总结

偏微分方程求解方法总结

偏微分方程求解方法总结偏微分方程(Partial Differential Equations,简称PDE)是描述自然界中许多现象的重要数学工具。

求解偏微分方程有许多不同的方法,下面将对其中一些常用的方法进行总结和介绍。

I. 分离变量法(Method of Separation of Variables)分离变量法是求解偏微分方程最常用的方法之一。

它的基本思想是将多个变量的偏微分方程分解成一系列只包含一个变量的常微分方程,再通过求解这些常微分方程来获得原偏微分方程的解。

具体步骤如下:1. 根据问题所给的边界条件和初始条件,确定偏微分方程的类型(椭圆型、双曲型或抛物型)以及边界条件的类型(Dirichlet条件、Neumann条件等)。

2. 假设原方程的解可以表示为一系列只包含一个变量的函数的乘积形式,即 u(x, y) = X(x)Y(y)。

3. 将 u(x, y) 和其各个分量的偏导数代入原偏微分方程,得到关于X(x) 和 Y(y) 的常微分方程。

4. 求解得到 X(x) 和 Y(y) 的表达式,并根据给定的边界条件,确定它们的取值。

5. 最后将 X(x) 和 Y(y) 的表达式代入 u(x, y) 的乘积形式,得到原偏微分方程的解。

分离变量法适用于边界条件分离的情况,并且对于较简单的偏微分方程求解效果较好。

II. 特征线法(Method of Characteristics)特征线法主要用于求解一阶偏微分方程,尤其是双曲型和抛物型偏微分方程。

该方法通过引入新的独立变量和新的变量关系,将原偏微分方程转化为一系列常微分方程来求解。

具体步骤如下:1. 根据偏微分方程的类型,确定要求解的未知函数及其偏导数之间的关系。

2. 引入新的自变量和新的关系式,将偏微分方程化为带有新变量的常微分方程组。

3. 将常微分方程组进行求解,并得到新变量的表达式。

4. 根据新的变量表示原方程的解,进而确定未知函数的表达式。

高中数学备课教案解偏微分方程组的方法总结

高中数学备课教案解偏微分方程组的方法总结

高中数学备课教案解偏微分方程组的方法总结在高中数学备课中,解偏微分方程组是一个重要的内容。

偏微分方程组是数学中的一个分支,用于描述多元函数的变量之间的关系。

在解偏微分方程组时,可以采用以下几种方法。

一、分离变量法分离变量法是解偏微分方程组的一种常用方法。

它通过将偏微分方程组中的每个方程分离变量,将含有未知函数的各项移到一边,仅含有不同自变量的各项移到另一边,从而达到求解的目的。

以一阶偏微分方程组为例,假设有m个未知函数u1,u2,...,um和n 个变量x1,x2,...,xn的一阶偏微分方程组:F1(u1,u2,...,um,u1',u2',...,um',x1,x2,...,xn) = 0F2(u1,u2,...,um,u1',u2',...,um',x1,x2,...,xn) = 0...Fn(u1,u2,...,um,u1',u2',...,um',x1,x2,...,xn) = 0其中F1,F2,...,Fn为给定函数,u1',u2',...,um'为未知函数的偏导数。

首先,假设每个未知函数u1,u2,...,um可以表示为各个变量的乘积形式,即:u1 = u1(x1), u2 = u2(x2), ..., um = um(xm)将各个未知函数的偏导数带入原方程组中,并分离变量,得到单变量方程:f1(u1,u1',x1) = 0f2(u2,u2',x2) = 0...fm(um,um',xm) = 0然后,解这些单变量方程,得到各个未知函数u1,u2,...,um的解。

最后,将这些解代入原方程组中,检查是否满足原方程组的其他方程。

如果满足,则得到了原方程组的解。

二、常数变易法常数变易法是解偏微分方程组的另一种常用方法。

它通过假设未知函数u1,u2,...,um为已知函数和未知常数的和的形式,将未知函数的偏导数表示为已知函数和未知常数的偏导数之和。

偏微分方程数值解法

偏微分方程数值解法

偏微分方程数值解法偏微分方程(Partial Differential Equations,简称PDE)是数学中重要的研究对象,其在物理学、工程学、经济学等领域有广泛的应用。

然而,对于大多数偏微分方程而言,很难通过解析方法得到精确解,因此需要借助数值解法来求解。

本文将介绍几种常见的偏微分方程数值解法。

一、有限差分法(Finite Difference Method)有限差分法是一种常见且直观的偏微分方程数值解法。

其基本思想是将偏微分方程中的导数通过差分近似来表示,然后通过离散化的方式转化为代数方程组进行求解。

对于一维偏微分方程,可以通过将空间坐标离散化成一系列有限的格点,并使用中心差分格式来近似原方程中的导数项。

然后,将时间坐标离散化,利用差分格式逐步计算每个时间步的解。

最后,通过迭代计算所有时间步,可以得到整个时间域上的解。

对于二维或高维的偏微分方程,可以将空间坐标进行多重离散化,利用多维的中心差分格式进行近似,然后通过迭代计算得到整个空间域上的解。

二、有限元法(Finite Element Method)有限元法是另一种重要的偏微分方程数值解法。

其基本思想是将求解区域分割成有限数量的子区域(单元),然后通过求解子区域上的局部问题来逼近整个求解区域上的解。

在有限元法中,首先选择适当的形状函数,在每个单元上构建近似函数空间。

然后,通过构建变分问题,将原偏微分方程转化为一系列代数方程。

最后,通过求解这些代数方程,可以得到整个求解区域上的解。

有限元法适用于各种复杂的边界条件和几何构型,因此在实际工程问题中被广泛应用。

三、谱方法(Spectral Methods)谱方法是一种基于特定基函数(如切比雪夫多项式、勒让德多项式等)展开解的偏微分方程数值解法。

与有限差分法和有限元法不同,谱方法在整个求解区域上都具有高精度和快速收敛的特性。

在谱方法中,通过选择适当的基函数,并利用其正交性质,可以将解在整个求解区域上展开为基函数系数的线性组合。

求解偏微分方程的几种特殊方法

求解偏微分方程的几种特殊方法

求解偏微分方程的几种特殊方法程哲 PB06001070(中国科学技术大学数学系, 合肥, 230026)摘要:经过一个学期偏微分方程课程的学习,我们掌握了几种求解初等拟(半)线性方程,特别是三种典型方程的方法,如特征曲线法、反射法、降维法、分离变量法、特征函数展开法、求解非齐次方程的Duhamel 原理等。

此外,我们通过学习还掌握了求解波动方程的D'Alembert 公式,求解高维波动方程的Kirchhoff 公式和Poisson 公式,求解位势方程的Green 公式等等。

这些经典方法的综合运用可以求解很多初等偏微分方程,故而是基本而重要的。

本文还将总结作者了解的几种求解偏微分方程的特殊方法,它们是:级数法,Laplace 变换法,Fourier 变换法。

关键词:偏微分方程 级数法Laplace 变换 Fourier 变换1. 级数法求解偏微分方程1.1 波动方程Cauchy 问题的级数解法1.1.1 问题引入我们以三维波动方程的初值问题(P)为例:2()0,(1)()(,,,0)(,,),(,,,0)(,,)tt xx yy zz t u a u u u P u x y z x y z u x y z x y z ⎧−++=⎪⎨=Φ=Ψ⎪⎩ 由叠加原理易知问题(P)可分解为两个问题的叠加:2()0,()(,,,0)0,(,,,0)(,,)tt xx yy zz t u a u u u I u x y z u x y z x y z ⎧−++=⎪⎨==Ψ⎪⎩ 2()0,()(,,,0)(,,),(,,,0)0tt xx yy zz t u a u u u II u x y z x y z u x y z ⎧−++=⎪⎨=Φ=⎪⎩首先,受一维波动方程的D'Alembert 公式启发,我们可以假设问题()I 有如下形式的解:221(,,,)(,,)(2)4at w x y z t t dS a t ξηζπ=⋅Ψ∑∫∫其中球面22222:()()()atx y z a t ξηξ−+−+−=∑。

偏微分方程数值解

偏微分方程数值解

ei1u(ti1)ui1h 22u()O (h2)
局部截断误差是以点 t i 的精确解 u ( t i ) 为出发值,用数值方法推进到下一个点
t i 1 而产生的误差。
20
2.整体截断误差—收敛性
整体截断误差是以点 t 0 的初始值 u 0 为出发值,用数值方法推进i+1步到点
t i 1 ,所得的近似值u i 1 与精确值u ( t i 1 ) 的偏差: i1u(ti1)ui1
12
2.差分格式求解 将积分方程通过差分方程转化为代数方程求
解,一般常用递推算法。
在常微分方程差分法中最简单的方法是 Euler方法,尽管在计算中不会使用,但从 中可领悟到建立差分格式的技术路线,下 面将对其作详细介绍:
13
差分方法的基本思想“就是以差商 代替微商”
考虑如下两个Taylor公式:
x2
9 x2 3 x1x3
x3
5 x3 7 x1x2
x4
5 x4 x1x6
x5
x5 3 x1x4
4 x4x5 Re
11
欧拉法—折线法
• 常微分方程能直接进行积分的是少数,而多数是 借助于计算机来求常微分方程的近似解;
• 有限差分法是常微分方程中数值解法中通 常有效 的方法;
• 建立差分算法的两个基本的步骤: 1. 建立差分格式,包括:a. 对解的存在域剖分; b. 采用不同的算法可得到不同的逼近误差—截断 误差(相容性);c.数值解对真解的精度—整体 截断误差(收敛性);d.数值解收敛于真解的速 度;e. 差分算法—舍人误差(稳定性).
ui1ui hf(ti,ui)
预估
u i 1 u i h /2 [f( ti,u i) f( ti 1 ,u i 1 ) ] 校正

偏微分方程的变量替换法

偏微分方程的变量替换法

偏微分方程的变量替换法偏微分方程(Partial Differential Equation, PDE)是数学领域中重要的研究对象,它在物理学、工程学等方面起到了重要的作用。

为了解决复杂的偏微分方程,数学家们提出了许多有效的数值和解析方法,其中变量替换法是一种常用且有效的技巧。

一、什么是变量替换法变量替换法是一种将原偏微分方程通过变量变换转化为另一形式的方法。

通过巧妙地选取适当的替换变量,可以简化原方程的表达形式,使得求解过程更加简单和直观。

变量替换法在解决特定类型的偏微分方程时具有很大的优势。

二、常见的变量替换方法1. 线性变换线性变换是最常用的变量替换方法之一。

通过将原方程中的自变量进行线性组合,可以将原方程转化为更简单的形式。

线性变换常常用于分离变量的情况,即将一个多元偏微分方程转化为多个一元偏微分方程进行求解。

2. 非线性变换非线性变换是一种更加复杂而灵活的变量替换方法。

通过将原方程中的自变量进行非线性组合,可以使得原方程的形式更加简洁。

非线性变换在求解特殊类型的偏微分方程或者对称性分析中具有广泛的应用。

三、变量替换法的应用1. 热传导方程的变量替换法热传导方程是偏微分方程中的经典问题之一。

通过适当的变量替换,可以将热传导方程转化为常微分方程,从而简化求解过程。

常见的变量替换方法包括分离变量法、相似变量法等。

2. 波动方程的变量替换法波动方程描述了波的传播和震动的行为。

通过变量替换,可以将波动方程转化为更加简单的形式,例如亥姆霍兹方程或拉普拉斯方程。

变量替换方法在求解波动方程的驻相法、哈密顿原理等方面具有重要应用。

3. 扩散方程的变量替换法扩散方程广泛应用于描述粒子或物质的扩散过程。

通过变量替换,可以将扩散方程转化为更简单的形式,如亥姆霍兹方程或拉普拉斯方程。

变量替换方法在求解扩散方程的分离变量法、格林函数法等方面具有重要作用。

四、案例分析以一维热传导方程为例,假设其初始温度分布为函数 u(x,0)=f(x),边界条件为 u(0,t)=g(t) 和 u(L,t)=h(t)。

偏微分方程的解析解

偏微分方程的解析解

偏微分方程的解析解偏微分方程是描述自然现象和物理问题中的变化和演化的数学工具。

尽管有时候,偏微分方程的解析解并不容易找到,但是一旦找到,它们能给出系统的、明确的解。

本文将为您介绍偏微分方程的解析解以及相关的数学工具和技巧。

\[ F(x, y, u, \frac{{\partial u}}{{\partial x}},\frac{{\partial u}}{{\partial y}}, \frac{{\partial^2u}}{{\partial x^2}}, \frac{{\partial^2 u}}{{\partial y^2}}, ...) = 0 \]其中,u是未知函数,它的解析解将通过一系列的数学工具和技巧来获得。

下面将介绍一些常见的解析解的求解方法。

1.分离变量法:这是最常用的方法之一,适用于一些特定的偏微分方程。

在分离变量法中,我们假设解可以写成多个独立变量的乘积,然后通过代入原方程并分离变量,得到一系列常微分方程。

进一步求解这些常微分方程可以得到原偏微分方程的解析解。

例如,对于一个简单的热传导方程:\[ \frac{{\partial u}}{{\partial t}} = \alpha\frac{{\partial^2 u}}{{\partial x^2}} \]我们可以假设解可以写成两个独立变量的乘积:\(u(x,t)=X(x)T(t)\),然后将其代入原方程,得到:\[ \frac{{T'(t)}}{T(t)} = \alpha \frac{{X''(x)}}{{X(x)}} \]由于左边只含有t,右边只含有x,所以两边必须等于一个常数,记为-k²。

然后我们分别解这两个常微分方程,得到:\[ T(t) = C_1e^{-k^2\alpha t} \]\[ X(x) = C_2\sin(kx) + C_3\cos(kx) \]最后,利用线性偏微分方程的叠加原理,我们可以将所有的解相加:\[ u(x,t) = \sum_{n=1}^{\infty}(C_{2n}\sin(nkx) +C_{2n+1}\cos(nkx))e^{-k^2\alpha t} \]其中,C是常数。

高等数学中的偏微分方程及解题方法

高等数学中的偏微分方程及解题方法

高等数学中的偏微分方程及解题方法在数学的分支中,偏微分方程是一类十分重要的问题,尤其是在物理、工程和其他领域的科学中。

偏微分方程(Partial Differential Equations,简称PDEs)是包含多个变量的微分方程,其中每个变量可以是时间或空间中的一个或多个维度。

在偏微分方程中,存在一个或多个未知函数,通常是多维函数,它们的偏导数与其它的变量或是它本身的函数值之间存在关系。

为了更好地理解什么是偏微分方程,可以考虑下列例子。

对于一维传热方程(Heat Equation),表示为$$\frac{\partial u}{\partial t}=a\frac{\partial^2 u}{\partial x^2}$$其中,$u$ 表示热的分布,$t$ 表示时间,$x$ 表示空间位置,$a$ 是一个常数,这个方程描述了物质传递(Heat Transfer)的过程。

它的意义是说,热的变化率与空间位置的二阶偏导数成正比。

与一般微分方程比较,偏微分方程不仅需要考虑时间上的变化,还需要考虑空间位置的变化。

因此,它的解不再是一个函数,而是一个函数族。

并且,由于方程中含有偏导数,所以需要给出更多的数值修正,即边界条件和初始条件。

换句话说,偏微分方程是需要特定的数学工具和解决方法的。

常见的偏微分方程形式包括:抛物型方程(Parabolic Equation)、双曲型方程(Hyperbolic Equation)和椭圆型方程(Elliptic Equation)。

不同类型的方程,需要不同的解题方法。

1. 抛物型方程抛物型方程意味着,在此类型的偏微分方程中,时间的变化在方程中占有主导地位。

同一时刻的方程在不同的空间位置上具有相同的性质。

例如,热传导方程、扩散方程等都属于抛物型方程。

抛物型方程一般在一段时间内具有唯一的解。

解决抛物型方程的主要方法为分析法、数值法。

分析法,需要用到一些特殊函数的技巧,比如分离变量法、变换法、特征线法等。

偏微分方程的数值解法

偏微分方程的数值解法

偏微分方程的数值解法偏微分方程(Partial Differential Equation, PDE)是数学和物理学中的重要概念,广泛应用于工程、科学和其他领域。

在很多情况下,准确解析解并不容易获得,因此需要利用数值方法求解偏微分方程。

本文将介绍几种常用的数值解法。

1. 有限差分法(Finite Difference Method)有限差分法是最常见和经典的数值解法之一。

基本思想是将偏微分方程在求解域上进行离散化,然后用差分近似代替微分运算。

通过求解差分方程组得到数值解。

有限差分法适用于边界条件简单且求解域规则的问题。

2. 有限元法(Finite Element Method)有限元法是适用于不规则边界条件和求解域的数值解法。

将求解域划分为多个小区域,并在每个小区域内选择适当的形状函数。

通过将整个域看作这些小区域的组合来逼近原始方程,从而得到一个线性代数方程组。

有限元法具有较高的灵活性和适用性。

3. 有限体积法(Finite Volume Method)有限体积法是一种较新的数值解法,特别适用于物理量守恒问题。

它通过将求解域划分为多个控制体积,并在每个体积内计算守恒量的通量,来建立离散的方程。

通过求解这个方程组得到数值解。

有限体积法在处理守恒律方程和非结构化网格上有很大优势。

4. 局部网格法(Local Grid Method)局部网格法是一种多尺度分析方法,适用于具有高频振荡解的偏微分方程。

它将计算域划分为全局细网格和局部粗网格。

在全局细网格上进行计算,并在局部粗网格上进行局部评估。

通过对不同尺度的解进行耦合,得到更精确的数值解。

5. 谱方法(Spectral Method)谱方法是一种基于傅里叶级数展开的高精度数值解法。

通过选择适当的基函数来近似求解函数,将偏微分方程转化为代数方程。

谱方法在处理平滑解和周期性边界条件的问题上表现出色,但对于非平滑解和不连续解的情况可能会遇到困难。

6. 迭代法(Iterative Method)迭代法是一种通过多次迭代来逐步逼近精确解的求解方法。

偏微分方程的基本分类与解法

偏微分方程的基本分类与解法

偏微分方程的基本分类与解法偏微分方程(Partial Differential Equations)是数学领域中研究函数及其偏导数的方程。

它在物理、工程和金融等多个领域中具有广泛的应用。

本文将对偏微分方程的基本分类和解法进行介绍。

一、基本分类偏微分方程可以根据方程中未知函数的阶数、方程中未知函数及其偏导数的最高阶数、方程中出现的独立变量的个数等因素进行分类。

下面将介绍几种常见的偏微分方程类型:1. 线性偏微分方程(Linear PDEs):线性偏微分方程的未知函数及其偏导数在方程中以线性的方式出现,即未知函数及其偏导数之间没有乘积或除法的项。

典型的线性偏微分方程包括波动方程、热传导方程和拉普拉斯方程等。

2. 非线性偏微分方程(Nonlinear PDEs):非线性偏微分方程的未知函数及其偏导数在方程中以非线性的方式出现。

非线性偏微分方程的研究更加复杂和困难,因为它们通常没有简单的通解,需要依赖于数值方法或近似解法。

3. 偏微分方程的阶数(Order):偏微分方程的阶数指的是未知函数及其偏导数的最高阶数。

常见的偏微分方程阶数包括一阶、二阶和高阶偏微分方程等。

4. 线性度(Degree of Linearity):线性度是指方程中未知函数和它的偏导数的最高次数。

线性偏微分方程的线性度为一,非线性偏微分方程的线性度大于一。

二、解法解偏微分方程的方法有很多,下面将介绍几种常见的解法:1. 分离变量法(Separation of Variables):分离变量法适用于可以将偏微分方程的未知函数表示为各个独立变量的乘积形式的情况。

通过将未知函数表示为各个独立变量的乘积形式,并将方程中的偏导数转化为普通导数,从而将原方程转化为一系列的常微分方程。

通过求解这些常微分方程,并将解合并起来,即可得到原偏微分方程的解。

2. 特征线方法(Method of Characteristics):特征线方法是用于解一阶偏微分方程的一种常用方法。

偏微分方程的解法

偏微分方程的解法
10
只表示P(x)一个确定的函数.
3、一阶线性非齐次微分方程的解法——常数变易法
由方程特点,设一阶线性非齐次微分方程的通解为
y C ( x )e
P ( x ) dx
(5)
对(5)式求导得 P ( x ) dx P ( x ) dx dy C ( x )e P ( x )C ( x )e . (6) dx 将(5)和(6)代入方程(3)并整理得
化简,得
10x 10 y C
(其中C C1 ln10)
把初始条件 y x1 0 代入上式 ,得 C 11.
于是所求微分方程的特解为
10x 10 y 11.
5
二、齐次型微分方程
1. 定义 形如
dy y f( ) dx x ( 2)
的微分方程, 称为齐次型微分方程.
x
用常数变易法,设非齐次方程的通解为
1 y C ( x) 2 x
则 1 2 y C ( x ) 2 3 C ( x ) x x
把 y 和 y 代入原方程并化简 , 得 C ( x) x 1.
1 2 C( x) x x C 两边积分,得 2 1 1 C 因此,非齐次方程的通解为 y 2 2 x x 1 将 初 始 条 件y x 1 0 代 入 上 式 , 得C . 故所求微分方程的特解为 2
2
3.步骤
(1)分离变量,得 dy f ( x )dx g( y ) (2) 两边积分,得
( g ( y ) 0)

(3) 求得积分,得
dy f ( x )dx g( y )
G( y ) F ( x ) C
1 其 中G( y ), F ( x )分 别 是 , f ( x )的 原 函 数 . g( y )

偏微分方程的分类与求解方法

偏微分方程的分类与求解方法

偏微分方程的分类与求解方法引言:偏微分方程(Partial Differential Equations,简称PDEs)是数学中的一个重要分支,广泛应用于自然科学、工程技术和经济管理等领域。

它描述了多个变量之间的关系,具有非常复杂的性质和解法。

本文将对偏微分方程的分类和求解方法进行探讨。

一、偏微分方程的分类偏微分方程可分为线性和非线性两类。

线性偏微分方程的解可以通过叠加原理来求解,而非线性偏微分方程则需要借助数值方法或近似解法来求解。

1. 线性偏微分方程线性偏微分方程的一般形式为:\[ \sum_{i=0}^{n} a_i(x) \frac{\partial^i u}{\partial x^i} = f(x) \]其中,\(a_i\) 是系数函数,\(f(x)\) 是已知函数,\(u\) 是未知函数。

常见的线性偏微分方程有波动方程、热传导方程和亥姆霍兹方程等。

2. 非线性偏微分方程非线性偏微分方程的一般形式为:\[ F(x,u,\frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x^2},...) = 0 \]其中,\(F\) 是非线性函数。

非线性偏微分方程的求解相对困难,通常需要借助数值计算方法来获得近似解。

二、偏微分方程的求解方法偏微分方程的求解方法多种多样,下面将介绍几种常见的方法。

1. 分离变量法分离变量法是一种常用的求解线性偏微分方程的方法。

它的基本思想是将未知函数表示为一系列只与单个变量有关的函数的乘积形式,然后通过分离变量和整理方程,得到一系列常微分方程。

最后,通过求解这些常微分方程,得到原偏微分方程的解。

2. 特征线法特征线法适用于一类特殊的偏微分方程,如一阶线性偏微分方程和一类二阶线性偏微分方程。

它通过引入新的自变量,将原方程转化为常微分方程,然后通过求解常微分方程得到原方程的解。

3. 变换法变换法是通过引入新的变量或者进行坐标变换,将原方程转化为更简单的形式。

偏微分方程的数值解法

偏微分方程的数值解法

偏微分方程的数值解法在科学和工程领域中,偏微分方程(Partial Differential Equations,简称PDEs)被广泛应用于描述自然现象和工程问题。

由于许多复杂的PDE难以找到解析解,数值方法成为了求解这些方程的重要途径之一。

本文将介绍几种常见的偏微分方程数值解法,并探讨其应用。

一、有限差分法有限差分法是求解偏微分方程最常用的数值方法之一。

其基本思想是将空间和时间连续区域离散化成有限个点,通过差分逼近偏微分方程中的导数,将偏微分方程转化为差分方程。

然后,利用差分方程的迭代计算方法,求解近似解。

以一维热传导方程为例,其数值解可通过有限差分法得到。

将空间区域离散化为若干个网格点,时间区域离散化为若干个时间步长。

通过差分逼近热传导方程中的导数项,得到差分方程。

然后,利用迭代方法,逐步更新每个网格点的数值,直到达到收敛条件。

最终得到近似解。

二、有限元法有限元法是另一种常用于求解偏微分方程的数值方法。

它将连续的空间区域离散化为有限个单元,将PDE转化为每个单元内的局部方程。

然后,通过将各个单元的局部方程组合起来,构成整个区域的方程组。

最后,通过求解这个方程组来获得PDE的数值解。

有限元法的优势在于可以适应复杂的几何形状和边界条件。

对于二维或三维的PDE问题,有限元法可以更好地处理。

同时,有限元法还可以用于非线性和时变问题的数值求解。

三、谱方法谱方法是利用一组基函数来表示PDE的解,并将其代入PDE中得到一组代数方程的数值方法。

谱方法具有高精度和快速收敛的特点,在某些问题上比其他数值方法更具优势。

谱方法的核心是选择合适的基函数,常用的基函数包括Legendre多项式、Chebyshev多项式等。

通过将基函数展开系数与PDE的解相匹配,可以得到代数方程组。

通过求解这个方程组,可以得到PDE的数值解。

四、有限体积法有限体积法是将空间域划分为有限个小体积单元,将PDE在每个小体积单元上进行积分,通过适当的数值通量计算来近似描述流体在边界上的净流量。

二阶线性齐次偏微分方程的几种解法及比较

二阶线性齐次偏微分方程的几种解法及比较

2019年第08期学术专业人文茶趣收稿日期:2019年6月15日。

本文介绍310330xx xy yy x y u u u u u ++--=的三种解法以及这三种方法的比较。

1三种解法1.1行波解法:即同阶时,方程解的形得到通解为,方程解的形式为()mxu e f kx y =+,例如450xx xy yy x y u u u u u ++++=,将()u f kx y =+代入方程,得到通310330xx xy yy x y u u u u u ++--=令u x n =,h 对h 积分,6()u f e hn x -==再对x 积分,解2三种方法的比较通过二阶线性齐次偏微分方程的三种解法的介绍发现,只要知道方程解的结构,设出解的形式,代入方程,会求导,会解一元二次方程,总可以求出方程的解,不需要积分的知识,这种方法大部分学生都能理解掌握,特征线法不仅需要高等数学中的积分知识,还要会求常微分方程,掌握求解常微分方程各种方法,难度较大,微分算子法比较简单,但是对于有些比较复杂的二阶线性齐次偏微分方程,微分算子法就非常难了,对于各项阶数相同的二阶线性齐次偏微分方程,微分算子法非常简单。

三种方法各有优势。

参考文献[1]陆平,数学物理方程[M],北京:国防工业出版社,2016.[2]谷超豪,数学物理方程[M],北京:高等教育出版社,2002.[3]王高雄,常微分方程[M],北京:国防工业出版社,2007.二阶线性齐次偏微分方程的几种解法及比较孟晓仁(中北大学信息商务学院,山西晋中)摘要:数学物理方程是本科工科专业学习的一门基础的较难的数学学科,本文就二阶线性齐次偏微分方程的几种解法进行总结,并对这几种方法进行比较,以方程310330xx xy yy x y u u u u u ++--=为例,介绍它的几种解法.关键词:二阶线性齐次偏微分方程;行波解法;特征线法;微分算子法220。

偏微分方程理论

偏微分方程理论

偏微分方程理论偏微分方程(Partial Differential Equations, PDEs)是数学中的一个重要分支,它探究的是多变量函数的偏导数与函数本身之间的关系。

在物理学、工程学以及经济学等领域,PDEs的应用广泛而深远。

本文将介绍偏微分方程理论的基本概念、分类以及一些解法。

一、基本概念偏微分方程是描述真实世界现象的数学模型,它包含了一个或多个未知函数及其偏导数。

一般来说,一个PDE可以用如下形式表示:F(x, u, ∂u/∂x, ∂u/∂y, ..., ∂^2u/∂x^2, ∂^2u/∂y^2, ...) = 0其中,x表示自变量,u表示未知函数,∂u/∂x表示u对x的偏导数。

二、分类根据常系数与偏导数的次数,PDEs可分为线性偏微分方程和非线性偏微分方程。

1. 线性偏微分方程:具有形如下式的特点:a(x, y)∂^2u/∂x^2 + b(x, y)∂^2u/∂x∂y + c(x, y)∂^2u/∂y^2 + ...+ d(x, y)∂u/∂x + e(x, y)∂u/∂y + f(x, y)u = g(x, y)其中,a、b、c等为常系数。

2. 非线性偏微分方程:指不能写成如上形式的偏微分方程,通常较难求解,需借助数值方法。

三、解法1. 分离变量法:适用于某些特殊的线性偏微分方程,假设解可以表示为两个或多个单变量函数的乘积,然后通过代入和分离变量的方法,将PDE分解为一系列常微分方程。

2. 特征线法:适用于一类特殊的线性偏微分方程,通过对特征线上的偏导数进行积分,将PDE转化为一系列常微分方程。

3. 变换法:通过变换自变量或因变量,将PDE转化为标准形式,进而求解。

四、应用偏微分方程广泛应用于自然科学和工程学等领域。

以下是一些常见的应用案例:1. 热传导方程:用于描述物体的温度分布与时间之间的关系,如热传导、热扩散等问题。

2. 波动方程:描述机械波、声波以及电磁波等的传播与变化,如弦的振动、声音的传播等。

偏微分方程的几种经典解法

偏微分方程的几种经典解法

偏微分方程的几种经典解法经过一个学期偏微分方程课程的学习,我们掌握了几种求解三种典型方程的方法,如分离变量法、行波法、特征函数展开法、求解非齐次方程的Duhanmel 原理灯,此外,我们通过学习还掌握了求解波动方程的'D Alembert 公式,求解位势方程的Green 公式等等.这些经典方法的综合运用可以求解很多初等偏微分方程,故而是基本而重要的.本文着重总结了偏微分方程的几种经典解法,一次介绍了分离变量法、行波法、幂级数解法、Fourier 变换法以及Green 函数法,通过对典型方程的研究,深入理解集中经典方法.1.分离变量法分离变量法:基本思想是设法把偏微分方程的问题转化为解常微分方程的问题.1.1第一初边值问题例:利用分离变量法求解下述问题(非齐次0边值双曲方程)2222sin 2cos 2,u ux t t x ∂∂-=∂∂ 0,0x t π<<> (1.1) (0,)(,)0,u t u t π== 0t > (1.2) (,0)sin ,u x x =0x π<< (1.3)(,0)sin 2,ux x t∂=∂ 0x π<< (1.4) 解:用分离变量法求问题(1.1)—(1.4)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.5)方程(1.1)对应的齐次方程为22220,u ut x∂∂-=∂∂0,0x t π<<> (1.6) 将(1.5)式代入方程(1.6)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.7) 其中λ为固定常数,下面证明0λ>. 由(1.7)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.2)和(1.5)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.2)—(1.6)可以化为如下形式的两个常微分问题,即()()"()()0,1(0)()0,2X x X x X X λπ⎧+=⎪⎨==⎪⎩ 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题. 求解问题(1).根据常微分方程的理论可知,问题(1)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.8)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底.将问题(1.1)—(1.4)中的非齐次项和初值按{}1()n n X x ∞=展开,得1sin 2cos 2()sin ,n n x t f t nx ∞==∑ 0,0x t π≤≤≥1sin sin ,n n x a nx ∞==∑ 0,x π≤≤1sin 2sin ,n n x b nx ∞==∑ 0,x π≤≤其中0,1()cos 2,20,0,3n n f t t n t n =⎧⎪==≥⎨⎪≥⎩ 1,10,2n n a n =⎧=⎨≥⎩,0,11,20,3n n b n n =⎧⎪==⎨⎪≥⎩设1(,)()()n n n u x t X x T t ∞==∑, 0,0x t π≤≤≥ (1.9)是问题(1.1)—(1.4)的形式解,将上式代入(1.1)—(1.4)可得,()n T t 是如下常微分方程初值问题的解,"'()()(),0(0),(0),n n n n n n n n T t T t f t t T a T b λ⎧+=>⎪=⎨⎪=⎩,其中1,2,n =.求解问题(2).当1n =时,问题(2)转化为求常微分问题"11'11()()0,(0)0,(0)1,T t T t T T ⎧+=⎪=⎨⎪=⎩ (3) 有常微分方程理论可知,问题(3)的通解为112()cos sin T t c t c t =+.将其代入1(0)1T =,得11c =.将12()cos sin T t t c t =+代入'1(0)0T =得20c =.故1()cos T t t =. 当2n =时,问题(2)转化为常微分问题"22'22()4()cos 2,(0)1,(0)0,T t T t t T T ⎧+=⎪=⎨⎪=⎩ (4)对应其次方程的特征根为2i α=±,用常微分方程中的算子解法求特解.2(4)cos2,D x t +=故sin 24tx t =.所以问题(4)的通解为212()cos 2sin 2sin 2.4tT t c t c t t =++将其代入2(0)0T =得10c =,将22()sin 2sin 24t T t c t t =+代入'2(0)1T =得212c =,故22()sin 2.4t T t t +=当3n ≥时,问题(2)转化为常微分问题"2'()()0,(0)0,(0)0,n n n nT t n T t T T ⎧+=⎪=⎨⎪=⎩ (5) 由常微分理论可知,问题(5)的通解为12()cos sin ,3,4,n T t c nt c nt n =+=将其代入(0)0,n T =得10c =.将2()sin n T t c nt =代入'(0)0,n T =得20c =.故()0n T t =. 综上有cos ,1,2()sin 2,2,040,3,n t n t T t t n t n =⎧⎪+⎪==≥⎨⎪≥⎪⎩(1.10)将(1.8)(1.10)代入(1.9)中,得问题(1.1)—(1.4)的形式解为2(,)sin cos sin 2sin 2,4t u x t x t x t +=+ 0,0x t π≤≤≥经检验,该形式解满足原问题及初边值条件,该形式解就是原问题的解. 例:利用分离变量法求解下述问题22220,u ut x ∂∂-=∂∂ 0,0x t π<<> (1.11) (0,)sin ,(,)0,u t t u t π== 0t >, (1.12) (,0)0,u x = 0x π<<, (1.13)(,0),u x x t ππ∂-=∂ 0x π<<, (1.14) 解:将上述非零边值问题转化为零边值问题,用变量代换,设(,)u x t 是原问题的解,令(,)(,)sin ,xv x t u x t t ππ-=-0,0x t π≤≤≥. 则(,)v x t 是如下问题的解2222(,),v vf x t t x ∂∂-=∂∂ 0,0x t π<<> (1.15) (0,)(,)0,v t v t π== 0t >, (1.16) (,0)0v x =, 0x π<<, (1.17)(,0)0,vx t∂=∂ 0x π<<, (1.18) 其中(,)sin ,xf x t t ππ-=0,0x t π≤≤≥. 用分离变量法求问题(1.15)—(1.18)的形式解.设该问题有如下形式的形式解(,)()()v x t X x T t =, (1.19)方程(1.15)对应的齐次方程为22220,v vt x ∂∂-=∂∂ 0,0x t π<<>, (1.20) 将(1.19)代入方程(1.20)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.21) 其中λ为固定常数,下面证明0λ>. 由(1.21)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.16)和(1.19)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.16)—(1.18)(1.20)可以化为如下形式的两个常微分问题,即"()()0,(0)()0,X x X x X X λπ⎧+=⎨==⎩ (6) 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题.(7) 求解问题(6).根据常微分方程的理论可知,问题(6)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.22)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底. 将问题(1.15)—(1.18)的非齐次项按{}1()n n X x ∞=展开,得1sin ()sin ,n n xt f t nx ππ∞=-=∑0,0.x t π≤≤≥ 令sin n xc nx ππ-=,则在其两端同乘sin nx 再在(0,)π上积分,得 200sin sin 2nn x nxdx c nxdx c πππππ-==⎰⎰. 由分部积分,经计算可得2n c n π=.从而2()sin n f t t n π=,0t ≥,1,2,n =.设1(,)()()n n n v x t X x T t ∞==∑,0,0.x t π≤≤≥是问题(1.15)—(1.18)的形式解,将其带入(1.15)—(1.18)可得,()n T t 是如下常微分问题的解"22()()sin ,n n T t n T t t n π+=0,t > (1.23) (0)0,n T = (1.24) '(0)0,n T = (1.25)其中1,2,n=(1.23)—(1.25)对应的齐次方程的特征根为ni α=±,则通解为()cos sin n n n T t A nt B nt =+.用算子算法求特解,222()()sin n D n T t t n π+=,解得 22sin ()(1)n tT t n n π=-. 故该问题的通解为22sin ()cos sin (1)n n n tT t A nt B nt n n π=++-. (1.26)将上式代入(0)0,n T =得0n A =,将22sin ()sin (1)n n t T t B nt n n π=+-代入'(0)0,n T =得222(1)n B n n π-=-,1,2,n =.故2222sin 2sin ()(1)(1)n nt tT t n n n n ππ-=+--,0,t >1,2,n =.因此,问题(1.15)—(1.18)的形式解为22212sin 2sin (,)sin (1)(1)n nt t v x t nx n n n n ππ∞=⎛⎫-=+ ⎪--⎝⎭∑,0,0.x t π≤≤≥ (1.27) 考察(1.27)右端级数的收敛性.记2222sin 2sin sin (1)(1)n nt t a nx n n n n ππ⎛⎫-=+ ⎪--⎝⎭,0,0,x t π≤≤≥1,2,n =.容易验证下列级数均在[0,][0,)π⨯+∞上一致收敛1n n a ∞=∑,1n n a x ∞=∂∂∑,1n n a t ∞=∂∂∑,221n n a x ∞=∂∂∑,221n n a t ∞=∂∂∑,21nn a x t ∞=∂∂∂∑. 经检验,(,)v x t 满足问题(1.15)—(1.18),就是 问题(1.15)—(1.18)解.将(1.27)代入(,)(,)sin xu x t v x t t ππ-=+,0,0,x t π≤≤≥ 得22212sin 2sin (,)sin sin (1)(1)n nt t xu x t nx t n n n n ππππ∞=⎛⎫--=++ ⎪--⎝⎭∑,0,0,x t π≤≤≥ 此即为原问题(1.11)—(1.14)的解.1.2第二初边值问题例:利用分离变量法求解下述问题(抛物型)220,u ut x ∂∂-=∂∂ 01,0x t <<> (1.28) (0,)(1,)0,u u t t x x ∂∂==∂∂ 0,t > (1.29) (,0)cos ,u x x π= 01,x << (1.30)解:用分离变量法求解问题(1.28)—(1.30)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.31)将其代入(1.28)有"'()()()()X x T t X x T t λ∆==-,01,0x t <<> (1.32) 其中λ为某一常数,且0λ≥. 由(1.32)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,1)上积分,得11"20()()()0,X x X x dx X x dx λ+=⎰⎰注意到由(1.29)和(1.31)有''(0)(1)0,X X ==所以有11'220()()X x dx X x dx λ=⎰⎰易见0λ≥.故(1.28)—(1.30)可化为如下形式的两个常微分问题,即"''()()0,01,(0)(1)0,X x X x x X X λ⎧+=<<⎨==⎩ (8) 和'()()0,0T t T t t λ+=> (9)求解问题(8),当0λ=时,有"()0X x =,''(0)(1)0,X X ==由常微分方程的理论可知,问题(8)的通解为12()X x c c x =+,01x ≤≤.将其代入'(0)0X =,有20c =,故1()X x c =,其中1c 为任意常数. 当0λ>时,由常微分方程的理论可知,问题(8)的通解为12(),X x c c =+ 01x ≤≤将其代入'(0)0X =,则20c =,将1()X x c =代入'(1)0X =,得2()n n λπ=, 1,2,n=特征值n λ对应的特征函数为()cos n X x n x π=,1,2,n =,01x ≤≤.所以,对于0λ≥,有()cos n X x n x π=,01x ≤≤, 0,1,2,n=注意到{}1()n n X x ∞=是一个直交系统,即100,,()(),,2m nm n X x X x dx m n π≠⎧⎪=⎨=⎪⎩⎰ 这表明{}1()n n X x ∞=正规化后是2((0,1))L 的一个基底. 下面求解问题(9),将2()n n λπ=代入,可有'22()()0,n n T t n T t π+=0,1,2,n =,0t ≥.有常微分方程理论可知其通解为223()n t n T t c e π-=, 0,1,2,n =, 0t ≥.此时,形式解为2230(,)()()cos n t n n n n u x t X x T t c n xe ππ∞∞-====∑∑, 01x ≤≤,0t ≥.将其代入(1.30)中,得30(,0)cos cos n u x c n x x ππ∞===∑,01,x <<由比较系数法,可得31,10,1n c n =⎧=⎨≠⎩ 故问题(1.28)—(1.30)的形式解为2(,)cos t u x t xe ππ-=,01x ≤≤,0t ≥.经检验,该形式解满足原问题(1.28)—(1.30),此即为原问题的解.1.3 Poisson 方程的边值问题分离变量法还适用于某些特殊形状区域上的二维Poisson 方程的各种边值问题,如果所考虑的定解区域是矩形域,那么可以完全仿照前面的方法来求解,只是此时x,y 之一要扮演t 的角色;如果定解区域是圆域或环形域,则应先做极坐标变换将定解问题化为矩形区域上的定解问题,然后利用分离变量法求解. 例:利用分离变量法求解下述问题22222212(),u u x y x y∂∂+=-∂∂ 12,<< (1.33)(,)0,u x y =1,= (1.34)(,)0,ux y υ∂=∂2,= (1.35)其中υ为2{(,):2}x y R ∂∈<上的单位外法向量.解:用分离变量法求解问题(1.33)—(1.35)的形式解.首先,通过极坐标变换将环形域上的定解问题化为矩形域上的定解问题,做极 坐标变换cos ,sin ,x y ρθρθ=⎧⎨=⎩ 12,02ρθπ≤≤≤≤, 则(1.33)—(1.35)化为2222221112cos 2,v v vρθρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.36) (1,)0,(2,)0,vv θθρ∂==∂ 02θπ<<, (1.37) 其中(,)(cos ,sin )v u ρθρθρθ=,12,02ρθπ≤≤≤≤.注意到在极坐标条件下(,0)ρ与(,2)ρπ表示同一点,故(,)v ρθ还满足如下周期性条件(,0)(,2),(,0)(,2),v v v v ρρπρρπθθ∂∂==∂∂ 12,ρ<< (1.38) 问题(1.36)—(1.38)是一个定解问题. 方程(1.36)对应的齐次方程为22222110,v v vρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.39) 设问题对应的形式解为(,)()()v R ρθρθ=ψ,12,02ρθπ≤≤≤≤. (1.40)将(1.40)代入(1.37)中,得"'"211()()()()()()0,R R R ρθρθρθρρψ+ψ+ψ= 12,02ρθπ<<<<即"2"'()()(),()()R R R θρρρρλθρ∆ψ+=-=-ψ12,02ρθπ<<<<, (1.41) 其中λ为固定常数,下面证明0λ≥.由(1.41)有"()()0,θλθψ+ψ= 02θπ<<,在上式两端同乘()θψ,并在(0,2)π上积分,由(1.38)和(1.40)可知''(0)(2),(0)(2),ππψ=ψψ=ψ所以有22'220()(),d d ππθθλθθψ=ψ⎰⎰易见0λ≥.所以问题(1.37)(1.38)(1.40)可化为两个常微分问题,即"''()()0,(0)(2),(0)(2),θλθππ⎧ψ+ψ=⎪⎨ψ=ψψ=ψ⎪⎩ 02θπ<<, (10) 以及2"'()()()0R R R ρρρρλρ+-=和适当定解条件的常微分问题(11)求解问题(10).当0λ=时,有"''()0,(0)(2),(0)(2),θππψ=ψ=ψψ=ψ由常微分方程的理论可知,问题(10)的通解为()A B θθψ=+,02θπ≤≤,代入(0)(2)πψ=ψ得()A θψ=,其中A 为任意实数. 当0λ>时,通解为(),A B θψ=+02θπ≤≤, 将其代入''(0)(2),(0)(2)ππψ=ψψ=ψ有sin ,A A B =+=-+, 故2,1,2,n n n λ==特征值n λ对应的特征函数为()cos sin ,02,1,2,n n n A n B n n θθθθπψ=+≤≤=.其中n A 和n B 是任意不同时为零的实数,综上可知()cos sin ,02,0,1,2,n n n A n B n n θθθθπψ=+≤≤=,其中0A 是任意不为零的实数,n A 和n B 是任意不同时为零的实数. 注意到1{cos sin }n n n θθ∞=+是一个直交系统,即20()()0,,,0,1,2,m n m n m n πθθψψ=≠=⎰,这表明1{cos sin }n n n θθ∞=+正规化后是2((0,2))L π的一个基底.设1(,)()()()cos ()sin ,n n n n n n n v R A n B n ρθρθρθρθ∞∞∞====ψ=+∑∑∑12,02ρθπ≤≤≤≤,将非齐次项按1{cos sin }n n n θθ∞=+展开,有2n =时,2212A ρ=代入(1.4)—(1.6)有"'22222'2214()()()12,(1)(2)0,A A A A A ρρρρρρ⎧+-=⎪⎨⎪==⎩ 12,ρ<< 2"'2'1()()()0,12,(1)(2)0,n n n nn n A A A A A ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 0,1,3,4,n =,和2"'2'1()()()0,12,(1)(2)0,n n n nn n B B B B B ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 1,2,3,n =.解得2242129112(),1717A ρρρρ-=-++ 12ρ≤≤, ()0n A ρ=, 12ρ≤≤,0,1,3,4,n =, ()0n B ρ=, 12ρ≤≤,1,2,3,n =.故224129112(,)()cos 21717v ρθρρρθ-=-++, 12,02ρθπ≤≤≤≤ 因此,原问题的形式解为2222222112(,)[12917()],17()x y u x y x y x y -=-++++12≤. 经检验,该形式解满足原问题,即为原问题的解.二.行波法行波法:求解一维波动方程的常用解法,利用这种方法得到波动方程的一个重要求解公式('d Alembert 公式)1.齐次波动方程cauchy 问题定理2.1('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),则函数 ()()()()()x+atx-at11u x t =x-at +x+at +d 22a ϕϕψξζ⎰,,[)()2u C R 0+∈⨯∞,是cauchy 问题22222u u-a =0t x∂∂∂∂, x R t>0∈, ()(),0u x x ϕ=, x R ∈()(),0ux x tψ∂=∂, x R ∈的解.例:求解下述波动方程的cauchy 问题()()2222120,,0,0cos ,,0cos ,u u uu x R t t x t u x x x R ux e x x R t -⎧∂∂∂-++=∈>⎪∂∂∂⎪⎪=∈⎨⎪∂⎪=-∈⎪∂⎩解:首先将方程化为标准形式.设u 是原问题的解,令()(),,,,0t v x t e u x t x R t =∈≥则v 是如下问题的解()()222210,,0,cos ,,0,v vx R t t x v x t x x Rvx e x R t-⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩ 由定理2.1可知()()()()1111,cos cos 22cos cos ,,0x t x tv x t x t x t e d x t te x R t ζ+---=-+++=+∈≥⎰ 因此()()()1,cos cos t u x t e x t t e -+=+, ,0x R t ∈≥为原问题的解.利用一维齐次波动方程cauchy 问题的通解表达式,还可以求解其他定解问题.在此不再赘述.2.非齐次波动方程的cauchy 问题定理2.2('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),[)()10,f C R ∈⨯+∞, 则函数()()()()()()()()011,221,,,02x atx at t x a t x a t u x t x at x at d af d d x R t aττϕϕψξζζτζτ+-+---=-++++∈≥⎰⎰⎰属于[)()20,C R ⨯+∞,是cauchy 问题()()()()()22222,,,0,0,,0,u u a f x t x R t t x u x x x R ux x x R t ϕψ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩的解,其中0a >.注2.1上述问题解得光滑程度本质上取决于初值和非齐次项的光滑程度. 注2.2 如果()(),x x ϕψ和(),f x t 都是x 的奇(偶,周期)函数,则上述问题的解也是x 的奇(偶,周期)函数. 例:求解下述波动方程的定解问题()()()()()()22222,,00,0,0,0,0,0,0u u a f x t x t x u t t u x x x ux x x tϕψ∂∂-=>∂∂=>=>∂=>∂其中0a >,[)()[)()[)[)()2110,,0,,0,0,C C f C ϕψ∈+∞∈+∞∈+∞⨯+∞,且满足相容性条件()()()()2''000,00,0a f ϕψϕ==-=解:注意到如果u 是x 的奇函数,则u 自然满足边值条件.因此,根据注2.2,我们可以采用奇延拓方法来求解上述问题.将()(),x x ϕψ和(),f x t 关于0x =做奇延拓,即令()()(),0,0x x x x x ϕϕ≥⎧⎪Φ=⎨-<⎪⎩ ()()(),,0x x x x x ψψ≥⎧⎪ψ=⎨-<⎪⎩ ()()(),,0,0,,,0,0f x t x t F x t f x t x t ≥≥⎧⎪=⎨-<≥⎪⎩考虑cauchy 问题()()()()()22222,,,0,0,,0,u u a F x t x R t t x u x x x R ux x x R t⎧∂∂-=∈>⎪∂∂⎪⎪=Φ∈⎨⎪∂⎪=ψ∈∂⎪⎩ 按'd Alembert 公式形式地写出其解()()()()()()()()011,221,,,02x atx at t x a t x a t u x t x at x at d F d d x R t aττξζζτζτ+-+---=Φ-+Φ++ψ+∈≥⎰⎰⎰回到原来的初值,ϕψ和非齐次项f ,就可以得到原问题的形式解如下:当0x at ≥≥时,()()()()()()()()011,221,2x atx att x a t x a t u x t x at x at d a f d d a ττϕϕψξζζτζτ+-+---=-++++⎰⎰⎰ ()1而当0x at ≤≤时,()()()()()()()()()()())/0/11,221(,,2x atat x t x a x a t t x a t a t x t x a x a t u x t at x x at d af d d f d d aττττϕϕψξζζτζτζτζτ+--+-+------=--+++++⎰⎰⎰⎰⎰ ()2可以直接验证由()1和()2确定的形式解[)[)()20,0,u C ∈+∞⨯+∞就是定解问题的解.三.幂级数解法幂级数解法:是求解偏微分方程的经典解法之一,不仅可以求解一维问题,还可以求解高维问题.我们先来求解如下的常微分方程初值问题()()()()2''0,00,'00,u t a u t t u A u +=>== ()()()3.13.23.3其中0a >方程()3.1的通解是()12cos sin ,0u t C at C at t =+≥其中1C 和2C 是任意实数.由边值条件()3.2和()3.3,可得12,0C A C ==.于是,问题()()3.1 3.3-的解为()cos ,0u t A at t =≥注意到()()()201cos ,02!nnn at at t n ∞=-=≥∑因此,问题()()3.1 3.3-的解可写为如下的级数形式()()()()()()222001,02!2!nn nnn n at tu x A a A t n n ∞∞==-==-≥∑∑. ()3.4定理3.1 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数()202!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()()()2222200,,,0,2!2!nnn nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑ 就是波动方程Cauchy 问题()()()22220,,0,0,,0=0,u ux R t t x u x x x R u x x Rt ϕ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪∈∂⎪⎩的级数形式的形式解.定理3.2 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数0!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()22200,,,0,!!nnn nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑就是热传导方程Cauchy 问题220,,0u u x R t t x∂∂-=∈>∂∂()(),0,u x x x R ϕ=∈的级数形式地形式解.幂级数方法求解问题的一大优点就是空间维数不限,下面的例子是一个高维问题.例:求解三维波动方程的Cauchy 问题()()()()()()()()()232330,,,,0, 3.5,,,0,,,,,, 3.6,,,00,,,,3.7uu x y z R t t u x y z x y z x y z R ux y z x y z R tϕ∂-∆=∈>∂=∈∂=∈∂ 其中222222,x y z∂∂∂∆=++∂∂∂()()2223,,,,,x y z x y z x y z R ϕ=++∈解:令2,a A ϕ=-∆=,则由()3.4可得到问题()()3.5 3.7-的级数形式的形式解()()()()230,,,,,,,,,02!n nn t u x y z t x y z x y z R t n ϕ∞==∆∈≥∑ ()3.8将ϕ的表达式代入()3.8,得()()22223,,,3,,,,0u x y z t x y z t x y z R t =+++∈≥容易验证,这个形式解的确是定解问题的解.四.Fourier 变换方法1.()R ε,()D R 和()R ϕ空间(i )()R ε空间:对于{}()1n n u C R ∞∞=⊂和()u C R ∞∈,如果对任何a b <及任何非负整数k ,都有[]()()()(),0sup limk knn x a b u x u x →∞∈-= 则称()n u x 在()C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()C R ∞,称为基本空间()R ε.(ii )()D R 空间:对于{}()01n n u C R ∞∞=⊂和()0u C R ∞∈,如果存在a b <,使得[],n u a b ⊂supp 且对任何非负整数k ,都有()()()()0sup lim k knn x Ru x u x →∞∈-=则称()n u x 在()0C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()0C R ∞,称为基本空间()D R .(iii )()R ϕ空间:如果()u C R ∞∈,且对任何非负整数k 和m ,都有()()sup k mx Rxu x ∈<+∞,则称()u R ϕ∈.()R ϕ中序列收敛的概念:对于{}()1n n u R ϕ∞=⊂和()u R ϕ∈,如果对任何非负整数m 和k ,都有()()()()()0sup limkkmnn x Rx u x u x →∞∈-= 则称()n u x 在()R ϕ中收敛于()u x .2.速降函数空间上的Fourier 变换(i )定义:设(),R ϕϕ∈称函数[]()(),ix Rx e dx R ξϕξϕξ-=∈⎰F为ϕ的Fourier 变换,也记为();ϕξ∧称函数[]()-11x (),2ix Re d x R ξϕϕξξπ=∈⎰F为ϕ的Fourier 逆变换,也记为()x ϕ∨. (ii )性质:a )设()R ϕϕ∈,对任意正整数m 有()()()[]()()()()[]()11,;m m m m i x ix x ϕξξϕξϕϕ--⎡⎤⎡⎤==-⎣⎦⎣⎦F F F F[]()()()()()[]()()()()()11,.m m mm ix x i x ϕξϕξϕξϕ--⎡⎤⎡⎤=-=⎣⎦⎣⎦F F FFb) 设()R ϕϕ∈,对任意正整数0a R b R ∈≠∈和,有[]()[]()()()[]()11(),;ia iaxx a e a x e x ξϕξϕξϕξϕ----=-=⎡⎤⎣⎦F F FF[]()[]()()()[]()1111(),.x bx b x b b bbξϕξϕϕξϕ--==⎡⎤⎣⎦F F FFc) 设()12,R ϕϕϕ∈,则[][][][][][]11112121212,2ϕϕϕϕϕϕπϕϕ---*=*=;F F F FF F [][][][][][]111121212121,.2ϕϕϕϕϕϕϕϕπ---=*=*F F F F FF其中12ϕϕ*表示1ϕ与2ϕ的卷积,即()()()()1212,.R x x y y dy x R ϕϕϕϕ*=-∈⎰d )Fourier 变换与Fourier 逆变换都是()R ϕ上的连续线性变换.e )Fourier 变换与Fourier 逆变换互为逆变换. (iii)在速降函数空间中求解热传导方程 考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.1,0,,4.2u u x t R t xu x g x x R ∂∂-=∈⨯+∞∂∂=∈ 其中()g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.1,4.2的解u 满足(),u t •∈()()0.R t ϕ≥将方程()4.1和初值问题()4.2关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.t u t g e R t ξξξξ∧∧-=∈≥关于ξ作Fourier 逆变换,并利用()R ϕ上Fourier 逆变换的线性性质,得(),u x t ()212t ix Rg ee d ξξξξπ∧-=⎰()()22241()21()2().iy t ix R R t i x y R R x y tR g y e dye e d g y e d dy g y e dy ξξξξξξπξπ---+---===⎰⎰⎰⎰ 即问题()()4.1,4.2的解u 具有如下表达式的形式解()()24,(),,0.x y tRu x t g y edy x R t --=∈>特别地,若()22,xg x ex R -=∈,则问题()()4.1,4.2的解u 的形式解为()()()2222442,,,0.x x y y t tRu x t eedy x R t ----+==∈≥⎰且容易验证这个形式解满足方程(4.1)和初值问题(4.2),从而是问题(4.1),(4.2)的解.(iv)在速降函数空间中求解弦振动方程考虑弦振动方程的Cauchy 问题()()()()()()()()()22220,,0,,4.3,0,, 4.4,0,,4.5u ux t R t x u x x x R ux x x R tϕψ∂∂-=∈⨯+∞∂∂=∈∂=∈∂其中()()(),x x R ϕψϕ∈.由于()()(),x x R ϕψϕ∈,因此,我们猜想Cauchy 问题()()4.3 4.5-的解u 满足(),u t •∈()()0.R t ϕ≥将方程()4.3和初值问题()()4.4,4.5关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()()()()()()2220,0,4.6,0, 4.7,0, 4.8u u t t u ut ξξϕξξψξ∧∧∧∧∧∧⎧∂⎪+=>⎪∂⎪⎪=⎨⎪⎪∂=⎪∂⎪⎩其中R ξ∈.求解这个常微分方程,方程()4.6的通解为()()()12,.i t i t u t C e C e ξξξξξ∧-=+由()()4.7 4.8和,得()()()()()()12121==,.C C C C R i ξξϕξξξψξξξ∧∧+-∈,因此()()()()()()1211=,.22C C R i i ψξψξξϕξξϕξξξξ∧∧∧∧⎛⎫⎛⎫ ⎪ ⎪=+-∈ ⎪ ⎪⎝⎭⎝⎭,从而()()()()()11,22i t i t u t e e i i ξξψξψξξϕξϕξξξ∧∧∧∧∧-⎛⎫⎛⎫ ⎪ ⎪=++-⎪ ⎪⎝⎭⎝⎭()()()()1,,0.(4.9)22i t i t i t i t e e e e R t i ξξξξψξϕξξξ∧∧--=++-∈≥将())i t i t e e i ξξξ--改写为()1,,0.t i t i t i t e e e d R t i ξξξττξξ---=∈≥⎰ 对()4.9两端同时关于ξ作Fourier 变换,结合上式可得(),u x t ()()()()11222i t i t i t i t ix R e e e e e d i ξξξξξψξϕξξπξ∧∧--⎡⎤⎢⎥=++-⎢⎥⎣⎦⎰ ()()()()()()()()()()()()()()()()()()()1144111222112211,,0.22t i x t i x t i i xR Rt t i x t t R ttx tx te e d e d e d x t x t e d d x t x t x d x t x t d x R t ξξξτξξϕξξψξτξππϕϕψξξτπϕϕψττϕϕψξξ∧∧+--∧+--+-=++⎛⎫=++-+ ⎪⎝⎭=++-++=++-+∈≥⎰⎰⎰⎰⎰⎰⎰ 即问题()()4.3 4.5-的解u 具有如下表达式的形式解()()()()()11,,,0.22x t x t u x t x t x t d x R t ϕϕψξξ+-==++-+∈≥⎰3.广义函数(i )定义:(),D R ()R ε和()R ϕ上的连续线性泛函分别称为()',D R ()'R ε和()'R ϕ广义函数,它们统称为广义函数;(),D R ()R ε和()R ϕ上的全体连续线性泛函分别记为()',D R ()'R ε和()'.R ϕ(ii)判定:a )设F 为()D R 上的线性泛函,则()'F D R ∈的充分必要条件是对任何闭区间[],ab ,存在非负整数~k 和正实数,M 使得()[]()()()[]~,0,,.sup k x a b k kF u M u x u D R a b ∈≤≤≤∈⊂且supp ub )设F 为()R ε上的线性泛函,则()'F R ε∈的充分必要条件是存在闭区间[],a b 以及非负整数~k 和正实数,M 使得()[]()()()~,0,.sup k x a b k kF u M u x u R ε∈≤≤≤∈c )设F 为()R ϕ上的线性泛函,则()'F R ϕ∈的充分必要条件是存在非负整数~~,m k 和正实数,M 使得()()()()~~0,0,.supk m x Rm m k kF u Mx u x u R ϕ∈≤≤≤≤≤∈4.广义函数空间上的Fourier 变换(i )定义:设()[]()',f R f Fourier f R ϕϕ∈定义的变换为如下的上的泛函F[][](),,,f f R ϕϕϕϕ=∈,FF也记为;f ∧[]()-1f Fourier f R ϕ定义的逆变换为如下的上的泛函F[][]()-1-1,,,f f R ϕϕϕϕ=∈,F F也记为f ∨. (ii )性质:a )设()'f R ϕ∈,有()[]()[]()'1'1,;f i f f x ix f x ξξ--⎡⎤⎡⎤==-⎣⎦⎣⎦F FFF[]()()()()[]()()()()'11,'.f ixf x f x i f x ξξξξ--=-=⎡⎤⎡⎤⎣⎦⎣⎦F FFF这里,导数指广义导数,乘积是指广义函数与其乘子的乘积.b )Fourier 变换与Fourier 逆变换都是()'R ϕ上的连续线性变换.c )Fourier 变换与Fourier 逆变换互为逆变换.(iii )()'R Fourier ϕ上的变换方法考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.10,0,,4.11u u x t R t x u x g x x R ∂∂-=∈⨯+∞∂∂=∈其中()'g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.10,4.11的解u 满足(),u t •∈()()'0.R t ϕ≥将方程()4.10和初值问题()4.11关于x 作Fourier 变换,并利用()'R ϕ上Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.t u t g e R t ξξξξ∧∧-=∈≥()()()2'',0t g R e t R ξϕϕ∧-∈≥这里是的乘子.关于ξ作Fourier 逆变换,就可以得到问题()()4.10,4.11的形式解. 例:求解问题()()()()()()220,,0,,4.12,0,,4.13u ux t R t xu x x x R δ⎧∂∂-=∈⨯+∞⎪∂∂⎨⎪=∈⎩解:由于初值不是一个普通函数,所以问题()()4.12,4.13的解不可能在 0t =处连续,因此我们需要重新定义u 满足初值条件()4.13的含义.既然g 是一个不是普通函数的()'R ϕ广义函数,因此我们可以把初值条件()4.13定义为:作为()'R ϕ广义函数,(),u t •在0t =处等于g ,即()()'0lim ,.t u t g R ϕ+→•=于下面我们来求解问题()()()4.12,4.13.1, 5.3g ∧=注意到于是由,得()()22,=,,0.ttu t g eeR t ξξξξξ∧∧--=∈≥0t >因此当时,有()()224-14,,.x t tu x t e x R ξ--⎡⎤==∈⎢⎥⎣⎦F()()4.12,4.13于是我们得到问题的形式解()()24,,0.xt u x t x R t -=∈>,()()()0, 5.1.u C R ∞∈⨯+∞容易验证这个形式解满足方程最后验证它还满足初值条件()5.2,即()()()0lim ,,,,.t u x t x R ϕδϕϕϕ+→=∈事实上,对任意的()R ϕϕ∈,有()()()()()()2244,,,xxt t Ru x t x x ex dx ϕϕϕ--==⎰(22,0.yRe dy t ϕ-=>由控制收敛定理可知()()(200lim ,,lim 2y Rt t u x t x edyϕϕ++-→→=(()200,yRe dy ϕϕδϕ-===五.Laplace 方程的基本解和Green 函数place 方程的基本解求解全空间上的N (≥2)维Poisson 方程()(), 5.1Nu f x x R -∆=∈的解的表达式,先寻找其次Poisson 方程,即Laplace 方程()0, 5.2Nu x R -∆=∈的径向解,设()(||),N u x w x x R =∈是方程(5.2)的一个解,将u 的表达式代入方程(5.2),得1''(||)'()0,\{0}N N w x w r x R r---=∈也就是说,w 满足方程1''()'()0,0N w r w r r r-+=>即1('())'0,0N r w r r -=>因此1'(),0,N A w r r r-=>其中A 是任意实数.从而2ln ,2(),3N B r C N w r BC N r-+=⎧⎪⎨+≥⎪⎩当,当, 其中B 和C 是任意实数, 定义:称N R 上的函数211ln 22||()1,3(2)||N N N x x N N x πω-⎧=⎪⎪Γ=⎨⎪≥⎪-⎩,当当 为Laplace 方程(5.2)的基本解,也成为Newton 位势,其中N ω是N 维单位球的表面积,Laplace 方程的基本解具有的性质:(1) (\{0})N C R ∞Γ∈,且对任意的\{0}N x R ∈,有()0x ∆Γ=;(2) Γ,1()()Nloc x L R ∇Γ∈,且在广义函数意义下()(),N x x x R δ-∆Γ=∈,即对任意的0()N C R ϕ∞∈,有()()(0)NR x x dx ϕϕ∇Γ⋅∇=⎰或者()()(0)NR x x dx ϕϕΓ⋅∇=-⎰2.Green 函数考虑Poisson 方程的第一边值问题()(),, 5.3u f x x -∆=∈Ω()()(),,5.4u x g x x =∈∂Ω其中Ω是(2)N R N ≥中具有光滑边界的有界区域,设21()()u C C ∈Ω⋂Ω是为题(5.3),(5.4)的解,可以得到对任意的ξ∈Ω,()()()()()(()()),u x x x u x dx u x x u x dS v vξξξΩ∂Ω∂∂Γ-Γ-∆=-+Γ--∂∂⎰⎰ 即()()()()()()(()()), 5.5u x x u x x u x dx x u x dS v vξξξΩ∂Ω∂∂Γ-=Γ-∆+Γ--∂∂⎰⎰其中v 表示∂Ω的单位外法向量,因此,问题(5.3),(5.4)属于21()()C C Ω⋂Ω的解可用(5.5)右侧积分值表示出来,但第二个积分式子中含未知数u 沿外法向量的导数,这是我们所不知道的,注意到由Green 公式可以推出:对任意的21()()v C C ∈Ω⋂Ω,有()()(()()()())(()()),v x u x u x v x v x u x dx u x v x dS v vΩ∂Ω∂∂∆-∆=-∂∂⎰⎰ 即()()()(()()()())(()()). 5.6v x u x u x v x v x f x dx g x v x dS v vΩ∂Ω∂∂∆+=-∂∂⎰⎰由(5.5)和(5.6)得()()()()()[(()())()()()][(()())()()].5.7u u x v x x x v x f x u x v x dx x v x g x dS v v v ξξξξΩ∂Ω=∂∂∂Γ-Γ-++∆+Γ-+-+∂∂∂⎰⎰ 如果21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω是问题()(,)0,,5.8x v x x ξ-∆=∈Ω()(,)(), 5.9v x x x ξξ=-Γ-∈∂Ω的解,那么根据(5.7)有()()()(,)()(),, 5.10G x u G x f x dx g x dS vξξξΩ∂Ω∂=-∈Ω∂⎰⎰其中(,)()(,),(,),.G x x v x x x ξξξξξ=Γ-+∈Ω⨯Ω≠这样我们得到了问题(5.3),(5.4)一个解的表达式(5.10)定义:如果对任意固定的21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω满足方程(5.8)和边值条件(5.9),则我们称定义于{(,):}x x ξξ∈Ω⨯Ω≠上的函数(,)()(,)G x x v x ξξξ=Γ-+为Laplace 算子关于区域Ω的Green 函数,称()x ξΓ-为Green 函数(,)G x ξ的奇异部分,而称(,)v x ξ为Green 函数(,)G x ξ的正则部分,注:如果Green 函数(,)G x ξ的正则部分(,)v x ξ存在,则根据第一边值问题(5.8)(5.9)解的唯一性,可知(,)(,),(,).v x v x x ξξξ=∈Ω⨯Ω因此21()().v C C ∈Ω⨯Ω⋂Ω⨯ΩLaplace 算子关于区域Ω的Green 函数(,)G x ξ具有以下性质: (1) 对任意的(,)x ξ∈Ω⨯Ω,x ξ≠,都有(,)(,);G x G x ξξ=(2) 对任意的ξ∈Ω,有21(,)(\{})(\{}),(,)|0,G C C G ξξξξ∂Ω⋅∈Ω⋂Ω⋅=且对任意的\{}x ξ∈Ω,(,)0x G x ξ∆=;(3) 对任意的ξ∈Ω,有1(,),(,)(),x G G x L ξξ⋅∇∈Ω且在广义函数意义下(,)(),x G x x x ξδξ-∆=-∈Ω.注:资料可能无法思考和涵盖全面,最好仔细浏览后下载使用,感谢您的关注!。

偏微分方程的数值解法

偏微分方程的数值解法

偏微分方程的数值解法偏微分方程(Partial Differential Equations, PDEs)是描述自然界中各种物理现象的重要数学工具。

它们广泛应用于物理学、工程学、生物学等领域,并且在科学研究和工程实践中起着重要的作用。

然而,解析解并不总是容易获得,这就需要借助数值解法来近似求解其中的解。

数值解法是一种利用计算机方法来求解偏微分方程的有效途径。

本文将介绍几种常见的数值解法,包括有限差分法、有限元法和谱方法。

一、有限差分法有限差分法是最直接、最常用的一种数值解法。

它将偏微分方程中的导数用差分形式进行近似,然后将问题转化为一个线性方程组求解。

其中,空间和时间都被离散化,通过选取合适的网格间距,可以得到对原偏微分方程的近似解。

有限差分法的优点在于简单易懂,便于实现。

然而,该方法对于复杂边界条件和高维问题的适用性存在一定的局限性。

二、有限元法有限元法是一种更加通用和灵活的数值解法,尤其适用于复杂几何形状和非结构化网格的问题。

该方法将求解域划分为多个小区域,称为有限元,通过构建适当的试验函数和加权残差方法,将原偏微分方程转化为求解线性方程组的问题。

有限元法的优点在于适用范围广,可以处理各种边界条件和复杂几何形状,但相对较复杂,需要考虑网格生成、积分计算等问题。

三、谱方法谱方法是一种基于特定基函数展开的数值解法。

它利用特定的基函数,如Chebyshev多项式、Legendre多项式等,将偏微分方程的未知函数在特定区域内进行展开,然后通过求解系数来得到近似解。

谱方法具有高精度和快速收敛的特点,适用于光滑解和高阶精度要求的问题。

然而,谱方法对于非线性和时变问题的处理相对困难,需要一些特殊策略来提高计算效率。

总结:本文简要介绍了偏微分方程的数值解法,包括有限差分法、有限元法和谱方法。

这些方法在实际应用中各有优势和限制,选择合适的数值解法需要考虑问题的性质、几何形状以及计算资源等因素。

此外,还有其他一些高级数值方法,如边界元法、间断有限元法等,可以根据具体问题的需要进行选择。

椭圆型偏微分方程的求解及其应用[文献综述]

椭圆型偏微分方程的求解及其应用[文献综述]

毕业论文文献综述信息与计算科学椭圆型偏微分方程的求解及其应用一、 前言部分微积分产生以后,人们就开始把力学中的一些问题,归结为偏微分方程进行研究。

早在18世纪初,人们已经将弦线振动的问题归结为弦振动方程,并开始探讨了它的解法。

随后,人们又陆续了解了流体的运动、弹性体的平衡和振动、热传导、电磁相互作用、原子核和电子的相互作用、化学反应过程等等自然现象的基本规律,把它们写成偏微分方程的形式,并且求出了典型问题的解答,从而能通过实践,验证这些基本规律的正确性,显示了数学物理方程对于认识自然界基本规律的重要性。

有了基本规律,人们还要利用这些基本规律来研究复杂的自然现象和解决复杂的工程技术问题,这就需要求出数学物理方程中的许多特定问题的解答。

随着电子计算机的出现及计算技术的发展,即使是相当复杂的问题,也有可能计算出解得足够精确的数值来,这对于预测自然现象的变化(如天气预报)和进行各种工程设计(如机械强度的计算)都有着很重要的作用[1]。

许多复杂的自然现象,其运动规律、过程和状态都是通过微分方程这种数学形式来描述的。

当我们研究只有一个自变量的运动过程时出现的微分方程称为常微分方程。

当一个微分方程除了含有几个自变量和未知数外,还含有未知数的偏导数时,称为偏微分方程[2]-[6]。

在偏微分方程中,偏导数自然是不可缺少的。

例如: ()(),,u ua x y f x y x y∂∂+=∂∂ (1.1.1) 拉普拉斯方程22232220u u uu x y z∂∂∂∆=++=∂∂∂(1.1.2) 热传导方程()222,,u u a f x t u t x ∂∂=+∂∂(1.1.3) 波动方程()2222,,u a u f t x y t∂=∆+∂(1.1.4)等都是偏微分方程。

其中,u 为未知数,a 为常数,(),a x y 、f 为已知函数。

偏微分方程的一般形式为()112,,,,,,,,0n n x x F x x x u u u ⋅⋅⋅⋅⋅⋅⋅⋅⋅= (1.1.5) 其中:F 为已知函数;12,,,n x x x ⋅⋅⋅为自变量;u 是关于这些自变量的未知数。

偏微分方程的分类与求解方法

偏微分方程的分类与求解方法

偏微分方程的分类与求解方法偏微分方程(Partial Differential Equations, PDEs)是描述自然界和物理现象中的变化过程的重要数学工具。

它涉及多个自变量和导数,可以用来描述涉及多个变量及其变化率的复杂问题。

在数学、物理学、工程学等领域中,偏微分方程广泛应用于研究和解决实际问题。

本文将介绍偏微分方程的分类与求解方法。

一、偏微分方程的分类偏微分方程可以根据方程中未知函数的阶数、方程类型以及系数的性质等多个因素来进行分类。

下面将介绍几种常见的偏微分方程分类。

1. 齐次与非齐次偏微分方程当方程中未知函数及其各阶偏导数的总次数都为整数时,称为齐次偏微分方程。

齐次偏微分方程的解是一类特殊的函数族。

与之相反,非齐次偏微分方程中的未知函数及其各阶偏导数总次数之和不等于整数。

求解非齐次偏微分方程需要特殊的方法。

2. 线性与非线性偏微分方程根据方程中未知函数的线性性质,可以将偏微分方程分为线性和非线性两类。

当方程中未知函数及其各阶偏导数的系数与未知函数之间都是线性关系时,称为线性偏微分方程。

线性偏微分方程的求解较为简单。

与之相对,非线性偏微分方程的系数与未知函数之间存在非线性关系,求解较为困难。

3. 一阶、二阶和高阶偏微分方程根据未知函数的导数阶数,可以将偏微分方程分为一阶、二阶以及高阶偏微分方程。

一阶偏微分方程中涉及到未知函数的一阶导数,例如常见的一阶线性偏微分方程:$\frac{\partial u}{\partial x} +\frac{\partial u}{\partial y} = 0$。

二阶偏微分方程中涉及到未知函数的二阶导数,例如常见的二阶线性齐次偏微分方程:$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$。

高阶偏微分方程则涉及到更高次的导数。

二、偏微分方程的求解方法对于不同类型的偏微分方程,可以采用不同的求解方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Boussinesq:0)(220=---xx xxxx xx tt u u u c u βα
1. Jacobi 椭圆函数展开法 [2]刘式适,傅遵涛,刘式达,赵强.Jacobi 椭圆函数展开法及其在求解非线性波动方程中的应用[J].物理学报,2001(11):2068-2073. ;[29]闻小永.Boussinesq 方程的Jacobi 椭圆函数精确解[J].北京机械工业学院学报,2007(01):23-26.
2. 三角函数法和吴文俊消元 [26]贺锋,郭启波,刘辽.用三角函数法获得非线性Boussinesq 方程的广义孤子解[J].物理学报,2007(08):4326-4330.
3. 双函数法、吴文俊消元 [27]黄文华,张解放,盛正卯.Boussinesq 方程的新显式精确行波解[J].浙江大学学报(理学版),2003(02):145-149.
4. 齐次平衡法、backlund 变换 [28]夏铁成,张鸿庆,李佩春.Boussinesq 方程精确解析解研究[J].大连理工大学学报,2003(04):393-396.
5.推广的Tanh 法、Jacobi 椭圆函数、双曲函数 [30]高亮,徐伟,申建伟,唐亚宁.Boussinesq 方程新的显式行波解[J].西南民族大学学报(自然科学版),2006(01):54-59.
6.试探方程法、齐次平衡法 [39]杨玉婷,崔泽建.用试探方程法求解Boussinesq 方程[J].重庆文理学院学报(自然科学版),2012,31(03):5-
7.
7.拓展的Jacobi 椭圆函数法 [44]钟太勇,钟远涛.用形变映射法求KdV 方程的显式精确行波解
[J].江汉大学学报(自然科学版),2009,37(03):10-12.
8.改进的试探函数法 [45]谢元喜,唐驾时.用改进的试探函数法求解Boussinesq 方程[J].安阳工学院学报,2005(06):73-76.
9.形变映射法 [46]方建平.形变映射法构造非线性Boussinesq 方程的行波解[J].丽水师范专科学校学报,2003(02):12-15.
Sine -Gordon 方程:0sin =+-u u u tt xx
1. 直接积分法 [1]李志斌. 非线性数学物理方程的行波解[M]. 科学出版社, 2007.
2. 混合指数方法. [1]李志斌. 非线性数学物理方程的行波解[M]. 科学出版社, 2007.
3. F -展开法 齐次平衡法 [13]王明亮,聂惠,李向正.用F 展开法解Sine -Gordon 方程[J].河南科技大学学报(自然科学版),2005(01):79-82. ;[32]范建华,闫杰生.Sine -Gordon 方程的精确解[J].商丘职业技术学院学报,2004(06):11-13+21.
4.扩展的sinh -Gordon 方程展开法 [95]杨先林,唐驾时.非线性演化方程的新Jacobi 椭圆函数解[J].动力学与控制学报,2011,9(02):147-151.
5.双线性算子、齐次平衡 [99]杨琼芬,唐再良,罗守双.用双线性形式求得sine -Gordon 方程新的精确解[J].绵阳师范学院学报,2015,34(11):12-14+29.
6.Jacobi 椭圆函数展开法 [100]沈水金.利用Jacobi 椭圆函数展开法求解特殊类型的方程[J].上海大学学报(自然科学版),2010,16(04):383-386.
Fisher 方程:0)1(=---u u u u xx t βα
1. 观察试凑法 [1]李志斌. 非线性数学物理方程的行波解[M]. 科学出版社, 2007.
2. 指数函数法 [51]王军帽,张睿,张文亮,张苗,韩家骅.Exp 函数法与Fisher 方程新的精确解[J].安徽大学学报(自然科学版),2009,33(01):53-56. ; [52]张桂戌,李志斌,段一士.非线性波方程的精确孤立波解
[J].中国科学(A 辑),2000(12):1103-1108.
3.正切函数变换 [53]张宏.Fisher 方程的新孤波解[J].青海师范大学学报(自然科学版),2006(03):37-38+67.
4.推广的tanh 函数法、复tanh 函数法、广义幂指函数法 [54]庄红波. 函数变换法求经典Fisher 方程的显示解[D].四川师范大学,2006.
5.双函数法 [55]王军帽,张文亮,张苗,吴国将,韩家骅.一类非线性方程新的精确孤波解[J].安徽大学学报(自然科学版),2008(04):53-55.
6.转化为复域的ODE [101]熊维玲,韩松,卢晓娟.Fisher 方程的行波解[J].广西科技大学学报,2014,25(04):5-13.
7.同伦摄动 [102]谭璐芸.同伦摄动法在求解非线性偏微分方程中的应用[J].江西理工大学学报,2014,35(01):102-104.
8.改进的tanh 函数法 [103]庄红波,张健,张斌儒.改进的tanh 函数法在一类Fisher 方程中的运用[J].四川文理学院学报,2011,21(02):11-13.
9.待定系数法 [105]陶涛,张卫国,冯丽萍.一类Fisher 方程的行波解及行波波速[J].上海理工大学学报,2004(02):111-112.
10.正切函数变换 [106]臧雪岩,张秀梅.Fisher 方程的新孤波解[J].沈阳电力高等专科学校学报,2004(01):16-17. 11.幂变换 [107]刘春平,张丹.Fisher 型方程的显式精确孤波解[J].数学物理学报,1999(S1):513-516. 12三角变换 [108]王心宜.关于Fisher 方程的孤波解[J].科学通报,1991(01):76.
KP 方程:0)(2=++++yy xxxx xx x tx u u uu u u εγα
1. 混合指数方法. [1]李志斌. 非线性数学物理方程的行波解[M]. 科学出版社, 2007.
2.同伦分析法 [57]杨红娟,石玉仁,段文山,吕克璞.非线性演化方程孤立波的同伦分析法求解
[J].物理学报,2007(06):3064-3069.
3.改进的双曲正切法、吴文俊消元 [59]张英,李晓燕,姚若侠.用改进的双曲正切法求解KP 方程新的精确解[J].陕西师范大学学报(自然科学版),2013,41(05):1-
4.
4....新方法[60]姜东梅.KP 方程的精确行波解[J].北京联合大学学报(自然科学版),2008(03):69-71.
5.双线性简化方法 [61]张增辉,董焕河.双线性简化方法求解两种孤子方程的新解[J].山东理工大学学报(自然科学版),2011,25(03):14-1
6.
6.Hirota 双线性方法 [62]林麦麦,段文山,吕克璞.Hirota 方法求解KP 方程的多孤子解[J].西北师范大学学报(自然科学版),2004(03):26-30+34.
7.齐次平衡法、Backlund 变换 [63]石玉仁,吕克璞,段文山,洪学仁,杨红娟,赵金保.KP 方程的Backlund 变换及其精确解[J].西北师范大学学报(自然科学版),2003(02):30-32.
8.指数函数法 [71]刘玉堂,李富志.指数函数方法及其在非线性发展方程中的应用[J].计算机工程与应用,2009,45(02):68-70+105.。

相关文档
最新文档