北京市2013-2014学年八年级数学下册 正方形课后练习 (新版)新人教版

合集下载

八年级数学下册 1823正方形同步练习2 新版新人教版

八年级数学下册 1823正方形同步练习2 新版新人教版

正方形学习要求 1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;.掌握正方形的性质及判定方法.2课堂学习检测一、填空题的平行四边形叫做正方形,因此正方形既是______.正方形的定义:有一组邻边______并且有一个角是1 .______,又是一个特殊的有一个角是直角的______一个特殊的有一组邻边相等的;______2.正方形的性质:正方形具有四边形、平行四边形、矩形、菱形的一切性质,正方形的四个角都角线平分,每条对______,并且互相______四条边都______且__________________;正方形的两条对角线条对称轴.对角.它有____________ 定:3.正方形的判的平行四边形是正方形;(1)_____ _____________________________ 的矩形是正方形;(2)___________________ ____________的菱形是正方形;(3)____________________________________ 的四边形是正方形..对角线________________________________4ABCDACEFa则正方形若正方形的对角线,的边是正方形5.若正方形的边长为,,则其对角线长为______ABCDACEF ______与正方形.的面积之比等于BCAFCFACAECDABCDBCECE,若,连结的度数为6.延长正方形,交的______边至点于,使=,那么∠ACE.的面积等于______=4cm,则△AB 52cm EFFGACABCDEBCEFEGBD,那么,如果,,垂足分别为.在正方形7⊥中,为、上一点,⊥EG的长为______.+二、选择题ABCDADCEDEPQPQ,则,折痕为,使=.如图,将一边长为812的正方形纸片的顶点5折叠至边上的点的长为( )(A)12 (B)13(D)15(C)142ABCD的边长为4cm,则图中阴影部分的面积为( )cm.9.如图,正方形1(A)6 (B)8(D)不能确定 (C)16综合、运用、诊断一、解答题ABCDEMNABBCADCEMN,、10.已知:如图,正方形=中,点、、、边上,分别在MCEANM的度数. 35∠°,求∠=EABCDACAEABEFACBCFBFEC.⊥,交11.已知:如图,是正方形=对角线上一点,且于=,.求证:ABCDCEFCGEFADH,30按顺时针方向旋转°后,得到正方形于,交312.如图,边长为的正方形绕点DH的长.求2探究、思考拓展、QDPACBABCDPABA的正方形中,点交在.上从于点向运动,连结.如图,在边长为144ABQABADQP≌△(1)试证明:无论点;运动到上何处时,都有△1ABCDABADQP上运动到什么位置时,△;的面积是正方形面积的(2)当点在6PCABBCP运动到什么位置时,,再继续在上运动到点中,当点,在整个运动过程若点(3)从点运动到点ADQ△恰为等腰三角形.3FBCDDFNM°.提示:过于点作,交∥.10.55AF.11.提示:连结3BPCHDH, 13.提示:连结=...提示:连结12ABQADQ≌△;14.(1)证明:△FEQFxyAQQE,轴于点(2)以轴于点为原点建立如图所示的直角坐标系,过点⊥作.⊥4118QEADQES∴===×ABCD正方形363244)(,QQAC在正方形对角线点的坐标为上∵点∴3344)(,Q ABPyxDyx中点时,,即=0时,运动到=两点的函数关系式为:2=-2,当+,∴过点,(04)4331ABCDADQ面积的的面积是正方形;△6ADDQAQDAADQQDQA或(3)若△=是等腰三角形,则有==或ADQQAQDPBABCD①当点此时△运动到与点=重合时,由四边形是正方形知是等腰三角形;ADQCQDADQPC与点也重合,此时,△=②当点是等腰三角形;与点重合时,点AQADxPBCCP=时,有③如图,设点=在边上运动到CPQADBCADQ∵∥∴∠.=∠AQDAQDCQPADQ又∵∠=∠,∠=∠,4CPQCQP.=∠∴∠xCQCP∴==.24ADACAQ,4=∵.==24AQACxCQ==.--=4∴42ADQCP 是等腰三角形.时,△4即当=-520XX—019学年度第一学期生物教研组工作计划指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。

人教版八年级数学下册 正方形课后练习题 (Word版含答案)

人教版八年级数学下册 正方形课后练习题 (Word版含答案)

18.2.3正方形课后练习题一、选择题1.下列说法正确的是()A.平行四边形的对角线互相平分且相等B.矩形的对角线相等且互相平分C.菱形的对角线互相垂直且相等D.正方形的对角线是正方形的对称轴2.如图,在正方形ABCD中,点E、F分别在边CD、AD上,BE与CF交于点G.若BC=8,DE=AF=2,则FG的长为()A.B.C.D.3.如图,在正方形ABCD中,点E,F分别为AB,AD的中点,CE,BF相交于点G,AB=2,则CG=()A.B.C.D.4.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF 的长为()A.4﹣2B.3﹣4 C.1 D.5.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是()A .13B .14C .15D .166.如图,正方形ABCD 的边长为6,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE :EC =2:1,则线段CH 的长是( )A .B .C .3D .3.57.如图,正方形ABCD 的边长为2,E 是BC 的中点,点P 是AC 边上的一个动点,连结BP ,EP ,则BP +EP 的最小值为( )AB C D +18.如图,正方形ABCD 的边长为1,取AB 中点E ,取BC 中点F ,连接DE ,AF ,DE 与AF 交于点O .连接OC ,则OC =( )52835322A .1B .C .D .9.如图,四边形ABCD 为正方形,O 为AC 、BD 的交点,△DCE 为Rt △,∠CED =90°,OE =2,若CE •DE =4,则正方形的面积为( )A .5B .6C .7D .810.如图,正方形ABCD ,对角线,AC BD 相交于点O,过点D 作ODC ∠的角平分线交OC 于点G,过点C 作CF DG ⊥,垂足为F,交BD 于点E,则:ADG BCE S S 的比为( )A .21):1B .(221):1C .2∶1D .5∶2二、填空题11.顺次连接四边形ABCD 各边中点E 、F 、G 、H ,得到四边形EFGH ,只要添加___条件,就能保证四边形EFGH 是矩形.12.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,AD DG =,H 是AF 的中点,那么CH 的长是_____.2213.正方形ABCD 的边长为4,则图中阴影部分的面积为 _____.14.如图,在正方形ABCD 中,AB =4,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF ∶AB 于点F ,EG ∶BC 于点G ,连接DE ,FG ,下列结论:∶DE =FG ;∶DE ∶FG ;∶∶BFG =∶ADE ;∶FG 的最小值为3.其中正确结论的序号为__.15.如图,E 、F 、G 、H 分别是四边形ABCD 各边的中点,对角线AC 、BD 的长分别为7和9,则四边形EFGH 的周长是______.三、解答题16.已知:如图,在Rt ABC 中,90ACB ∠=︒,CD 是ABC 的角平分线,DE BC ⊥,DF AC ⊥,垂足分別为E 、F .求证:四边形CEDF 是正方形.17.如图,在正方形ABCD 中,E 是BC 的中点,连接AE ,过点B 作射线BM 交CD 于点F , 交AE 于点O,且BF ⊥AE .(1)求证:BF =AE ;(2)连接OD ,猜想OD 与AB 的数量关系,并证明.18.如图,点P (3m -1,-2m +4)在第一象限的角平分线OC 上,AP ⊥BP ,点A 在x 轴正半轴上,点B 在y 轴正半轴上.(1)求点P 的坐标.(2)当∠APB 绕点P 旋转时,①OA +OB 的值是否发生变化?若变化,求出其变化范围;若不变,求出这个定值. ②请求出OA 2+OB 2的最小值.19.如图,Rt △ABC 中,,CD 是斜边AB 上的中线,分别过点A ,C 作,,两线交于点E .90ACB ∠=︒AE DC ∥CE AB ∥(1)求证:四边形AECD 是菱形;(2)若∠B =45°,CD =2,求四边形AECD 的面积.20.如图,在ABC 中,90ACB ∠=︒,B A ∠>∠,点D 为边AB 的中点,//DE BC 交AC 于点E ,//CF AB 交DE 的延长线于点F .(1)求证:DE EF =;(2)当Rt ABC 满足什么条件时,四边形ADCF 是正方形?请证明你的结论.21.提出问题:(1)如图1,已知在锐角ABC 中,分别以AB 、AC 为边向ABC 外作等腰直角ABD △和等腰直角ACE ,连接BE 、CD ,则线段BE 与线段CD 的数量关系是 ; (2)如图2,在ABC 中,90ACB ∠=︒,分别以边AB 、AC 向外作正方形ABDE 和正方形ACFG ,连接CE ,BG ,EG .猜想线段CE 与线段BG 的有什么关系?并说明理由.(提示:正方形的各边都相等,各角均为90︒)(3)在(2)的条件下,探究ABC 与AEG △面积是否相等?说明理由.【参考答案】1.B 2.A 3.D 4.A 5.D 6.B 7.A 8.A 9.D 10.D11.AC BD⊥1213.814.∶∶∶15.1616.证明:∶CD平分ACB∠,DE BC⊥,DF AC⊥,∶DE DF=,90DFC∠=︒,90DEC∠=︒,又∶90ACB∠=︒,∶四边形DECF是矩形,∶DE DF=,∶矩形DECF是正方形.17.(1)证明:在正方形ABCD中,∶ABC=∶C=90°,AB=BC,∶∶BAE+∶AEB=90°,∶BF∶AE,∶∶EOB=90°,∶∶CBF+∶AEB=90°,∶∶BAE=∶CBF,∶∶ABE∶∶BCF,∶BF=AE;(2)解:OD=AB,理由如下:如图,延长AD交射线BM于点G,由(1)得:∶ABE∶∶BCF,∶BE=CF,∶E是BC的中点,∶,∶CF=DF,∶AD∶BC,∶∶DGF=∶CBF,101122CF BE BC CD===在∶DGF 和∶CBF 中,∶∶DGF =∶CBF ,∶DFG =∶BFC ,DF =CF ,∶∶DGF ∶∶CBF ,∶DG =BC ,∶DG =AD ,即OD 为∶AOG 的中线,∶BF ∶AE ,∶. 18.(1)解:∶点P (3m -1,-2m +4)在第一象限的角平分线OC 上, ∶3m -1=-2m +4,∶m =1,∶P (2,2);(2)∶过点P 作PM ∶y 轴于M ,PN ∶OA 于N .∶∶PMO =∶PNO =∶MON =90°,∶四边形OMPN 是矩形,∶OP 平分∶MON ,PM ∶OM ,PN ∶ON ,∶PM =PN ,∶四边形OMPN 是正方形,∶P (2,2),∶PM =PN =OM =ON =2,∶AP ∶BP ,∶∶APB =∶MPN =90°,∶∶MPB +∶BPN =∶BPN +∶NP A =90°,∶∶MPB =∶NP A ,在△PMB 和△PNA 中,, ∶∶PMB ∶∶PNA (ASA ),∶BM =AN ,∶OB +OA =OM -BM +ON +AN =2OM =4.12OD AG AD AB ===MPB NPA PM PN PMB PNA ∠=∠⎧⎪=⎨⎪∠=∠⎩∶连接AB ,∶∶AOB =90°,∶OA 2+OB 2=AB 2.∶∶BP A =90°,∶AB 2=P A 2+PB 2=2P A 2,∶OA 2+OB 2=2P A 2,当P A 最小时,OA 2+OB 2也最小.根据垂线段最短原理,P A 最小值为2.∶OA 2+OB 2的最小值为8.19.(1)证明:∶AE∥DC ,CE∥AB ,∶四边形AECD 是平行四边形,∶Rt∶ABC 中,,CD 是斜边AB 上的中线, ∶CD =AD ,∶四边形AECD 是菱形.(2)解:∶Rt∶ABC 中,,CD 是斜边AB 上的中线, ∶CD =AD=DB=2,∶∶B =∶BCD =45°,∶∶CDA =∶B +∶BCD =90°,∶四边形AECD 是正方形,∶ S 正方形AECD = CD 2=4.21.解:(1)如图(1)所示:∵点(),0B b ,()0,D d ,∴OB b =,OD d =,∵四边形OBCD 是矩形, 90ACB ∠=︒90ACB ∠=︒∴CD OB b ==,BC OD d ==,∴点(),C b d ;(2)如图(2)所示:∵四边形ABCD 是菱形,∴OA OC =,OB OD =,∵点(),0C c ,()0,D d ,∴OA OC c ==,OB OD d ==,∴点(),0A c -,点()0,B d -;(3)如图(3)所示:∵四边形OBCD 是正方形,∴OB BC CD OD ===,∵点()0,D d ,∴OD d =,∴OB BC CD d ===,∴点(),0B d ,点(),C d d .23.解:(1)∶∶ABD 和∶ACE 都是等腰直角三角形, ∶AB =AD ,AC =AE ,∶DAB =∶CAE =90°, ∶∶DAC =∶BAE ,∶∶ADC ∶∶ABE (SAS ),∶BE =CD ,故答案为: BE CD =;(2)CE BG =,CE BG ⊥;理由如下: 如图,设AB 与CE 的交点为P ,∶四边形ACFG 和四边形ABDE 是正方形, ∶AB =AE ,AC =AG ,∶EAB =∶GAC =90°,, EAB BAC GAC BAC ∴∠+∠=∠+∠,EAC BAG ∴∠=∠,在EAC ∆和BAG ∆中,EA BA EAC BAG AC AG =⎧⎪∠=∠⎨⎪=⎩,()EAC BAG SAS ∴∆≅∆,CE BG ∴=,AEC ABG ∠=,90AEC APE ∠+∠=︒,APE BPC ∠=∠, 90BPC ABG ∴∠+∠=︒,CE BG ∴⊥;即:CE BG =,CE BG ⊥;(3)如图,过点E 作EH AG ⊥交GA 延长线于H ;90EHA BCA ∴∠=∠︒=∠,90EAH BAH ∠+∠=︒,90BAC BAH ∠+∠=︒, EAH BAC ∴∠=∠,在EHA ∆和BCA ∆中,EHA BCA EAH BAC AE AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, EHA BCA ∴∆≅∆,EH BC ∴=,AC AG =1122ABC S AC BC AC EH ∆∴=⨯=⨯, 1122AGE S AG EH AC EH ∆=⨯=⨯ ABC AGE S S ∆∆∴=。

人教版数学八年级下册18.2.3《正方形》精选练习 (含答案)

人教版数学八年级下册18.2.3《正方形》精选练习 (含答案)

18.2.3《正方形》精选练习一、选择题1.下列命题中,正确的是().A.有一组邻边相等的四边形是菱形B.对角线互相平分且垂直的四边形是矩形C.两组邻角相等的四边形是平行四边形D.对角线互相垂直且相等的平行四边形是正方形2.下列命题是真命题的是()A.四边都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形3.如图,在正方形ABCD外侧作等边三角形ADE,AC,BE相交于点F,则∠BFC为 ( )A.45°B.55°C.60° .75°4.下列命题是真命题的是()A.菱形的对角线互相平分B.一组对边平行,一组对边相等的四边形是平行四边形C.对角线互相垂直且相等的四边形是正方形D.对角线相等的四边形是矩形5.下列命题中,真命题是()A.有两边相等的平行四边形是菱形B.对角线垂直的四边形是菱形C.四个角相等的菱形是正方形D.两条对角线相等的四边形是矩形6.下列命题是真命题的是( )A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形7.如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A.2﹣2B.﹣1C.﹣1D.2﹣8.如图所示,在正方形ABCD的内部,作等边三角形BCE,则∠AEB的度数为( )A.60°B.65°C.70°D.75°9.如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0),则点D的坐标为( )A.(1,2.5)B.(1,1+)C.(1,3)D.(-1,1+)10.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF 沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.C.D.211.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为( )A.6B.8C.10D.1212.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )A.0个B.1个C.2个D.3个二、填空题13.对角线长为2的正方形的周长为___________,面积为__________。

新人教版数学八年级下《18.2.3正方形》课时练习含答案解析

新人教版数学八年级下《18.2.3正方形》课时练习含答案解析

新人教版数学八年级下册18.2.3正方形课时练习一.选择题(共15小题)1.如图,△ABC是一个等腰直角三角形,DEFG是其内接正方形,H是正方形的对角线交点;那么,由图中的线段所构成的三角形中相互全等的三角形的对数为()A.12 B.13 C.26 D.30答案:C知识点:全等三角形的判定;等腰直角三角形;正方形的性质解析:解答:解:设AB=3,图中所有三角形均为等腰直角三角形,其中,斜边长为1的有5个,它们组成10对全等三角形;斜边长为的有6个,它们组成15对全等三角形;斜边长为2的有2个,它们组成1对全等三角形;共计26对.故选C.分析:根据全等三角形的判定可以确定全等三角形的对数,由于图中全等三角形的对数较多,可以根据斜边长的不同确定对数,可以做到不重不漏.本题考查了全等三角形的判定,涉及到等腰直角三角形和正方形的性质,解题的关键是记熟全等三角形的判定方法并做到不重不漏.2.如图所示,E.F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个答案:A知识点:正方形的性质;全等三角形的判定与性质解析:解答:解:∵四边形ABCD是正方形,∴CD=AD∵CE=DF∴DE=AF∴△ADE≌△BAF∴①AE=BF,S△ADE=S△BAF,∠DEA=∠AFB,∠EAD=∠FBA∴④S△AOB=S四边形DEOF∵∠ABF+∠AFB=∠DAE+∠DEA=90°∴∠AFB+∠EAF=90°∴②AE⊥BF一定成立.错误的结论是:③AO=OE.故选A.分析:根据四边形ABCD是正方形及CE=DF,可证出△ADE≌△BAF,则得到:①AE=BF,以及△ADE和△BAF的面积相等,得到;④S△AOB=S四边形DEOF;可以证出∠ABO+∠BAO =90°,则②AE⊥BF一定成立.错误的结论是:③AO=OE.本题考查了全等三角形的判定和正方形的判定和性质.3.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE 于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④答案:D知识点:正方形的性质;全等三角形的判定与性质解析:解答:解:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.(2)∵FH⊥AE,FH=AF,∴∠HAE=45°.(3)连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△MIC,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEM的周长为8,为定值.故(1)(2)(3)(4)结论都正确.故选D.分析:(1)作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;(2)由FH⊥AE,AF=FH,可得:∠HAE=45°;(3)作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;(4)作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CI=IM,故△CEM的周长为边AM的长,为定值.解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.4.一个围棋盘由18×18个边长为1的正方形小方格组成,一块边长为1.5的正方形卡片放在棋盘上,被这块卡片覆盖了一部分或全部的小方格共有n个,则n的最大值是()A.4 B.6 C.10 D.12答案:D知识点:正方形的性质解析:解答:解:∵卡片的边长为1.5,∴卡片的对角线长为2<223<3,且小方格的对角线长2<1.5.故该卡片可以按照如图所示放置:图示为n取最大值的时候,n=12.故选D.分析:要n 取最大值,就让边长为1.5的正方形卡片边与小方格的边成一定角度.本题考查的是已知正方形边长正方形对角线长的计算,旋转正方形卡片并且找到合适的位置使得n 为最大值,是解题的关键.5.如图,四边形ABCD 是正方形,以CD 为边作等边三角形CDE ,BE 与AC 相交于点M ,则∠AMD 的度数是( )A .75°B .60°C .54°D .67.5° 答案:B知识点:正方形的性质;线段垂直平分线的性质解析:解答:解:如图,连接BD ,∵∠BCE =∠BCD +∠DCE =90°+60°=150°,BC =EC ,∴∠EBC =∠BEC =21(180°-∠BCE )=15° ∵∠BCM =21∠BCD =45°, ∴∠BMC =180°-(∠BCM +∠EBC )=120°,∴∠AMB =180°-∠BMC =60°∵AC 是线段BD 的垂直平分线,M 在AC 上,∴∠AMD =∠AMB =60°故选B .分析:连接BD ,根据BD ,AC 为正方形的两条对角线可知AC 为BD 的垂直平分线,所以∠AMD =AMB ,要求∠AMD ,求∠AMB 即可.本题考查的正方形的对角垂直平分的性质,根据垂直平分线的性质可以求得∠AMD =∠AMB ,确定AC 和BD 垂直平分是解题的关键.6.在平面直角坐标系中,称横.纵坐标均为整数的点为整点,如下图所示的正方形内(包括边界)整点的个数是()A.13 B.21 C.17 D.25答案:D知识点:正方形的性质;坐标与图形性质解析:解答:解:正方形边上的整点为(0,3)、(1,2)、(2,1)、(3,0)、(4,5)、(5,4)、(6,3)、(4,1)、(5,2)、(1,4)、(2,5)、(3,6);在其内的整点有(1,3)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,2)、(4,3)、(4,4)、(5,3).故选D.分析:根据正方形边长的计算,计算出边长上的整点,并且根据边长的坐标找出在正方形范围内的整点.本题考查的是正方形四条边上整点的计算,找到每条边上整点变化的规律是解本题的关键.7.在同一平面上,正方形ABCD的四个顶点到直线l的距离只取四个值,其中一个值是另一个值的3倍,这样的直线l可以有()A.4条B.8条C.12条D.16条答案:D知识点:正方形的性质;点到直线的距离解析:解答:解:符合题目要求的一共16条直线,下图虚线所示直线均符合题目要求.分析:根据正方形的性质,一个值为另一个值的3倍,所以本题需要分类讨论,①该直线切割正方形,确定直线的位置;②该直线在正方形外,确定直线的位置.本题考查了分类讨论计算点到直线的距离,找到直线的位置是解题的关键.8.如图,正方形ABCD 的边长为1,E 为AD 中点,P 为CE 中点,F 为BP 中点,则F 到BD 的距离等于( )A .82B .102C .122D .162 答案:D知识点:正方形的性质;三角形的面积解析:解答:解:连接DP ,S △BDP =S △BDC -S △DPC -S △BPC =21-21×1×21-21×1×41 =81, ∵F 为BP 的中点,∴P 到BD 的距离为F 到BD 的距离的2倍.∴S △BDP =2S △BDF ,∴S △BDF =161, 设F 到BD 的距离为h , 根据三角形面积计算公式,S △BDF =21×BD ×h =161, 计算得:h =22161=162. 故选D .分析:图中,F 为BP 的中点,所以S △BDP =2S △BDF ,所以要求F 到BD 的距离,求出P 到BD 的距离即可.本题考查的是转化思想,先求三角形的面积,再根据三角形面积计算公式,计算三角形的高,即F 到BD 的距离.9.搬进新居后,小杰自己动手用彩塑纸做了一个如图所示的正方形的挂式小饰品ABCD ,彩线BD .AN .CM 将正方形ABCD 分成六部分,其中M 是AB 的中点,N 是BC 的中点,AN 与CM 交于O 点.已知正方形ABCD 的面积为576cm 2,则被分隔开的△CON 的面积为( )A .96cm 2B .48cm 2C .24cm 2D .以上都不对 答案:B知识点:正方形的性质;三角形的面积;相似三角形的判定与性质解析:解答:解:找到CD 的中点E ,找到AD 的中点F ,连接CF ,AE ,则CM ∥EA ,AN ∥FC ,△BOM ∽△BKA , ∴BK BO =BABM =21, 同理可证:DO DK =DA DF =21, 故DK =KO =OB , ∴△BOC 和△BOA 的面积和为31正方形ABCD 的面积, ∵CN =NB =AM =BM ,∴△OCN 的面积为41△BOC 和△BOA 的面积和,∴△OCN 的面积为12576=48cm 2, 故选B .分析:先证明BO 为正方形ABCD 的对角线BD 的31,再求证△CNO ,△NBO ,△AMO ,△BMO 的面积相等,即△CON 的面积为正方形面积的121.本题考查了正方形内中位线的应用,考查了正方形四边均相等的性质,解本题的关键是求证BO =31BD ,△OCN 的面积为41△BOC 和△BOA 的面积和. 10.如图,正方形ABCD 的对角线AC 与BD 相交于O 点,在BD 上截取BE =BC ,连接CE ,点P 是CE 上任意一点,PM ⊥BD 于M ,PN ⊥BC 于N ,若正方形ABCD 的边长为1,则PM +PN =( )A .1B .2C .22D .1+2答案:C知识点:正方形的性质,三角形的面积解析:解答:解:连接BP ,作EH ⊥BC ,则PM .PN 分别为△BPE 和△BCP 的高,且底边长均为1,S △BCE =1--S △CDE ,∵DE =BD -BE =,△CDE 中CD 边上的高为22(2-1), ∵S △CDE =CD ×22(2-1)=-42; S △BCE =1-21-S △CDE =42; 又∵S △BCE =S △BPE +S △BPC =•BC•(PM +PN )∴PM +PN ==.故选C .分析:连接BP ,PM .PN 分别为△BPE 和△BCP 的高,且底边长均为1,因此根据面积计算方法可以求PM +PN .本题考查的用求三角形面积的方法求三角形的高的转化思想,考查正方形对角线互相垂直且对角线即角平分线的性质,面积转换思想是解决本题的关键.11.顶点为A (6,6),B (-4,3),C (-1,-7),D (9,-4)的正方形在第一象限的面积是( )A .25B .36C .49D .30 答案:B知识点:正方形的性质;坐标与图形性质;三角形的面积解析:解答:解:连接OA ,过A .D 两点的直线方程是69664-6----x y =,即y =-x 310+16,解得它与x 轴的交点E 的横坐标是x =7.8,同理求得过A .B 两点的直线方程是y =-x 103+4.2,解得它与y 轴的交点E 的纵坐标是y =4.2,∴S △AOE =21×7.8×6=23.4,S △AFO =21×4.2×6=12.6, ∴S △AOE +S △AFO =23.4+12.6=36,即顶点为A (6,6),B (-4,3),C (-1,-7),D (9,-4)的正方形在第一象限的面积是36.分析:根据正方形的顶点坐标,求出直线AD 的方程,由方程式知AD 与x 轴的交点E 的坐标,同理求得AB 与y 轴的交点F 的坐标,连接OA ,再去求两个三角形的面积,从而求得正方形在第一象限的面积.解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,利用直角三角形求面积,在本题中,借助直线方程求的点E .F 在坐标轴上的坐标,据此解得所求三角形的边长,代入面积公式求得结果.12.ABCD 是边长为1的正方形,△BPC 是等边三角形,则△BPD 的面积为( )A .41B .413-C .81D .8132- 答案:B知识点:正方形的性质;三角形的面积;等边三角形的性质解析:解答:解:△BPD 的面积等于△BCP 和△CDP 面积和减去△BCD 的面积因此本题求解△BCP .△CDP 面积和△BCD 的面积即可,S △BCP =4323121=⨯⨯, S △CDP =4121121=⨯⨯,S △BCD =×1×1=,∴S △BPD =413214143-=-+. 故选B . 分析:根据三角形面积计算公式,找到△BPD 的面积等于△BCP 和△CDP 面积和减去△BCD 的面积的等量关系,并进行求解.本题考查了三角形面积的计算,考查了正方形对角线平分正方形为2个全等的等腰直角三角形.解决本题的关键是找到△BPD 的面积等于△BCP 和△CDP 面积和减去△BCD 的面积的等量关系.13.如图,正方形ABCD 的面积为16,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线BD 上有一点P ,使PC +PE 的和最小,则这个最小值为( )A .4B .23C .26D .2答案:A知识点:轴对称-最短路线问题;等边三角形的性质;正方形的性质解析:解答:解:∵正方形ABCD ,∴AC ⊥BD ,OA =OC ,∴C .A 关于BD 对称,即C 关于BD 的对称点是A ,连接AE 交BD 于P ,则此时EP +CP 的值最小,∵C .A 关于BD 对称,∴CP =AP ,∴EP +CP =AE ,∵等边三角形ABE,∴EP+CP=AE=AB,∵正方形ABCD的面积为16,∴AB=4,∴EP+CP=4,故选A.分析:根据正方形的性质,推出C.A关于BD对称,推出CP=AP,推出EP+CP=AE,根据等边三角形性质推出AE=AB=EP+CP,根据正方形面积公式求出AB即可.本题考查了正方形的性质,轴对称-最短问题,等边三角形的性质等知识点的应用,解此题的关键是确定P的位置和求出EP+CP的最小值是AE,题目比较典型,但有一定的难度,主要培养学生分析问题和解决问题的能力.14.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cmB.6cmC.8cmD.10cm答案:A知识点:正方形的性质;翻折变换(折叠问题)解析:解答:解:∵四边形CEFD是正方形,AD=BC=10cm,BE=6cm,∴CE=EF=CD=10-6=4(cm).分析:根据正方形的性质,即可轻松解答.15.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF的周长为()A.14B.15C.16D.17答案:C知识点:正方形的性质;菱形的性质解析:解答:解:∵四边形ABCD 是菱形,∴AB =BC ,∵∠B =60°,∴△ABC 是等边三角形,∴AC =AB =4,∴正方形ACEF 的周长是AC +CE +EF +FA =4×4=16.分析:根据正方形和菱形的性质,即可轻松解答.二.填空题(共5小题)1.如图所示,将五个边长都为1cm 的正方形按如图所示摆放,其中点A 、B 、C 、D 分别是正方形对角线的交点、如果有n 个这样大小的正方形这样摆放,则阴影面积的总和是___cm 2.答案:41-n 知识点:正方形的性质;探索图形规律解析:解答:解:∵点A 、B 、C 、D 分别是正方形对角线的交点 ∴两个三角形之间的阴影面积为正方形总面积的, 即41×1×1=41, 当有三个三角形时,其面积为41+41=42 当有四个时,其面积为41+41+41=43 所以当n 个三角形时,其面积为41-n . 故答案为41-n . 分析:求面积问题,因为点A 、B 、C 、D 分别是正方形对角线的交点,所以两个三角形之间的阴影面积为正方形总面积的41,由此便可求解.熟练掌握正方形的性质,会运用正方形的性质进行一些简单的计算问题.2.如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系、已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA 沿BD翻折,使点A落在BC边上的点F处,若在y轴上存在点P,且满足FE=FP,则P 点坐标为.答案:(0,4)或(0,0)知识点:正方形的性质;坐标与图形性质;全等三角形的判定与性质解析:解答:解:连接EF,∵OA=3,OC=2,∴AB=2,∵点E是AB的中点,∴BE=1,∵BF=AB,∴CF=BE=1,∵FE=FP,∴Rt△FCP≌Rt△FBE,∴PC=BF=2,∴P点坐标为(0,4)或(0,0),即图中的点P和点P′.故答案为:(0,4),(0,0)分析:连接EF,CF=BE=1,若EF=FP,显然Rt△FCP≌Rt△FBE,由此确定CP的长.本题考查了三角形翻折前后的不变量,利用三角形的全等解决问题.3.如图,边长为a的正方形ABCD和边长为b的正方形BEFG排放在一起,O1和O2分别是两个正方形的中心,则阴影部分的面积为,线段O1O2的长为.答案:ab 41 )+(22221b a 知识点:正方形的性质;勾股定理;相似三角形的判定与性质解析:解答:解:做O 1H ∥AE ,使O 2H ⊥O 1H ,交BG 于P ,K 点,(1)BP =,又∵O 2H ⊥HO 1,∴KP ∥HO 2,∴△PKO 1∽△HO 2O 1, ∴ba a HO PO HO KP +==112, KP =)(=b a a ab a b b a a +--⨯+222, 阴影部分的面积=21×BK ×(2b a +)=21×[2a +)(b a a ab +-22]×2b a + =82ab =4ab ; (2)HO 1=2b a +,HO 2=2a b -, 根据勾股定理O 1O 2=2221HO HO + =222b a + =)(22221b a +. 故答案为:ab 41;)+(22221b a .分析:阴影部分的面积可以看成两个三角形面积之和,所以求2个三角形面积即可;线段O 1O 2的长根据勾股定理求解.本题考查的相似三角形的证明即对应边比例相等的性质,三角形面积的计算,考查了根据勾股定理计算直角三角形斜边的应用,解决本题的关键是构建直角三角形HO1O2.4.已知正方形ABCD在直角坐标系内,点A(0,1),点B(0,0),则点C,D坐标分别为和.(只写一组)答案:(1,0)和(1,1)知识点:正方形的性质;坐标与图形性质解析:解答:解:∵正方形ABCD的点A(0,1),点B(0,0),∴BD∥x轴,AC∥x轴,这样画出正方形,即可得出C与D的坐标,分别为:C(1,0),D(1,1).故答案为:(1,0),(1,1).分析:首先根据正方形ABCD的点A(0,1),点B(0,0),在坐标系内找出这两点,根据正方形各边相等,从而可以确定C,D的坐标.本题主要考查了正方形的性质与坐标内图形的性质,确定已知点的坐标,从而根据正方形的性质,确定其它顶点的坐标是解决问题的关键.5.如图,在一个正方形被分成三十六个面积均为1的小正方形,点A与点B在两个格点上.在格点上存在点C,使△ABC的面积为2,则这样的点C有个.答案:5知识点:正方形的性质;三角形的面积解析:解答:解:图中标出的5个点均为符合题意的点.故答案为 5.分析:要使得△ABC 的面积为2,即S =ah ,则使得a =2、h =2或者a =4、b =1即可,在图示方格纸中找出C 点即可.本题考查了正方形各边长相等的性质,考查了三角形面积的计算公式,本题中正确地找全C 点是解题的关键,考生容易漏掉一个或者几个答案.三.解答题(共5小题)1.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,AF 平分∠BAC ,交BD 于点F .(1)求证:AC OF AB 21=-; (2)点A 1、点C 1分别同时从A 、C 两点出发,以相同的速度运动相同的时间后同时停止,如图,A 1F 1平分∠BA 1C 1,交BD 于点F 1,过点F 1作F 1E ⊥A 1C 1,垂足为E ,请猜想EF 1,AB 与1121C A 三者之间的数量关系,并证明你的猜想; (3)在(2)的条件下,当A 1E 1=6,C 1E 1=4时,则BD 的长为 .答案:(1)见解析 (2)AB -EF1=A 1C 1 (3)27知识点:正方形的性质;全等三角形的判定与性质;勾股定理解析:解答:解:(1)过F 作FG ⊥AB 于G ,∵AF平分∠CAB,FO⊥AC,FG⊥AB,∴OF=FG,∵∠AOF=∠AGF=90°,AF=AF,OF=FG,∴△AOF≌△AGF,∴AO=AG,直角三角形BGF中,∠DGA=45°,∴FG=BG=OF,∴AB=AG+BG=AO+OF=AC+OF,∴AB-OF=AC.(2)过F1作F1G1⊥A1B,过F1作F1H1⊥BC1,则四边形F1G1BH1是矩形.同(1)可得EF1=F1G,因此四边形F1G1BH1是正方形.∴EF1=G1F1=F1H1,即:F1是三角形A1BC1的内心,∴EF1=(A1B+BC1-A1C1)÷2…①∵A1B+BC1=AB+A1A+BC-CC1,而CC1=A1A,∴A1B+BC1=2AB,因此①式可写成:EF1=(2AB-A1C1)÷2,即AB-EF1=A1C1.(3)由(2)得,F1是三角形A1BC1的内心,且E1、G1、H1都是切点.∴A1E=(A1C1+A1B-BC1)÷2,如果设CC1=A1A=x,A1E=[A1C1+(AB+x)-(AB-x)]÷2=(10+2x)÷2=6,∴x=1,在直角三角形A1BC1中,根据勾股定理有A1B2+BC12=AC12,即:(AB+1)2+(AB-1)2=100,解得AB=7,∴BD=7.分析:(1)可通过构建全等三角形来求解,过F作FG⊥AB于G,那么可通过角平分线上的点到角两边的距离相等得出OF=FG,通过全等三角形AOF和AGF可得出AO=AG,那么AB=AO+OF,而AC=2OA,由此可得证;(2)本题作辅助线的方法与(1)类似,过F1作F1G1⊥AB,F1H1⊥BC,那么可证得四边形F1G1BH1是正方形,EF1=F1G1=F1H1,那么可得出F1就是三角形A1BC1的内心,根据直角三角形的内心公式可得出EF1=(A1B+BC1-A1C1)÷2,然后根据用AB分别表示出A1B,BC1,最后经过化简即可得出AB-EF1=A1C1;(3)求BD的长,首先要求出AB的长,本题可借助(2)中,F1是三角形A1BC1的内心来解,那么我们不难看出E,G1,H1都应该是切点,根据切线长定理不难得出A1E+A1G1=A1C1+A1B-C1E-BG1,由于C1E=C1H1,BG1=BH1,A1E=A1G1因此式子可写成2A1E=A1C1+A1B-BC1,而(A1B-BC1)正好等于2A1A,由此可求出A1A的长,那么可根据勾股定理用AB表示出两条直角边,求出AB的长,然后即可得出BD的值.本题主要考查了正方形的性质,三角形的内接圆与内心等知识点,要注意的是后两问中,结合圆的知识来解会使问题更简单.2.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.答案:见解析知识点:全等三角形的判定与性质;正方形的性质解析:解答:证明:∵∠FAB+∠BAE=90°,∠DAE+∠BAE=90°,∴∠FAB=∠DAE,∵∠AB=AD,∠ABF=∠ADE,∴△AFB≌△ADE,∴DE=BF.分析:由同角的余角相等知,∠FAB=∠DAE,由正方形的性质知,∠AB=AD,∠ABF=∠ADE=90°,则ASA证得△AFB≌△ADE⇒DE=BF.此题即考查了实数的运算又考查了正方形的性质.学生对学过的知识要系统起来.3.如图,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF,垂足为G,且AG=AB,则∠EAF为多少度.答案:45°知识点:正方形的性质;全等三角形的判定与性质解析:解答:解:在Rt△ABF与Rt△AGF中,∵AB=AG,AF=AF,∠B=∠G=90°,∴△ABF≌△AGF(HL),∴∠BAF=∠GAF,同理易得:△AGE≌△ADE,有∠GAE=∠DAE;即∠EAF=∠EAG+∠FAG=∠DAG+∠BAG=∠DAB=45°,故∠EAF=45°.分析:根据角平分线的判定,可得出△ABF≌△AGF,故有∠BAF=∠GAF,再证明AGE≌△ADE,有∠GAE=∠DAE;所以可求∠EAF=45°.主要考查了正方形的性质和全等三角形的判定.4.如图,正方形ABCD中,AB=,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF =15度.(1)求证:DF+BE=EF;(2)求∠EFC的度数;(3)求△AEF的面积.3答案:(1)见解析(2)30°(3)3知识点:正方形的性质;全等三角形的判定与性质解析:解答:解:(1)延长EB至G,使BG=DF,连接AG,∵正方形ABCD,∴AB=AD,∠ABG=∠ADF=∠BAD=90°,∵BG=DF,∴△ABG≌△ADF,∴AG=AF,∵∠BAE=30°,∠DAF=15°,∴∠FAE=∠GAE=45°,∵AE=AE,∴△FAE≌△GAE,∴EF=EG=GB+BE=DF+BE;(2)∵△AGE≌△AFE,∴∠AFE=∠AGE=75°,∵∠DFA=90°-∠DAF=75°,∴∠EFC=180°-∠DFA-∠AFE=180°-75°-75°=30°,∴∠EFC=30°(3)∵AB=BC=3,∠BAE=30°,∴BE=1,CE=3-1,∵∠EFC=30°,∴CF=3-3,∴S△CEF=CE•CF=23-3,由(1)知,△ABG≌△ADF,△FAE≌△GAE,∴S△AEF=S正方形ABCD-S△ADF-S△AEB-S△CEF=S正方形ABCD-S△AEF-S△CEF,S△AEF=(S正方形ABCD-S△AEF-S△CEF)=3-3.分析:(1)延长EB至G,使BG=DF,连接AG.利用正方形的性质,证明△AGE≌△AFE,△FAE≌△GAE,得出DF+BE=EF;(2)根据△AGE ≌△AFE 及角之间的关系从而求得∠EFC 的度数;(3)S △AEF =S 正方形ABCD -S △ADF -S △AEB -S △CEF =S 正方形ABCD -S △AEF -S △CEF ,关键求S △CEF . 解答本题利用正方形的特殊性质,通过证明三角形全等,得出线段间的关系,同时考查了三角函数的运用,及组合图形的面积计算.5.已知正方形ABCD 的边长为4cm ,E ,F 分别为边DC ,BC 上的点,BF =1cm ,CE =2cm ,BE ,DF 相交于点G ,求四边形CEGF 的面积.答案:518 知识点:正方形的性质;一次函数的性质;两条直线相交或平行的问题解析:解答:解:以B 点为坐标原点建立坐标系,如下图:由题意可得几个点的坐标A (0,4),B (0,0),C (4,0),D (4,4),E (4,2),F (1,0).设BE 所在直线的解析式是y =kx ,因为BE 所在直线经过E 点,因此有4k =2,k =21, 因此BE 所在直线的解析式是y =21x (1), 同理可得出DF 所在直线的解析式是y =34(x -1)(2), 联立(1)(2)可解得点G 的坐标为(58,54). 故可求四边形CEGF 的面积S =S △BCE -S △BFG =21×4×2-21×1×54=518.分析:本题的关键是求出G点的坐标,那么就要求出BE,DF所在直线的函数解析式,然后联立两个关系式求出交点坐标,再根据GECF的面积=三角形BEC的面积-三角形BFG 的面积,求出GECF的面积.本题主要考查的是正方形的性质,一次函数等知识点的应用.根据BE,DF所在直线求出交点的坐标是解题的关键.。

人教版初中数学八年级下册正方形2知识点及同步练习、含答案

人教版初中数学八年级下册正方形2知识点及同步练习、含答案

人教版初中数学八年级下册正方形2知识点及同步练习、含答案学科:数学教学内容:正方形【学习目标】1.探索并掌握正方形的概念及特征,并学会识别正方形.2.能正确理解平行四边形、矩形、菱形、正方形的区别与联系.【基础知识概述】1.正方形定义:(1)有一组邻边相等并且有—个角是直角的平行四边形叫做正方形.(2)正方形既是有一组邻边相等的矩形,又是有—个角是直角的菱形.(3)既是矩形又是菱形的四边形是正方形.2.正方形的特征:正方形具有四边形、平行四边形、矩形、菱形的一切特征.(1)边——四边相等、邻边垂直、对边平行.(2)角——四角都是直角.(3)对角线——①相等;②互相垂直平分;③每条对角线平分一组对角.(4)是轴对称图形,有4条对称轴.3.正方形的识别方法:(1)一组邻边相等的矩形是正方形.(2)—个角是直角的菱形是正方形.4.正方形与矩形、菱形、平行四边形的关系:矩形、菱形、正方形都是特殊的平行四边形,它们的包含关系如图12-2-13.5.正方形的面积:正方形的面积等于边长的平方或者等于两条对角线乘积的一半.【例题精讲】例1如图12-2-14,已知过正方形ABCD对角线BD上一点P,作PE⊥BC于E,作PF⊥CD于F.试说明AP=EF.分析:由PE⊥BC,PF⊥CD知,四边形PECF为矩形,故有EF=PC,这时只需证AP =CP,由正方形对角线互相垂直平分知AP=CP.解:连结AC、PC,∵四边形ABCD为正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF.注意:①在正方形中,常利用对角线互相垂直平分证明线段相等.②无论是正方形还是矩形经常通过连结对角线证题,这样可以使分散条件集中.思考:由上述条件是否可以得到AP⊥EF.提示:可以,延长AP交EF于N,由PE∥AB,有∠NPE=∠BAN.又∠BAN=∠BCP,而∠BCP=∠PFE,故∠NPE=∠PFE,而∠PFE+∠PEF=90°,所以∠NPE+∠PEF=90°,则AP⊥EF.例2如图12-2-15,△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB,试说明四边形BEDF是正方形.解:∵∠ABC=90°,DE⊥BC,∴DE∥AB,同理,DF∥BC,∴BEDF是平行四边形.∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF.又∵∠ABC=90°,BEDF是平行四边形,∴四边形BEDF是正方形.思考:还有没有其他方法?提示:(有一种方法可以证四边形DFBE为矩形,然后证BE=DE,可得.另一种方法,可证四边形DFBE为菱形,后证一个角为90°可得)注意:灵活选择正方形的识别方法.例3 如图12-2-16所示,四边形ABCD是正方形,△ADE是等边三角形,求∠BEC 的大小.分析:等边三角形和正方形都能提供大量的线段相等和角相等,常能产生一些等腰三角形,十分便于计算.在本题中,必须注意等边三角形与正方形不同的位置关系.在(1)图中,△ABE和△DCE都是等腰三角形,顶角都是150°,可得底角∠AEB与∠DEC都是15°,则∠BEC为30°.而在(2)图中,等边三角形在正方形内部,△ABE和△DCE是等腰三角形,顶角是30°,可得底角∠AEB和∠DEC为75°,再利用周角可求得∠BEC=150°.解:(1)当等边△ADE在正方形ABCD外部时,AB=AE,∠BAE=90°+60°=150°,所以∠AEB=15°.同理可得∠DEC=15°,则∠BEC=60°-15°-15°=30°.(2)当等边△ADE在正方形ABCD内部时,AB=AE,∠BAE=90°-60°=30°,所以∠AEB=75°.同理可得∠DEC=75°,则∠BEC=360°-75°-75°-60°=150°.【中考考点】会用正方形的性质来解决有关问题,并能用正方形的定义来判断四边形是否为正方形.【命题方向】本节出题比较灵活,填空题、选择题、证明题均可出现.正方形是特殊的平行四边形,考查正方形的内容,实质上是对平行四边形知识的综合,涉及正方形知识的题型较多,多以证明题形式出现.【常见错误分析】已知如图12-2-18,△ABC中,∠C=90°,分别以AC和BC为边向外作正方形ACFH 和正方形BCED,HM⊥BA的延长线于M,DK⊥AB的延长线于K.试说明AB=DK+HM.错解:延长DK到S,使KS=HM,连结SB.∵∠2=∠3,∠2+∠4=90°,∴∠3+∠4=90°.在△ABC和△SDB中,∵∠ACB=∠SBD=90°,BC=BD,∠2=90°-∠4=∠5∴△ABC与△SDB重合,∴AB=SD=SK+DK,即AB=HM+DK.分析指导:由于S、B、C三点共线未经证明,所以∠2=∠3的理由是不充足的,因此又犯了思维不严密的错误.正解:如图12-2-18,延长DK交CB延长线于S,下面证KS=MH.在△ACB和△SBD中,∵BD=BC,∠SBD=∠ACB=90°,又∠2=∠3=∠5,∴△ACB与△SBD重合,∴AB=DS,BS=AC=AH.在△BKS和△AMH中,∵∠1=∠2=∠3,∠AMH=∠SKB=90°,BS=AH,∴△BKS与△AMH重合,∴KS=HM,∴AB=DK+HM.【学习方法指导】正方形是最特殊的平行四边形,它既是一组邻边相等的矩形,又是有一个角为直角的菱形,所以它的性质最多,易混淆.故最好把平行四边形、矩形、菱形、正方形列表写出它们的定义、性质、判定,这样更容易记忆和区分.【同步达纲练习】一、填空题1.正方形既是________相等的矩形,又是有一个角是________的菱形.2.正方形ABCD中,对角线AC=24,P是AB边上一点,则点P到对角线AC、BD 的距离和为________.3.已知对角线AC、BD相交于O,(1)若AB=BC,则是________;(2)若AC=BD,则是________;(3)若∠BCD=90°,是________;(4)若OA=OB,则是________;(5)若AB=BC,且AC=BD,则是________.4.在边长为2的正方形中有一点P ,那么这个点P 到四边的距离之和是________. 5.如图12-2-19,正方形ABCD 的面积等于2cm 9,正方形DEFG 的面积等于2cm 4,则阴影部分的面积S =________2cm .6.如图12-2-20,下面由火柴棒拼出的一系列图形中,第n 个图形由n 个正方形组成,通过观察可以发现:(1)第4个图形中火柴棒的根数是________; (2)第n 个图形中火柴棒的根数是________.7.已知E 、F 为正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若∠EAF =50°,则∠CME +∠CNF =________.二、解答题8.如图12-2-21所示,四边形ABCD 是正方形,延长BC 到点E ,使CE =AC ,连结AE ,交CD 于F ,求∠AFC 的度数.9.如图12-2-22,已知正方形ABCD 中,BE ∥AC ,AE =AC ,试说明CE =CF .10.如图12-2-23,正方形ABCD中,AC与BD相交于O,E、F分别是DB、BD延长线上的点,且BE=DF,试说明∠E=∠F.11.如图12-2-24所示,点G是边长为4的正方形ABCD边上的一点,矩形DEFG的边EF过点A,已知DG=5,求FC的值.参考答案【同步达纲练习】1.邻边,直角 2.123.(1)菱形 (2)矩形 (3)矩形 (4)矩形 (5)正方形 4.45.27 6.(1)13 (2)3n +1 7.100°8.在正方形ABCD 中,∠ACB =45°(正方形的每条对角线平分一组对角).已知AC =CE ,所以∠CAE =∠E ,所以∠CAE +∠E =45°,所以∠E =22.5°.因为∠DCE =90°,∠AFC =∠DCE +∠E =90°+22.5°=112.5°.9.过点E 作EG ⊥AC 于G ,连结BD , ∵EG ⊥AC ,BD ⊥AC , ∴EG ∥BD . 又AC ∥BE ,∴四边形EGOB 是矩形, ∴EG =BO . ∵BD =AC ,∴AE 21AC 21EG ==,∴∠EAG =30°.∵△ACE 是等腰三角形,∴︒=︒-︒=∠75)30180(21AEC .∵AC 是正方形ABCD 的对角线, ∴∠ACB =45°.∵∠CFE =∠EAC +∠FCA =30°+45°=75°, 即∠CFE =∠CEF , ∴CF =CE .10.提示:易知OF =OE ,且AC ⊥BD 于O , ∴AC 为EF 的中垂线, ∴EC =CF , ∴∠E =∠F .11.连结AG ,过点A 作AH ⊥GD ,过点G 作GP ⊥AD ,垂足分别为H 、P ,易知AH=FG ,PG =AB ,所以依题意有PG AD 21AH DG 21S AGD ⨯⨯=⨯⨯=∆,即4421AH 521⨯⨯=⨯⨯,所以AH =3.2,即FG =3.2.。

新人教版八年级下册正方形知识点及同步练习、含答案

新人教版八年级下册正方形知识点及同步练习、含答案

学科:数学教学内容:正方形【学习目标】1.掌握正方形的定义、性质和判定方法.2.能正确区别平行四边形、矩形、菱形、正方形之间的关系.3.能运用正方形的性质和判定方法进行有关的计算和证明.【主体知识归纳】1.正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有:(1)正方形的四个角都是直角,四条边都相等;(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角.3.正方形的判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形;(3)有一个角是直角的菱形是正方形;(4)既是矩形又是菱形的四边形是正方形.【基础知识精讲】1.掌握正方形定义是学好本节的关键,正方形是在平行四边形的前提下定义的,它包含两层意思:正方形矩形平行四边形并且有一个角是直角的菱形四边形有一组邻边相等的平行⎭⎬⎫)()2()()1( 正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.2.正方形的性质可归纳如下:边:对边平行,四边相等;角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.此外:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴,学习时,应熟悉这些最基本的内容.【例题精讲】[例1]如图4-50,已知矩形ABCD 中,F 为CD 的中点,在BC 上有一点E ,使AE =DC +CE ,AF 平分∠EAD .求证:矩形ABCD 是正方形.图4—50剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE=DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.证明:在AE上截取AG=AD,连结FG、FE.∵四边形ABCD是矩形,∴∠D=∠C=90°.∵AD=AG,∠DAF=∠GAF,AF=AF∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.∵DF=CF,∴GF=CF.∵∠FGE=∠C=90°,FE=FE,∴Rt△GFE≌Rt△CFE.∴GE=CE,∴AD+CE=AE.又DC+CE=AE,∴AD=DC.∴矩形ABCD是正方形.说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.[例2]如图4-51,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.图4—51对上述命题的证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.∴∠3+∠2=90°,∵AG⊥BE,∴∠1+∠3=90°.∴∠1=∠2,∴△BOE≌△AOF,∴OE=OF问题:对于上述命题,若点E在AC延长线上,AG⊥EB,交EB的延长线于G,AG的延长线交DB的延长线于点F,其他条件不变(如图4-52),结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图4—52剖析:可仿上述的证明,证△BOE≌△AOF.解:结论OE=OF仍然成立,证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO,∴∠OFA+∠FAE=90°又∵AG⊥EB,∴∠OEB+∠EAF=90°,∴∠OEB=∠OFA,∴△BOE≌△AOF,∴OE=OF.[例3]有一正方形池塘,池塘四个角上有四棵树,现计划把此池塘改为面积扩大一倍的正方形,能否不毁掉树木而达到要求?请你设计出方案来.图4—53剖析:新改造的池塘的面积是原面积的2倍,因此,新边长应为原边长的2倍,而正方形的对角线是边长的2倍,故以原对角线的长为边长构造新的正方形.答案:如图4-53,分别过B、D作AC的平行线,分别过A、C作BD的平行线,四条线分别交于A′、B′、C′、D′,则四边形A′B′C′D′为要求的正方形.【同步达纲练习】1.选择题(1)下列命题中,假命题的个数是()①四边都相等的四边形是正方形②对角线互相垂直的平行四边形是正方形③四角都相等的四边形是正方形④对角线相等的菱形是正方形A.1 B.2 C.3 D.4(2)正方形具有而菱形不具有的性质是()A.对角线互相垂直平分B.对角线相等C.邻边相等D.每条对角线平分一组对角(3)正方形的对角线与边长之比为()A.1∶1 B.2∶1 C.1∶2 D.2∶1(4)以等边△ABC的边BC为边向外作正方形BCDE,则①∠ABD=105°,②∠ACD=150°,③∠DAE=30°,④△ABE≌△ACD,其中正确的结论有()A.1个 B.2个 C.3个 D.4个(5)在正方形ABCD中,P、Q、R、S分别在边AB、BC、CD、DA上,且AP=BQ=CR=DS =1,AB=5,那么四边形PQRS的面积等于()A.17 B.16 C.15 D.9(6)如图4-54,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于()图4—54A.7 B.5 C.4 D.3(7)在正方形ABCD中,E、F两点分别是BC、CD边上的点,若△AEF是边长为2的等边三角形,则正方形ABCD的边长为()A.213+B.213-C.3 D.2(8)如图4-55,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()图4—55A.45°B.55°C.65°D.75°2.填空题(1)已知正方形的面积是16 cm2,则它的一边长是_____,一条对角线长是_____.(2)已知正方形的对角线长为22,则此正方形的周长为_____,面积为_____.(3)在正方形ABCD 中,两条对角线相交于O ,∠BAC 的平分线交BD 于E ,若正方形ABCD 的周长是16 cm ,则DE =_____cm .(4)在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,那么∠AFC 等于_____度.3.如图4-56,已知正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF .图4—56(1)求证:△BCE ≌△DCF ;(2)若∠BEC =60°,求∠EFD 的度数.4.已知:如图4-57,在正方形ABCD 中,E 是CB 延长线上一点,EB =21BC ,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连结成线段,并证明它和AE 相等.图4—575.以△ABC 的AB 、AC 为边,向三角形外作正方形ABDE 及ACGF ,作AN ⊥BC 于点N ,延长NA 交EF 于M 点.(1)求证:EM =FM ;(2)若使AM =21EF ,则△ABC 必须满足什么条件呢?图4—586.如图4-58,已知正方形ABCD 中,M 、F 分别在边AB 、AD 上,且MB =FD ,E 是AB 延长线上一点,MN ⊥DM ,MN 与∠CBE 的平分线相交于N .求证:DM =MN .7.如图4-59,已知C是线段AB上的一点,分别以AC、BC为边作正方形ACDE和BCFG.图4—59求证:AF=DB;若点C在线段AB的延长线上,猜想上述结论是否正确,如果正确,请加以证明,如果不正确,请说明理由.【思路拓展题】你会设计吗今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.(在给出如图4-60的三张正方形纸片上分别画图,并简述画图步骤)图4—60参考答案【同步达纲练习】1.(1)C (2)B (3)B (4)D (5)A (6)B (7)A8)B2.(1)4 42(2)8 4 (3)4 (4)112.53.(1)略(2)15°4.连结CF,可证△ABE≌△CBF或连结DF,让△ABE≌△DAF。

八年级数学下册19.3正方形练习(含答案)

八年级数学下册19.3正方形练习(含答案)

19.3 正方形1.菱形、矩形、正方形都具有的性质是( C )(A)对角线相等(B)对角线互相垂直(C)对角线互相平分(D)对角线平分一组对角2.下列命题错误的是( C )(A)对角线互相平分的四边形是平行四边形(B)对角线相等的平行四边形是矩形(C)一条对角线平分一组对角的四边形是菱形(D)对角线互相垂直的矩形是正方形3.已知四边形ABCD中,∠A=∠B=∠C=∠D,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( D )(A)∠D=90° (B)AB=CD(C)AD=BC (D)BC=CD4.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( B )(A)2 (B)(C) (D)15.能使平行四边形ABCD为正方形的条件是AC=BD且AC⊥BD(答案不唯一) (填上一个条件即可).6.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是AC=BD或(AB⊥BC)(答案不唯一) .7.如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,则△AFC的面积为2 .8.(2018武汉)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.9.已知:如图,四边形ABCD是正方形,分别过点A,C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB,DN分别交l2于Q,P点.求证:四边形PQMN是正方形.证明:因为PN⊥l1,QM⊥l1,所以PN∥QM,∠PNM=90°.因为PQ∥NM,所以四边形PQMN是矩形.因为四边形ABCD是正方形,所以∠BAD=∠ADC=90°,AB=AD=DC.所以∠1+∠2=90°.又∠3+∠2=90°,所以∠1=∠3.所以△ABM≌△DAN.所以AM=DN.同理AN=DP.所以AM+AN=DN+DP,即MN=PN.所以四边形PQMN是正方形.10.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE∶∠BCE=2∶3,求证:四边形ABCD是正方形.证明:(1)在△ADE与△CDE中,所以△ADE≌△CDE(S.S.S.),所以∠ADE=∠CDE,因为AD∥BC,所以∠ADE=∠CBD,所以∠CDE=∠CBD,所以BC=CD,因为AD=CD,所以BC=AD,所以四边形ABCD为平行四边形,因为AD=CD,所以四边形ABCD是菱形.(2)因为BE=BC,所以∠BCE=∠BEC,因为∠CBE∶∠BCE=2∶3,所以∠CBE=180°×=45°,因为四边形ABCD是菱形,所以∠ABE=45°,所以∠ABC=90°,所以四边形ABCD是正方形.11.(开放探究题)已知,如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并说明理由.(1)证明:因为AD,AN分别是∠BAC的内角、外角平分线,所以∠BAD=∠CAD,∠CAE=∠MAE.因为∠BAD+∠CAD+∠CAE+∠MAE=180°.所以2∠CAD+2∠CAE=180°.所以∠CAD+∠CAE=90°,即∠DAE=90°,因为AD⊥BC,CE⊥AN,所以∠ADC=∠AEC=∠DAE=90°,所以四边形ADCE是矩形.(2)解:当△ABC是以∠BAC为直角的等腰直角三角形时,四边形ADCE是正方形.理由如下:因为△ABC是以∠BAC为直角的等腰直角三角形,AD⊥BC,所以∠CAD=∠BAD=45°.∠ACD=45°.所以∠CAD=∠ACD=45°.所以AD=CD.因为四边形ADCE是矩形,所以四边形ADCE是正方形.12.(拓展探究题)如图,四边形ABCD,DEFG都是正方形,连结AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.(1)证明:因为AD=CD,DE=DG,∠ADC=∠GDE=90°,又∠CDG=90°+∠ADG=∠ADE,所以△ADE≌△CDG.所以AE=CG.(2)解:猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.由(1)得△ADE≌△CDG,所以∠DAE=∠DCG.又因为∠ANM=∠CND,所以∠CND+∠DCN=90°,即∠ANM+∠DAE=90°,所以∠AMN=∠ADC=90°.所以AE⊥CG.。

最新人教版八年级数学下册第十八章《正方形》课后训练

最新人教版八年级数学下册第十八章《正方形》课后训练

19.2.3正方形练习能力提升1.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是().A.2m+3 B.2m+6 C.m+3 D.m+62.如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是().3.如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果Q点从A点出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从B点出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为().A.2 B.4-πC.πD.π-14.若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边AD于点F,且BF=AE,则BM的长为__________.5.如图,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的中心,则阴影部分的面积是__________.6.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是__________.7.如图,已知点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F.求证:DE=DF.8.如图,四边形ABCD,E,F,G,H分别是AB,BC,CD,DA的中点.(1)请判断四边形EFGH的形状,并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?9.如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E,F分别在AG上,连接BE,DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.10.已知正方形ABCD的边长为a,两条对角线AC,BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC,BD的垂线PE,PF,垂足为E,F.(1)如图(1),当P点在线段AB上时,求PE+PF的值;(2)如图(2),当P点在线段AB的延长线上时,求PE-PF的值.图(1) 图(2)创新应用11.如图,在边长为5的正方形ABCD中,点E,F分别是BC,DC边上的点,且AE ⊥EF,BE=2.(1)延长EF交正方形外角平分线CP于点P(如图),试判断AE与EP的大小关系,并说明理由;(2)在AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.参考答案1. 答案:A2. 答案:C3. 答案:B 如图,点M 所经过的路线围成的图形的面积为4-π.4. 答案:52连接EF ,可证Rt △ABE ≌Rt △BAF ,∴AF 綉BE ,又∠ABE 为直角,∴四边形ABEF 为矩形.∴BM =12AE 52=. 5. 答案:26. 答案:15°或75° 本题有两种情况: 当E 在正方形ABCD 内部时,如图(1), ∵四边形ABCD 是正方形, ∴AD =CD ,∠ADC =90°. ∵△CDE 是等边三角形, ∴CD =DE ,∠CDE =60°. ∴∠ADE =90°-60°=30°.∵AD =DE , ∴∠DAE =∠AED =12(180°-∠ADE )=75°. 当E 在正方形ABCD 外部时,∵△CDE 是等边三角形,∴∠EDC =60°. ∴∠ADE =90°+60°=150°. ∴∠AED =∠DAE =12(180°-∠ADE )=15°. 故答案为:15°或75°.图(1)图(2)7. 证明:∵四边形ABCD 是正方形,∴AD =CD ,∠A =∠DCF =∠ADC =90°. ∵DF ⊥DE ,∴∠EDF =90°.∴∠ADC =∠EDF ,即∠1+∠3=∠2+∠3. ∴∠1=∠2.在△ADE 与△CDF 中,12,,,AD CD A DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CDF .∴DE =DF .8. 解:(1)四边形EFGH 是平行四边形.连接AC .∵E ,F 分别是AB ,BC 的中点,∴EF ∥AC ,EF =12AC . 同理HG ∥AC ,HG =12AC ,∴EF ∥HG ,EF =HG .∴四边形EFGH 是平行四边形.(2)四边形ABCD 的对角线互相垂直且相等.9. (1)证明:∵四边形ABCD 是正方形,∴AB =AD .在△ABE 和△DAF 中,21,,43,AB DA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△DAF .(2)解:∵四边形ABCD 是正方形, ∴∠1+∠4=90°.∵∠3=∠4,∴∠1+∠3=90°. ∴∠AFD =90°.在正方形ABCD 中,AD ∥BC , ∴∠1=∠AGB =30°.在Rt △ADF 中,∠AFD =90°,AD =2, ∴AFDF =1. 由(1)得△ABE ≌△DAF ,∴AE =DF =1,∴EF =AF -AE1.10. 解:(1)∵四边形ABCD 为正方形,∴AC ⊥BD . ∵PF ⊥BD ,∴PF ∥AC .同理PE ∥BD .∴四边形PFOE 为矩形,故PE =OF . 又∵∠PBF =45°,∴PF =BF . ∴PE +PF =OF +FB =OB .在Rt △OBC 中,OB 2+OC 2=BC 2,∴2OB 2=a 2.∴OB =2a (,即PE +PF =2a (. (2)∵四边形ABCD 为正方形,∴AC ⊥BD .∵PF ⊥BD ,∴PF ∥AC .同理PE ∥BD . ∴四边形PFOE 为矩形,∴PE =OF . 又∵∠PBF =45°,∴PF =BF . ∴PE -PF =OF -BF =OB .由(1)得OB =2a (),∴PE -PF =2a (). 11. 解:(1)在AB 上取一点G ,使BG =BE ,连接GE ,∵AB =BC ,∴AG =EC .∵AE ⊥EF ,∴∠2+∠3=90°.∵四边形ABCD 为正方形, ∴∠B =∠BCD =90°. ∴∠1+∠3=90°,∴∠1=∠2. 又∠AGE =∠ECP =135°, ∴△AGE ≌△ECP .∴AE =EP .(2)在AB 边上存在一点M ,使四边形DMEP 是平行四边形.证明过程如下:在AB 边上取一点M ,使AM =BE , 连接ME ,MD ,DP .在正方形ABCD 中, AD =BA ,∠DAM =∠ABE =90°, ∴Rt △DAM ≌Rt △ABE .∴DM =AE ,∠1=∠4.∴DM =EP . ∵∠1+∠5=90°,∴∠4+∠5=90°. ∴AE ⊥DM .∵AE ⊥EP ,∴DM ∥EP .∴四边形DMEP 为平行四边形.。

数学人教八年级下册(2013年新编)《正方形》习题

数学人教八年级下册(2013年新编)《正方形》习题

word 整理版可编辑
参考资料 学习帮手 《正方形》习题
随堂练习
1.正方形的四条边____ __,四个角___ ____,两条对角线____ ____.
2.下列说法是否正确,并说明理由.
①对角线相等的菱形是正方形;( )
②对角线互相垂直的矩形是正方形;( )
③对角线垂直且相等的四边形是正方形;( )
④四条边都相等的四边形是正方形;( )
⑤四个角相等的四边形是正方形.( )
3. 已知:如图,四边形ABCD 为正方形,E 、F 分别
为CD 、CB 延长线上的点,且DE =BF .
求证:∠AFE =∠AEF .
4.如图,E 为正方形ABCD 内一点,且△EBC 是等边三角形,
求∠EAD 与∠ECD 的度数.
课后练习
1.已知:如图,点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线
上一点,且DE =BF .
求证:EA ⊥AF .
2.已知:如图,△ABC 中,∠C =90°,CD 平分∠ACB ,DE ⊥BC 于E ,DF ⊥AC 于F .求证:四边形CFDE 是正方形.
3.已知:如图,正方形ABCD 中,E 为BC 上一点,AF 平分∠DAE 交CD
于F ,求证:AE =BE +DF . A B
C D E
F。

八年级数学《正方形》练习题含答案

八年级数学《正方形》练习题含答案

八年级数学《正方形》练习题【同步达纲练习】一、填空1.正方形既是相等的矩形,又是有一个角是的菱形.2.正方形和菱形比较,除具有的性质外,它们具有的共同性质还有:四条边都,对角线 .3.对角线的四边形是正方形.4.正方形和矩形比较,除具有的性质外,它们还具有的共同性质还有:四个角都,对角线.5.如果一个正方形的边长恰好等于边长为m的正方形对角线的长,那么这两个正方形周长和为,面积的和为 .6.如图4.6-12,正方形ABCD中,E、F分别是CD、DA上的点,并且EF=AF+CE,∠BEF =∠BEC,那么∠EBF=度.7.如图4.6-13,正方形ABCD中,E是CF上的点,四边形BEFD是菱形,那么∠BEF=度.图4.6-12 图4.6-138.如图4.6-14,E是正方形ABCD边BC延长线上的一点,若EC=AC,AE交CD于F,那么∠AFC=度.图4.6-14 图4.6-159.如图4.6-15,将边长为12的正方形纸片ABCD的顶点A折叠至DC边上一点E,若DE为5,则折痕PQ的长为 .10.P是正方形ABCD内一点,△PAB为正三角形,若正方形的面积为1,则△PAB的面积为 .二、选择题1.下列命题是真命题的是( )A.一组对边平行且另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.一组对边平行且有一组对角相等的四边形是平行四边形D.对角线互相垂直且相等的四边形是正方形2.正方形具有而矩形不一定具有性质是( )A.对角线互相平分B.对角线相等C.对角线互相平分且相等D.对角线互相垂直3.下列命题中,错误的是( )A.对角线相等且互相垂直的四边形是菱形B.两组对边分别相等的四边是平行四边形C.有一个角是直角的平行四边形是矩形D.四个角相等的菱形是正方形4.如图,正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM是( )A.45°B.55°C.65°D.75°5.下列命题正确的是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.以一条对角线所在直线为对称轴的平行四边形是菱形C.顺次连结矩形四条边中点所得的四边形仍是矩形6.下列命题中,假命题是( )A.矩形的对角线相等B.菱形的对角线互相垂直C.正方形的对角线相等且互相垂直D.梯形的对角线互相平分7.在正方形ABCD的对角线AC上取一点E,使AE=AB,作EF⊥AC交BC于F,则下列关系式成立的是( )A.BF=ECB.BF≠ECC.BF<ECD.BF>EC8.以正方形ABCD的边AB向外作等边三角形ABE,BD、CE交于F,则∠AFD的度数为( )A.50°B.60°C.67.5°D.75°9.在正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的三等分点,则四边形EFGH 是( )A.正方形B.菱形C.矩形D.平行四边形10.给出下列结论:(1)正方形具有平行四边形的一切性质,(2)正方形具有矩形的一切性质,(3)正方形具有菱形的一切性质,(4)正方形共有两条对称轴,(5)正方形共有四条对称轴,其中正确的结论有( )A.2B.3个C.4个D.5个三、解答题1.在正方形ABCD的边BC的延长线上取一点E,使CE=AC,连结AE交CD于F,求∠AFD 的度数?2.如图所示,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M、D在AK 的同旁,连结BK和DM,求证:BK=DM.3.如图,已知正方形ABCD,在BC上取一点E,延长AB至F,使BF=BE,AE的延长线交CF于G,求证AG⊥CF.4.如图,E为正方形ABCD的边AB延长线上一点,DE交AC于F,交BC于G,H为GE的中点.求证:BF⊥BH.5.如图,E 、F 分别在正方形ABCD 的边BC 、CD 上,且∠EAF =45°,求证:EF =BE+DF.【素质优化训练】如图,M 为正方形ABCD 的AB 边上的中点,MN ⊥DM ,BN 平分∠CBG. 求证:DM =MN【生活实际运用】如图,正方形ABCD 的对角线相交于点O.点O 是正方形A ′B ′C ′O 的一个顶点.如果两个正方形的边长相等,那么正方形A ′B ′C ′O 绕点O 无论怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的41,想一想这是为什么.【知识探究学习】如图,已知E 是正方形ABCD 的边BC 上的中点,F 是CD 上一点,AE 平分∠BAF ,求证:AF =BC+CF.参考答案一、1.邻边相等直角 2.平行四边形相等互相垂直且平分每一组对角 3.相互平分相等互相垂直 4.平行四边形是直角互相垂直 5.4(2+1)m 3m2 6.45°37.150° 8.112.5° 9.13 10.4二、1.C 2.D 3.A 4.B 5.B 6.D 7.A 8.C 9.A 10.C三、1.67.5° 2.提示:证△MAD≌△KAB(SAS) 3.提示:证△ABE≌△CBF,再证∠AGC =∠ABE=90° 4.先证△BCF≌△DCF,得:∠CDF=∠CBF,进而证∠GBF=∠HBG,得:∠FBG+∠GBH=∠GBH+∠HBE=90°,得BF⊥BH 5.提示:延长CB到G,使BG=FD,证△ABG ≌△ADF,得:∠BAG=∠DAF,再证△AEF≌△AEG,得EF=EG=EB+BG=EB+DF【素质优化训练】提示:取AD的中点E,连EM.【生活实际运用】略.【知识探究学习】提示:延长FC交AE的延长线于H.。

人教版八年级数学下册18.2.3 正方形练习(包含答案)

人教版八年级数学下册18.2.3 正方形练习(包含答案)

18.2.3 正方形一、单选题1.矩形、菱形、正方形都具有的性质是()A.四条边都相等B.对角线相等C.对边平行且相等D.对角线互相垂直2.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°3.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为()A.32B.52C.94D.34.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为( )A B.3C D.55.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形6.如图,E、F为菱形ABCD对角线上的两点,∠ADE=∠CDF,要判定四边形BFDE是正方形,需添加的条件是()A.AE=CF B.OE=OF C.∠EBD=45°D.∠DEF=∠BEF 7.下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形8.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A .-1)B .(2,﹣1)C .(1,D .(﹣1 9.如图,等边ABC ∆与正方形DEFG 重叠,其中D ,E 两点分别在AB ,BC 上,且BD BE =,若6AB =,2DE =,则EFC ∆的面积为( )A .1 BC .2D .10.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,1BC =,3CE =,H 是AF 的中点,那么CH 的长是( )A .2B .52C D二、填空题11.若正方形的面积是9,则它的对角线长是_____.12.如图,正方形ABCD的边长为,点E、F在BD上,且DF=BE=1,四边形AECF 的面积为______.13.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:∠AB∠AD,且AB=AD;∠AB=BD,且AB∠BD;∠OB=OC,且OB∠OC;∠AB=AD,且AC=BD.其中正确的序号是_____.14.正方形ABCD中,点E在边CD上,点P在线段AE上,且到A、B、D三个顶点的距、6,则四边形BCDP的面积为_____.三、解答题15.如图,正方形ABCD内的∠BEC为正三角形,求∠DEA的度数.16.如图,正方形纸片ABCD的边长为6,点E、F分别在边BC、CD上,将AB、ADBE ,求FC的长.分别沿AE、AF折叠,点B、D恰好都在点G处,已知217.已知:如图,在∠ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形.18.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∠BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.答案1.C2.D3.B4.B5.B6.C7.D8. A.9.C10.D11.12.4.13.∠∠∠.14.43.15.解:∠四边形ABCD是正方形,∠AB=BC=CD=DA ,∠ABC=∠BCD=∠CDA=∠DAB=90°. ∠∠BEC 是正三角形,∠BE=BC=EC ,∠EBC=∠BEC=∠ECB=60°.∠BA=BE (即∠BAE 是等腰三角形),∠ABE=∠ABC -∠EBC= 90°-60°=30°, ∠∠BAE=∠BEA=280013︒-︒=75°, ∠∠EAD=∠BAD -∠BAE=90°-75°=15°.同理∠EDA=15°,∠∠DEA=180°-∠EAD -∠EDA=180°-15°-15°=150°.16.解:设FC x =,由图形折叠可得=2BE EG =,624EC =-=,6DF FG x ==-, 在直角ECF ∆中,∠222EF EC CF =+,∠222(426)x x +-=+,解得3x =,∠3=FC .17.(1)∠点F 、G 是边AC 的三等分点,∠AF=FG=GC .又∠点D 是边AB 的中点,∠DH∠BG .同理:EH∠BF .∠四边形FBGH 是平行四边形,连结BH ,交AC 于点O ,∠OF=OG,∠AO=CO,∠AB=BC,∠BH∠FG,∠四边形FBGH是菱形;(2)∠四边形FBGH是平行四边形,∠BO=HO,FO=GO.又∠AF=FG=GC,∠AF+FO=GC+GO,即:AO=CO.∠四边形ABCH是平行四边形.∠AC∠BH,AB=BC,∠四边形ABCH是正方形.18.(1)如图1,在正方形ABCD中,∠BC=CD,∠B=∠CDF,BE=DF,∠∠CBE∠∠CDF,∠CE=CF;(2)如图2,延长AD至F,使DF=BE,连接CF,由(1)知∠CBE∠∠CDF,∠∠BCE=∠DCF.∠∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∠∠GCE=45°,∠∠GCF=∠GCE=45°,∠CE=CF,∠GCE=∠GCF,GC=GC,∠∠ECG∠∠FCG,∠GE=GF,∠GE=DF+GD=BE+GD;(3)过C作CF∠AD的延长线于点F.则四边形ABCF是正方形.AE=AB-BE=12-4=8,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角∠ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,解得:x=6.则DE=4+6=10。

人教版八年级数学 下册 第十八章 18.2.3 正方形 课时练(含答案)

人教版八年级数学 下册 第十八章 18.2.3 正方形 课时练(含答案)

第十八章平行四边形18.2.3 正方形一、选择题1、正方形具有而矩形不一定具有的特征是( )A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等2、四边形ABCD的对角线AC = BD,且AC⊥BD,分别过A、B、C、D作对角线的平行线,则所构成的四边形是().A. 平行四边形B. 矩形C. 菱形D. 正方形3、下列命题中是假命题的是()A.一组对边平行且相等的四边形是平行四边形B.一组对边相等且有一个角是直角的四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组邻边相等的矩形是正方形4、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是( )A.3:4B.5:8C.9:16D.1:25、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF∠AB,垂足为F,则EF的长为()A.1B.C. D.二、填空题6、如图,ABCD是正方形,E是CF上一点,若DBEF是菱形,则∠EBC=________.第6题图第7题图7、如图,已知正方形ABCD的边长为10,点P是对角线BD上的一个动点,M、N分别是BC、CD边上的中点,则PM+PN的最小值是___________.8、如图,边长为a的正方形ABCD和边长为b的正方形BEFG排放在一起,O1和O2分别是两个正方形的中心,则阴影部分的面积为,线段O1O2的长为.9、正方形边长为a,若以此正方形的对角线为一边作正方形,则所作正方形的对角线长为.10、如图,在Rt△ABC中,△C=90°,DE垂直平分AC,DF△BC,当△ABC满足条件AC=BC时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)三、解答题11、如图,E是正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数。

12、如右图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F.(1)求证:DE=DF.(2)只添加一个条件,使四边形EDFA是正方形,•请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明)13、已知:如图,△ABC中,△ABC=90°,BD是△ABC的平分线,DE△AB于点E,DF△BC于点F.求证:四边形DEBF是正方形.14、如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.15、如右图,要把边长为1的正方形ABCD 的四个角(阴影部分)剪掉,得一四边形A 1B 1C 1D 1,试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的59,请说明理由.16、如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(8,8),将正方形ABCO绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG .(1)求证:∠CBG∠∠CDG ;(2)求∠HCG 的度数;判断线段HG 、OH 、BG 的数量关系,并说明理由; (3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由.参考答案:一、1、C 2、D 3、B 4、B 5、C 二、6、7、10、 8、1ab 49、2a10、考点: 正方形的判定. 专题: 计算题;开放型.分析:由已知可得四边形的四个角都为直角,因此再有四边相等即是正方形添加条件.此题可从四边形DECF 是正方形推出.解答:解:设AC=BC ,即△ABC 为等腰直角三角形,△△C=90°,DE 垂直平分AC ,DF △BC , △△C=△CED=△EDF=△DFC=90°, DF=AC=CE ,DE=BC=CF ,11A1A 图3-21△DF=CE=DE=CF,△四边形DECF是正方形,故答案为:AC=BC.点评:此题考查的知识点是正方形的判定,解题的关键是可从四边形DECF是正方形推出△ABC满足的条件.三、11、∵△ADE中,AE=AD,∠ADE=75°,∴∠AED=75°(等边对等角)∴∠EAD=180°-75°×2=30°又∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴△ABE中,AB=AE,∠BAE=120°∴∠AEB=°°°12、(1)提示:证△DEB≌△DFC,(2)∠A=900167,四边形AFDE是平行四边形等(方法很多)13、考点:正方形的判定.专题:证明题.分析:由DE△AB,DF△BC,△ABC=90°,先证明四边形DEBF是矩形,再由BD是△ABC 的平分线,DE△AB于点E,DF△BC于点F得出DE=DF判定四边形DEBF是正方形.解答:解:△DE△AB,DF△BC,△△DEB=△DFB=90°,又△△ABC=90°,△四边形BEDF为矩形,△BD是△ABC的平分线,且DE△AB,DF△BC,△DE=DF,△矩形BEDF为正方形.点评:本题考查正方形的判定、角平分线的性质和矩形的判定.要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形.14、(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.15、提示:AA1 = BB1 = CC1 = DD1 =13(或=23).16、(1)∠正方形ABCO绕点C旋转得到正方形CDEF,∠CD=CB,∠CDG=∠CBG=90°.在Rt∠CDG和Rt∠CBG中,,∠∠CDG∠∠CBG(HL)1 (180 2120-)30=(2)解:∠∠CDG∠∠CBG,∠∠DCG=∠BCG,DG=BG.在Rt∠CHO和Rt∠CHD中,∠ ,∠∠CHO∠∠CHD(HL),∠∠OCH=∠DCH,OH=DH,∠∠HCG=∠HCD+∠GCD= ∠OCD+ ∠DCB= ∠OCB=45°,∠HG=HD+DG=HO+BG(3)解:四边形AEBD可为矩形.如图,连接BD、DA、AE、EB,四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB 中点的时候.∠DG=BG,∠DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,∠当G点为AB中点时,四边形AEBD为矩形.∠四边形DAEB为矩形,∠AG=EG=BG=DG.∠AB=6,∠AG=BG=3.设H点的坐标为(x,0),则HO=x∠OH=DH,BG=DG,∠HD=x,DG=3.在Rt∠HGA中,∠HG=x+3,GA=3,HA=6﹣x,∠(x+3)2=32+(6﹣x)2,解得x=2.∠H点的坐标为(2,0).。

人教版初二数学下册正方形课时练习及答案

人教版初二数学下册正方形课时练习及答案

新人教版数学八年级下册正方形课时练习一.选择题(共15小题)1.如图,△ABC是一个等腰直角三角形,DEFG是其内接正方形,H是正方形的对角线交点;那么,由图中的线段所构成的三角形中相互全等的三角形的对数为()A.12 B.13 C.26 D.30答案:C知识点:全等三角形的判定;等腰直角三角形;正方形的性质解析:$解答:解:设AB=3,图中所有三角形均为等腰直角三角形,其中,斜边长为1的有5个,它们组成10对全等三角形;斜边长为的有6个,它们组成15对全等三角形;斜边长为2的有2个,它们组成1对全等三角形;共计26对.故选C.分析:根据全等三角形的判定可以确定全等三角形的对数,由于图中全等三角形的对数较多,可以根据斜边长的不同确定对数,可以做到不重不漏.本题考查了全等三角形的判定,涉及到等腰直角三角形和正方形的性质,解题的关键是记熟全等三角形的判定方法并做到不重不漏.2.如图所示,E.F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()@A.1个B.2个C.3个D.4个答案:A知识点:正方形的性质;全等三角形的判定与性质解析:解答:解:∵四边形ABCD是正方形,∴CD=AD∵CE=DF.∴DE=AF∴△ADE≌△BAF∴①AE=BF,S△ADE=S△BAF,∠DEA=∠AFB,∠EAD=∠FBA∴④S△AOB=S四边形DEOF∵∠ABF+∠AFB=∠DAE+∠DEA=90°∴∠AFB+∠EAF=90°∴②AE⊥BF一定成立.错误的结论是:③AO=OE.-故选A.分析:根据四边形ABCD是正方形及CE=DF,可证出△ADE≌△BAF,则得到:①AE=BF,以及△ADE和△BAF的面积相等,得到;④S△AOB=S四边形DEOF;可以证出∠ABO+∠BAO=90°,则②AE⊥BF一定成立.错误的结论是:③AO=OE.本题考查了全等三角形的判定和正方形的判定和性质.3.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH 的周长为定值,其中正确的结论有()A.①②③B.①②④ C.①③④D.①②③④答案:D知识点:正方形的性质;全等三角形的判定与性质|解析:解答:解:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,~∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.(2)∵FH⊥AE,FH=AF,∴∠HAE=45°.【(3)连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.!(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△MIC,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEM的周长为8,为定值.故(1)(2)(3)(4)结论都正确.故选D.`分析:(1)作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;(2)由FH⊥AE,AF=FH,可得:∠HAE=45°;(3)作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;(4)作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CI=IM,故△CEM的周长为边AM的长,为定值.解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.4.一个围棋盘由18×18个边长为1的正方形小方格组成,一块边长为的正方形卡片放在棋盘上,被这块卡片覆盖了一部分或全部的小方格共有n个,则n的最大值是()A.4 B.6 C.10 D.12~答案:D知识点:正方形的性质解析:解答:解:∵卡片的边长为,∴卡片的对角线长为2<223<3,且小方格的对角线长2<.故该卡片可以按照如图所示放置:图示为n取最大值的时候,n=12.故选D.、分析:要n 取最大值,就让边长为的正方形卡片边与小方格的边成一定角度.本题考查的是已知正方形边长正方形对角线长的计算,旋转正方形卡片并且找到合适的位置使得n 为最大值,是解题的关键.5.如图,四边形ABCD 是正方形,以CD 为边作等边三角形CDE ,BE 与AC 相交于点M ,则∠AMD 的度数是( )A .75°B .60°C .54°D .° 答案:B知识点:正方形的性质;线段垂直平分线的性质@解析:解答:解:如图,连接BD ,∵∠BCE =∠BCD +∠DCE =90°+60°=150°,BC =EC ,∴∠EBC =∠BEC =21(180°-∠BCE )=15° ∵∠BCM =21∠BCD =45°, ∴∠BMC =180°-(∠BCM +∠EBC )=120°,∴∠AMB =180°-∠BMC =60°∵AC 是线段BD 的垂直平分线,M 在AC 上,:∴∠AMD =∠AMB =60°故选B .分析:连接BD,根据BD,AC为正方形的两条对角线可知AC为BD的垂直平分线,所以∠AMD =AMB,要求∠AMD,求∠AMB即可.本题考查的正方形的对角垂直平分的性质,根据垂直平分线的性质可以求得∠AMD=∠AMB,确定AC和BD垂直平分是解题的关键.6.在平面直角坐标系中,称横.纵坐标均为整数的点为整点,如下图所示的正方形内(包括边界)整点的个数是()A.13 B.21 C.17 D.25(答案:D知识点:正方形的性质;坐标与图形性质解析:解答:解:正方形边上的整点为(0,3)、(1,2)、(2,1)、(3,0)、(4,5)、(5,4)、(6,3)、(4,1)、(5,2)、(1,4)、(2,5)、(3,6);在其内的整点有(1,3)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,2)、(4,3)、(4,4)、(5,3).故选D.分析:根据正方形边长的计算,计算出边长上的整点,并且根据边长的坐标找出在正方形范围内的整点.本题考查的是正方形四条边上整点的计算,找到每条边上整点变化的规律是解本题的关键.《7.在同一平面上,正方形ABCD的四个顶点到直线l的距离只取四个值,其中一个值是另一个值的3倍,这样的直线l可以有()A.4条B.8条C.12条D.16条答案:D知识点:正方形的性质;点到直线的距离解析:解答:解:符合题目要求的一共16条直线,下图虚线所示直线均符合题目要求.)分析:根据正方形的性质,一个值为另一个值的3倍,所以本题需要分类讨论,①该直线切割正方形,确定直线的位置;②该直线在正方形外,确定直线的位置.本题考查了分类讨论计算点到直线的距离,找到直线的位置是解题的关键.8.如图,正方形ABCD 的边长为1,E 为AD 中点,P 为CE 中点,F 为BP 中点,则F 到BD 的距离等于( )A .82B .102C .122D .162 答案:D知识点:正方形的性质;三角形的面积解析:?解答:解:连接DP ,S △BDP =S △BDC -S △DPC -S △BPC =21-21×1×21-21×1×41 =81, ∵F 为BP 的中点,∴P 到BD 的距离为F 到BD 的距离的2倍.∴S △BDP =2S △BDF ,∴S △BDF =161, 设F 到BD 的距离为h ,:根据三角形面积计算公式,S △BDF =21×BD ×h =161, 计算得:h =22161=162. 故选D .分析:图中,F 为BP 的中点,所以S △BDP =2S △BDF ,所以要求F 到BD 的距离,求出P 到BD 的距离即可.本题考查的是转化思想,先求三角形的面积,再根据三角形面积计算公式,计算三角形的高,即F 到BD 的距离.9.搬进新居后,小杰自己动手用彩塑纸做了一个如图所示的正方形的挂式小饰品ABCD ,彩线BD .AN .CM 将正方形ABCD 分成六部分,其中M 是AB 的中点,N 是BC 的中点,AN 与CM 交于O 点.已知正方形ABCD 的面积为576cm 2,则被分隔开的△CON 的面积为( )$A .96cm 2B .48cm 2C .24cm 2D .以上都不对答案:B知识点:正方形的性质;三角形的面积;相似三角形的判定与性质解析:解答:解:找到CD 的中点E ,找到AD 的中点F ,连接CF ,AE ,则CM ∥EA ,AN ∥FC ,△BOM ∽△BKA ,∴BKBO =BA BM =21, 同理可证:DO DK =DA DF =21,! 故DK =KO =OB , ∴△BOC 和△BOA 的面积和为31正方形ABCD 的面积, ∵CN =NB =AM =BM ,∴△OCN 的面积为41△BOC 和△BOA 的面积和, ∴△OCN 的面积为12576=48cm 2, 故选B .分析:先证明BO 为正方形ABCD 的对角线BD 的31,再求证△CNO ,△NBO ,△AMO ,△BMO 的面积相等,即△CON 的面积为正方形面积的121.本题考查了正方形内中位线的应用,考查了正方形四边均相等的性质,解本题的关键是求证BO =31BD ,△OCN 的面积为41△BOC 和△BOA 的面积和.~10.如图,正方形ABCD 的对角线AC 与BD 相交于O 点,在BD 上截取BE =BC ,连接CE ,点P 是CE 上任意一点,PM ⊥BD 于M ,PN ⊥BC 于N ,若正方形ABCD 的边长为1,则PM +PN =( )A .1B .2C .22D .1+2答案:C知识点:正方形的性质,三角形的面积 解析: 解答:解:连接BP ,作EH ⊥BC ,则PM .PN 分别为△BPE 和△BCP 的高,且底边长均为1, ]S △BCE =1--S △CDE ,∵DE =BD -BE =,△CDE 中CD 边上的高为22(2-1), ∵S △CDE =CD ×22(2-1)=-42; S △BCE =1-21-S △CDE =42; 又∵S △BCE =S △BPE +S △BPC =?BC?(PM +PN )∴PM +PN ==.故选C .|分析:连接BP ,PM .PN 分别为△BPE 和△BCP 的高,且底边长均为1,因此根据面积计算方法可以求PM +PN .本题考查的用求三角形面积的方法求三角形的高的转化思想,考查正方形对角线互相垂直且对角线即角平分线的性质,面积转换思想是解决本题的关键.11.顶点为A (6,6),B (-4,3),C (-1,-7),D (9,-4)的正方形在第一象限的面积是( )A .25B .36C .49D .30 答案:B知识点:正方形的性质;坐标与图形性质;三角形的面积解析:解答:解:连接OA ,、过A .D 两点的直线方程是69664-6----x y =,即y =-x 310+16,解得它与x 轴的交点E 的横坐标是x =,同理求得过A .B 两点的直线方程是y =-x 103+,解得它与y 轴的交点E 的纵坐标是y =, ∴S △AOE =21××6=, S △AFO =21××6=, ∴S △AOE +S △AFO =+=36,即顶点为A (6,6),B (-4,3),C (-1,-7),D (9,-4)的正方形在第一象限的面积是36.分析:根据正方形的顶点坐标,求出直线AD 的方程,由方程式知AD 与x 轴的交点E 的坐标,同理求得AB 与y 轴的交点F 的坐标,连接OA ,再去求两个三角形的面积,从而求得正方形在第一象限的面积.解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,利用直角三角形求面积,在本题中,借助直线方程求的点E .F 在坐标轴上的坐标,据此解得所求三角形的边长,代入面积公式求得结果.。

人教版八年级数学下册18.2.3第2课时正方形的判定1同步练习题及答案.doc

人教版八年级数学下册18.2.3第2课时正方形的判定1同步练习题及答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】18.2.3 正方形第2课时正方形的判定一、填空题:1. 在正方形ABCD的AB边的延长线上取一点E,使BE= BD,连接DE交BC于F,则∠BFD = °;2. 已知:四边形ABCD中,对角线AC、BD相交于O. ①若OA= OB,且OA⊥OB,则四边形ABCD是,②若AB = BC,且AC = BD,则四边形ABCD是;3. 正方形边长为a,若以此正方形的对角线为一边作正方形,则所作正方形的对角线长为.二、选择题:4. 四边形ABCD中,AC、BD相交于O,下列条件中,能判定这个四边形是正方形的是();A. AO = BO = CO = DO,AC⊥BDB. AB∥CD,AC = BDC. AD∥BC,∠A =∠CD. AO = CO,BO = C O,AB = BC5. 四边形ABCD的对角线AC = BD,且AC⊥BD,分别过A、B、C、D作对角线的平行线,则所构成的四边形是().A. 平行四边形B. 矩形C. 菱形D. 正方形三、解答题:6.如右图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F.(1)求证:DE=DF.(2)只添加一个条件,使四边形EDFA是正方形,•请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明)7.如图,△ABC中,点O是AC上一动点,过点O作直线MN∥BC,设Mn交∠ACB的平分线于点E,交∠ACH的平分线于点F。

⑴说明:EO=FO;⑵当点O运动到何处时,四边形AECF是矩形;⑶当O是AC上怎样的点,且AC与BC具有什么关系时,四边形AECF是正方形?答案与提示一、1. 112.5;2. 正方形,正方形;3. 2a.二、4. A;5. D.三、6.(1)提示:证△DEB≌△DFC,(2)∠A=900167,四边形AFDE是平行四边形等(方法很多)==;⑵AC的中点;⑶当O是AC的中点,且AC⊥BC时,四边形AECF 7.⑴证OE OC OF是正方形。

2014年春季新版新人教版八年级数学下学期18.2.3、正方形同步练习3

2014年春季新版新人教版八年级数学下学期18.2.3、正方形同步练习3

18.2.3 正方形(2)◆回顾归纳•欲判定一个四边形是正方形,•可以先判定这个四边形是矩形,•再判定它还是_____;或者先判定四边形是菱形,再判定这个菱形也是_____形.◆课堂测控测试点正方形的判定1.两条对角线相等且互相垂直平分的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形2.在四边形ABCD中,O是对角线的交点,•下列条件能判定这个四边形为正方形的是() A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠A=∠CC.OA=OB=OC=OD,AC⊥BD D.AO=CO,BO=DO,AB=BC3.如图所示,在△ABC中,AB=AC,点D,E,F分别是边AB,BC,AC的中点,连接DE,EF,要使四边形ADEF是正方形,还需增加条件:_______.◆课后测控1.下列命题中,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直且相等的四边形是正方形2.在四边形ABCD中,AC,BD相交于点O,能判定这个四边形是正方形的是()A.AC⊥BD于O,且AC=BD,AC与BD于O点平分B.AB∥CD,AC=BDC.AO=BO,∠A=∠CD.AO=CO,BO=DO,AB=BC3.如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,•且使BE=CF=DG=AH.求证:四边形EFGH是正方形.4.如图所示,已知EG,FH为正方形ABCD的对角线的交点O,EG⊥FH.求证:四边形EFGH是正方形.5.如图所示,在Rt△ABC中,CF为直角的平分线,FD⊥CA于D,FE⊥BC于E,则四边形CDFE是怎样的四边形,为什么?6.已知,如图所示,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC•外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?直接写出你的结论,不必证明.7.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.◆拓展创新8.一位小姐在一家商店看到一条漂亮的方丝巾,非常想买,但当她拿起来看时感到纱巾不太方正,商店老板看她犹豫的样子,马上过来拉起一组对角,•让小姐看另一组对角是否对齐,小姐还有些疑惑,老板又拉起另一组对角,让小姐检验,小姐买了这块纱巾.你认为小姐买的这块纱巾真是正方形的吗?你能采用什么方法可以检验出来?答案:回顾归纳菱形,矩课堂测控1.D 2.C 3.∠A=90°或∠B+∠C=90°课后测控1.B 2.A3.点拨:先证△AEH≌△CGF≌△DHG,得四边形EFGH为菱形,再证一个角为直角. 4.∵四边形ABCD为正方形,∴OB=OC,∠ABO=∠BCO=45°,∠BOC=90°=∠2+∠3.∵EG⊥FH,∴∠1+∠3=90°,∴∠1=∠2,∴△COH≌△BOE,∴OE=OH.同理可证:OE=OF=OG.∴OE+OG=OF+OH,即EG=FH.又∵EG⊥FH,∴四边形EFGH为正方形.5.四边形CDFE是正方形,理由如下:∵FD⊥AC,FE⊥BC,AC⊥BC,∴四边形CDFE是矩形.∵CF平分∠ACB,∴∠FCD=45°,∴CD=DF,∴四边形CDFE是正方形.6.(1)∵AB=AC,AD⊥BC,∴AD平分∠BAC,又∵AN平分∠CAM,∴∠DAE=90°,∴CE⊥AN,∴四边形ADCE为矩形.(2)△ABC为等腰直角三角形.7.(1)在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴BP=QC=ED=FA.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF.∴FP=PQ=QE=EF,∠APF=∠PQB,易证:∵∠FPQ=90°,∴四边形PQEF为正方形.(2)连结AC交PE于O,∵AP//EC,∴四边形APCE为平行四边形.∵O为对角线AC的中点.∴对角线PE总过AC的中点.拓展创新8.根据老板的方法,只能说明这块纱巾的两组对角分别相等,四条边都相等,•则该纱巾是菱形,但不一定是正方形,只要拉起一组对边中点,将纱巾对折一次,看该四边形的邻角是否相等,如相等,则该纱巾为正方形,如不相等,则纱巾不是正方形.。

八年级数学下册《正方形》练习题及答案(人教版)

八年级数学下册《正方形》练习题及答案(人教版)

八年级数学下册《正方形》练习题及答案(人教版)A.15 B.20 C.25 D.303A.4 B.8 C.16 D.32A.1 B.2018 C.2019 D.2020 运动时,ABE的面积25A .B .C .D .二、填空题11.正方形的性质∶①边∶_______都相等且_______;②角:四个角都是_______;③对角线:两条对角线互相_______且_______,并且每一条对角线平分_______;④正方形既是_______图形,又是_______图形,正方形有_______对称轴.12.如图,请给矩形ABCD 添加一个条件,使它成为正方形,则此条件可以为________.13.如图,点P 为线段AB 上的一个动点,AB =6,以PA 、PB 为边向同侧作正方形APDC 、正方形PBEF ,两正方形的对角线的交点分别记为O 1、O 2,连接O 1O 2,则O 1O 2的最小值为_____.14.如图,正方形111OA B C 的边长为1,以对角线1OB 为边作第二个正方形122OB B C ,再以对角线2OB 为边作第三个正方形233OB B C …则第二个正方形122OB B C 的面积为_____________,第n 个正方形1n n n OB B C 的面积为_____________(用含n 的代数式表示).15.如图,四边形ABCO是平行四边形,OA=2,AB=8,点C在x轴的正半轴上,将平行四边形ABCO绕点A 顺时针旋转得到平行四边形ADEF,AD恰好经过点O,点F恰好落在x轴的负半轴上.则点D的坐标是_____.三、解答题16.如图,在正方形ABCD中,对角线AC与BD相交于点O,图中有多少个等腰三角形?17.如图,大正方形与小正方形的面积之差是50,求阴影部分的面积.18.如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度都是1cm/s,连接PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t 为何值时,四边形ABQP 是矩形?(2)当t 为何值时,四边形AQCP 是菱形?(3)分别求出(2)中菱形AQCP 的周长和面积.19.如图,点E ,F ,G 分别在正方形ABCD 的边AB ,BC ,CD 上,EF FG ⊥,且EF FG =.求证:BE CF =20.如图,在Rt ABC △中30cm AC =,60A ∠=︒点D 从点C 出发沿CA 方向以2cm /秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以1cm /秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D 、E 运动的时间是t 秒(015t <≤),过点D 作DF BC ⊥于点F ,连接DE ,EF(1)求证:AE DF =;(2)四边形AEFD 能够成为菱形吗?如果能,求出t 的值,如果不能,说明理由;(3)在运动过程中,四边形BEDF 能否为正方形?若能,求出t 的值;若不能,请说明理由.参考答案1.B2.B3.C4.A5.C6.D7.D8.D9.C10.A∴DE DF∴四边形BEDF不可能为正方形.。

八年级数学下册18.2.3正方形练习1(新版)新人教版【含答案】

八年级数学下册18.2.3正方形练习1(新版)新人教版【含答案】

正方形一、选择题1. 如图,在正方形 ABCD 的外侧,作等边三角形 ADE ,AC ,BE 订交于点 F ,则∠ BFC 的度数为()A.45°B.55°C.60°D.75°2. (西安师大附中联考)如图,在正方形 ABCD 中,对角线 AC , BD 订交于点 O ,则图中的等腰三角形有()A.4 个B.6 个C.8 个D.10 个3.如图,将一边长为 12 的正方形纸片的极点 A 折叠至边上的点 ,使 = 5,折痕为ABCDDCEDEPQ ,则 PQ 的长为 ( )A.12B.13C.14D.15二、填空题4.正方形的定义:有一组邻边 ______并且有一个角是 ______的平行四边形叫做正方形,因此正方形既是一个特其他有一组邻边相等的______, 又是一个特其他有一个角是直角的______.5.正方形的判断:(1)_ ___________________________________ 的平行四边形是正方形;(2)____________________________________ 的矩形是正方形;(3)____________________________________ 的菱形是正方形;16.若正方形的边长为a,则其对角线长为______,若正方形ACEF的边是正方形ABCD的对角线,则正方形 ACEF与正方形 ABCD的面积之比等于______.7.在正方形ABCD中,E为 BC上一点, EF⊥ AC,EG⊥ BD,垂足分别为F、G,若是AB52cm ,那么 EF+ EG的长为______.8.(易错题)如图,在正方形 ABCD中,点 F 为 CD上一点, BF 与 AC交于点 E,若∠ CBF=20°,则∠ AED等于 __________°.9. 如图,正方形ABCD的对角线长为8 2 , E 为 AB 上一点,若EF⊥AC于点 F, EG⊥ BD于点 G,则EF+EG=_________.10.(山东实验中学期中)如图,正方形ABCD的边长为 2,点 E 为边 BC的中点,点 P 在对角线BD上搬动,则PE+PC的最小值是 __________.三、解答题11. 以下列图,把正方形ABCD绕着点 A 按顺时针方向旋转获取正方形AEFG,边 FG与 BC交于点H. 试问线段HG与线段 HB相等吗?请先观察猜想,尔后再证明你的猜想.12.如图所示,已知点 A′, B′, C′, D′分别是正方形 ABCD 四条边上的点,并且AA′=BB′=CC′=DD′,求证:四边形A′B′C′D′是正方形.213.(西安中学二模)以下列图,在平行四边形ABCD中,对角线 AC,BD交于点 O,E 是 BD延长线上的点,且ACE是等边三角形 .(1)求证:四边形 ABCD是菱形;(2)若∠ AED=2∠EAD,求证:四边形 ABCD是正方形 .14.已知:如图, E 是正方形 ABCD对角线 AC上一点,且A E= AB, EF⊥ AC,交 BC于 F.求证:BF=EC.15.如图,P为正方形ABCD的对角线上任一点,PE⊥ AB于 E,PF⊥ BC于 F,判断 DP与 EF的关系,并证明.3参照答案1. C剖析由已知得AB=AE,∠ BAE=150°,∴∠ ABF=15°,∴∠ BFC=∠ ABF+∠BAF=15°+45°=60°.2. C 剖析:在正方形ABCD中, AB=BC=CD=DA,OA=OB=OC=OD,因此等腰三角形有△ABC,△ADC,△ ABD,△ CBD, OAB,OBC,△ OCD,△ ODA.3. B.4.相等、直角、矩形、菱形.5. (1) 有一组邻边相等,并且有一个角是直角;(2)有一组邻边相等.(3)有一个角是直角.6. 2 a,2∶1.7. 5cm.8.65 剖析在正方形 ABCD中,∠ DCE=∠BCE=45°, CB=CD.在△ CDE和△ CBE中,CD CB ,DCE BCE ,CE CE,∴△ CDE≌△ CBE.∴∠ CDE=∠CBF=20°.∵∠ AED是△ DCE的外角,∴ ∠ AED=∠CDE+∠DCE=65°.9. 4 2剖析设AC与BD订交于点O,由正方形的性质得△BEG是等腰直角三角形,故EG=BG.又∵ EF⊥ AC, EG⊥ BD, AC⊥ BD,∴四边形EGOF为矩形,∴ EF=OG,1 1∴ EF+EG=BG+OG=BO=BD=× 8 2 = 4 22 210. 5 剖析∵ BD是正方形 ABCD的对角线,作点 C 关于 DB的对称点 C′,则点 C′和点 A 重合,连接 AE交 DB于 P′,连接 CP′,则此时 P′E+P′C的值最小,∴ P′E+P′C=AE.在 Rt △ ABE中, AB=2, BE=1,由勾股定理得AE AB2BE 2 5 .11.解:HG=HB.证明:以下列图,连接AH.4∵四边形ABCD, AEFG都是正方形,∴∠ B=∠G=90°, AG=AB.又∵ AH=AH,∴Rt AGH≌ Rt ABH(HL),∴ HG=HB.12.证明:如图 .∵四边形ABCD为正方形,∴BC=CD=DA=AB,∠ A=∠ B=∠C=∠D=90°.又∵ AA′=BB′=CC′=DD′,∴D′A=A′B=B′C=C′D.∴AA′D′≌△ BB′A′≌△ CC′B′≌△ DD′C′(SAS).∴D′A′=A′B′=B′C′=C′D′,∠2=∠ 3.∴四边形A′B′C′D′为菱形.∵∠ 1+∠2=90°,∴∠ 1+∠3=90°.∴∠ D′A′B′=180° -( ∠1+∠3)=90°.∴四边形A′B′C′D′为正方形.13.证明:( 1)因为四边形 ABCD是平行四边形,因此 AO=CO,因为△ ACE是等边三角形,因此AE=CE.因此 AC⊥EO,即 AC⊥ BD,因此平行四边形ABCD是菱形 .5(2)因为△ ACE是等边三角形,因此∠ AEC=∠ EAC=60°,1因为 OA=OC,因此∠ AED=∠AEC=30°,因为∠ AED=2∠ EAD,因此∠ EAD=15°,因此∠DAC=∠ ADB=∠ EAD+∠AED=45°,由( 1)知四边形ABCD是菱形,因此∠ BAC=∠DAC=45°,因此∠ BAD=90°,因此四边形ABCD是正方形 .14.提示:连接AF.15.DP=EF,提示:连接BP.6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正方形课后练习题一:下列判断中正确的是( )A.四边相等的四边形是正方形B.四角相等的四边形是正方形C.对角线互相垂直的平行四边形是正方形D.对角线互相垂直平分且相等的四边形是正方形题二:正方形四边中点的连线围成的四边形(最准确的说法)一定是( )A.矩形 B.菱形 C.正方形 D.平行四边形题三:如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG.下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=12AD.其中正确的有( )A.①② B.①②④ C.①③④ D.①②③④题四:如图,正方形ABCD的对角线相交于O点,BE平分∠ABO交AO于E点,CF⊥BE于F点,交BO于G点,连接EG、OF.下列四个结论:①CE=CB;②AE;③OF=12CG.其中正确的结论只有( )A.①② B.②③ C.①③ D.①②③题五:如图,正方形ABCD的边CD在正方形ECGF的边CE上,B、C、G三点在一条直线上,且正方形ABCD与正方形ECGF的边长分别为2和3,在BG上截取GP=2,连接AP、PF.(1)观察猜想AP与PF之间的大小关系,并说明理由;(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由;(3)若把这个图形沿着PA、PF剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.题六:如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么正方形A1B1C1O绕O点转动,两个正方形重叠部分的面积等于多少?为什么?题七:如图,已知点E为正方形ABCD的边BC上一点,连接AE,过点D作DG⊥AE,垂足为G,延长DG交AB于点F.求证:BF=CE.题八:如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.求证:AE=FC+EF.题九:如图1,四边形ABHC,ADEF都是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,设BG交AC于点M,求证:BD⊥CF.题十:两个边长不定的正方形ABCD与正方形AEFG如图1摆放,将正方形AEFG绕点A逆时针旋转一定角度.(1)若点E落在BC边上(如图2),试探究线段CF与AC的位置关系并证明;(2)若点E落在BC的延长线上时(如图3),(1)中结论是否仍然成立?若不成立,请说明理由;若成立,加以证明.题十一:如图所示,四边形ABCD是正方形,M是AB延长线上一点,直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一直角边与∠CBM的平分线BF相交于点F.(1)如图1所示,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是_________;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是_________;③请证明你的上述两个猜想;(2)如图2所示,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系.题十二:在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和四边形CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)正方形课后练习参考答案题一:D.详解:A错误,四边相等的四边形是菱形;B错误,四角相等的四边形是矩形;C错误,对角线互相垂直的平行四边形是菱形;D正确,对角线互相垂直平分且相等的四边形是正方形;故选D.题二:C.详解:如图,连接AC、BD,交于O,∵正方形ABCD,∴AC=BD,AC⊥BD,∵E是AD的中点,H是CD的中点,F是AB的中点,G是BC的中点,∴EH∥AC,FG∥AC,EF∥BD,GH∥BD,EF=12BD,EH=12AC,∴EF=EH,EF⊥EH,四边形EFGH是平行四边形,∴平行四边形EFGH是正方形.故选C.题三:D.详解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E、F、H分别是AB、BC、CD的中点,∴△BCE≌△CDF,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;在Rt△CGD中,H是CD边的中点,∴HG=12CD=12AD,故④正确;连接AH,同理可得:AH⊥DF,∵HG=HD=12CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD,故②正确;∴∠DAG=2∠DAH,同理:△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG,故③正确;故正确的结论有①②③④.故选D.题四:D.详解:∵四边形ABCD是正方形,∴∠ABO=∠ACO=∠CBO= 45°,AB=BC,OA=OB=OC,BD⊥AC,∵BE平分∠ABO,∴∠OBE=12∠ABO=22.5°,∴∠CBE=∠CBO+∠EBO=67.5°,在△BCE中,∠CEB BCO CBE,∴∠CEB=∠CBE,∴CE=CB;故①正确;∵OA=OB,AE=BG,∴OE=OG,∵∠AOB=90°,∴△OEG是等腰直角三角形,∴EG,∵∠ECG=∠BCG,EC=BC,CG=CG,∴△ECG≌△BCG,∴BG=EG,∴AE=EG;故②正确;∵∠AOB=90°,EF=BF,∵BE=CG,∴OF=12BE=12CG.故③正确;故正确的结论有①②③.故选D.题五:见详解.详解:(1)猜想PA=PF;理由:∵正方形ABCD、正方形ECGF,∴AB=BC=2,CG=FG=3,∠B=∠G=90°,∵PG=2,∴BP=2+3-2=3=FG,AB=PG,∴△ABP≌△PGF,∴PA=PF.(2)存在,是△ABP和△PGF,变换过程:把△ABP先向右平移5个单位,使AB在GF边上,B与G重合,再绕G点逆时针旋转90度,就可与△PGF重合.(3)如图,S大正方形=S正方形ABCD+S正方形ECGF = 4+9=13.题六:见详解.详解:(1)证明:在正方形ABCD中,AO=BO,∠AOB=90°,∠OAB=∠OBC= 45°,∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°,∴∠AOE=∠BOF.在△AOE和△BOF中,∠OAE=∠OBF,OA=OB,∠AOE=∠BOF,∴△AOE≌△BOF;(2)两个正方形重叠部分面积等于14a2,因为△AOE≌△BOF,所以S四边形OEBF=S△EOB+S△OBF=S△EOB+S△AOE=S△AOB=14S正方形ABCD=14a2.题七:见详解.详解:在正方形ABCD中,∠DAF=∠ABE=90°,DA=AB=BC,∵DG⊥AE,∴∠FDA+∠DAG=90°.又∵∠EAB+∠DAG=90°,∴∠FDA=∠EAB.在Rt△DAF与Rt△ABE中,DA=AB,∠FDA=∠EAB,∴Rt△DAF≌Rt△ABE.∴AF=BE.∵AB=BC,∴BF=CE.题八:见详解.详解:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,又∵AE⊥DG,CF∥AE,∴∠AED=∠DFC=90°,∴∠EAD+∠ADE=∠FDC+∠ADE=90°,∴∠EAD=∠FDC,∴△AED≌△DFC(AAS),∴AE=DF,ED=FC,∵DF=DE+EF,∴AE=FC+EF.题九:见详解.详解:(1)BD=CF成立,理由是:∵四边形ABHC和四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∴∠BAC∠DAC=∠DAF∠DAC,∴∠BAD=∠CAF,在△DAB和△FAC中,AB=AC,∠DAB=∠FAC,AD=AF,∴△DAB≌△FAC(SAS),∴BD=CF.(2)∵△DAB≌△FAC,∴∠FCA=∠DBA,∵∠CMG=∠BMA,∠CAB=90°,∴∠CMG+∠FCA=∠DBA+∠BMA∠CAB=90°,∴在△CGM中,∠CGM,∴BD⊥CF.题十:见详解.详解:(1)如图2,过E作EM⊥CB于E交AC与M,而AE⊥EF,∴∠AEF=90°,∴∠AEM+∠MEF=∠CEF+∠MEF,∴∠AEM=∠CEF,又∵AC是正方形的对角线,∴∠ACE=45°,∴CE=ME,∵AE=EF,∴△AEM≌△FEC,∴∠CFE=∠CAE,而∠ANE=∠CNF,∴∠ACF=∠AEF=90°,即CF⊥AC;(2)若点E落在BC的延长线上时(如图③),(1)中结论是否仍然成立.过F作FH⊥BC,交BC的延长线于H,∵四边形ABCD、四边形AEFG是正方形,∴∠AEF=∠B=∠EHF=90°,AE=EF,∴∠AEB+∠BAE=∠AEB+∠FEH=90°,∴∠BAE=∠FEH,∴△FEH≌△EAB,∴EH=AB,FH=BE,即EH=AB=BC,FH=BE=BC+CE,∴FH=EH+CE=CH,即∠FCH= 45°,而∠ACB= 45°,∴AC⊥CF.题十一:见详解.详解:(1)①DE=EF;②NE=BF;③∵四边形ABCD为正方形,∴AD=AB,∠DAB=∠ABC=90°,∵N,E分别为AD,AB中点,∴AN=DN=12AD,AE=EB=12AB,∴DN=BE,AN=AE,∵∠DEF=90°,∴∠AED+∠FEB=90°,又∵∠ADE+∠AED=90°,∴∠FEB=∠ADE,又∵AN=AE,∴∠ANE=∠AEN,又∵∠A=90°,∴∠ANE= 45°,∴∠DNE=180°-∠ANE=135°,又∵∠CBM=90°,BF平分∠CBM,∴∠CBF= 45°,∠EBF=135°,∴△DNE≌△EBF(ASA),∴DE=EF,NE=BF.(2)在DA上截取DN=EB(或截取AN=AE),连接NE,则点N可使得NE=BF.此时DE=EF.证明方法同(1),证△DNE≌△EBF.题十二:见详解.详解:(1)证明:∵四边形BCGF为正方形,∴BF=BM=MN,∠FBM=90°,∵四边形CDHN为正方形,∴DM=DH=MN,∠HDM=90°,∵BF=BM=MN,DM=DH=MN,∴BF=BM=DM=DH,∵BF=DH,∠FBM=∠HDM,BM=DM,∴△FBM≌△HDM,∴FM=MH,∵∠FMB=∠DMH= 45°,∴∠FMH=90°,∴FM⊥HM.(2)证明:连接MB、MD,如图2,设FM与AC交于点P.∵B、D、M分别是AC、CE、AE的中点,∴MD∥BC,且MD=12AC=BC=BF;MB∥CD,且MB=12CE=CD=DH,∴四边形BCDM是平行四边形,∴∠CBM=∠CDM,又∵∠FBP=∠HDC,∴∠FBM=∠MDH,∴△FBM≌△MDH,∴FM=MH,且∠FMB=∠MHD,∠BFM=∠HMD.∴∠FMB+∠HMD FBM,∵BM∥CE,∴∠AMB=∠E,同理:∠DME=∠A.∴∠AMB+∠DME=∠A+∠AMB=∠CBM.由已知可得:BM=12CE=AB=BF,∴∠A=∠BMA,∠BMF=∠BFM,∴∠FMH FMB+∠HMD AMB+∠DME)FBM CBM=∠FBM CBM=∠FBC=90°.∴△FMH是等腰直角三角形.(3)解:△FMH还是等腰直角三角形.。

相关文档
最新文档