材料力学 扭转
材料力学-第三章扭转

3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件
0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析
圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16
强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3
4
3
d 0.886 d
2
Mn
a
2
Mn 0.208 0.886 d
b
6.913
材料力学-扭转

从圆轴中取一微小的正六面体(单元体), 其对称两面上的剪应力构成一个力偶,因此 另两个对称面上也必存在转向相反的、由 剪应力构成的力偶。由此得出, 剪应力互等定理: 两个相互垂直的截面上,在其相交处的 剪应力成对存在,且其数值相等而符号相反, 指向或背离交线。 剪应力符号规定: 使单元体产生顺时针方向转动趋势时的剪应力为正 使单元体产生反时针方向转动趋势时的剪应力为负
§7-4 圆轴扭转时的强度计算
要使圆轴杆件扭转时不致产生破坏,应满足各横截面上的最 大剪应力小于材料的许用剪应力,而最大剪应力发生在扭矩最大 的横截面上的边缘处。设圆周半径为R,则圆轴扭转的强度条件 为:
τmax
T = R ≤ [τ ] Ip
Wp =
Ip R
把与截面尺寸和形状有关的参量归到一个参量,令 T 则有:
T ρ ρ 由此,圆轴扭转时横截面上半径为 处的剪应力为:τ ρ = Ip 4、极惯性矩 I 的计算 p πD 4
dϕ T = dX GI p
I p = ∫ ρ dA
2 A
直径为D的实心轴圆截面: I p = 空心轴圆环截面:I p =
π (D 4 − d 4 )
32
32
例:一轴AB传递的功率为Nk=7.5kw, 转速n=360r/min,轴的AC段为实心圆截面, CB段为空心圆截面,如图。已知D=3cm, d=2cm.试计算AC段横截面边缘处的剪应力 以及CB段横截面上外边缘和内边缘处的剪应力。计算扭矩、惯性矩、应力
Wp
≤ [τ ]
Wp
, 称为抗扭截面系数
Wp = 0.2D3
实心圆:
许用剪应力的确定:料 [τ ] = (0.5 ~ 0.6)[σ] 塑 材 : 性 一般取 脆 材 :τ ] = (0.8 ~1.0)[σ] 性 料 [
材料力学第3章扭转

试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。
材料力学第三章 扭转

W P t 1000P 60(N m)
外力偶矩Me一分钟做功:
W Me Me 2 n(N m)
令 W W
则:
Me
1000P 60
2 n
9549
P n
(N m)
注意:
主动轮上外力偶矩的转 向和轴的转向一致
从动轮上外力偶矩的转 向和轴的转向相反
二、扭矩与扭矩图 方法:截面法
Me
Mx 0 T1 M A 0
A
B
C
D
得: T1 M A 1.91kN m
MA 1 MB 2 MC 3 MD
2-2截面
M x 0 T2 M A MB 0
得: T2 M A MB 5.73kN m 3-3截面
A 1 B2 C
MA
T1
MA
M B T2
3D
M x 0 T3 M A MB MC 0
由扭矩图可知: T 5.73kN m
max
在BC和CD段
A
B
C
D
MA
MB
A
B
T / kN m
MC
MD
C
D
5.73
O
x
1.91
5.73
D
B
§3-3 薄壁圆筒的扭转 R0 10
一、薄壁圆筒扭转时的应力与变形
D
δ
D / 20
实验情形
ab cd
① 各圆周线的形状、大小和间距均未改变,只是绕轴线作相 对转动。
dx
将(a)式代入上式得:
G
G
d
dx
(b)
由(b)式可知,圆杆横截面上的切应力 和 成正比,即
切应力沿半径方向按线性规律变化,其方向垂直于半径。
材料力学实验报告扭转实验

材料力学实验报告扭转实验一、实验目的1、测定低碳钢和铸铁在扭转时的力学性能,包括扭转屈服极限、扭转强度极限等。
2、观察低碳钢和铸铁在扭转过程中的变形现象,分析其破坏形式和原因。
3、熟悉扭转试验机的工作原理和操作方法。
二、实验设备1、扭转试验机2、游标卡尺三、实验原理在扭转实验中,材料受到扭矩的作用,产生扭转变形。
扭矩与扭转角之间的关系可以通过试验机测量得到。
对于圆形截面的试件,其扭转时的应力分布为:表面最大切应力:$\tau_{max} =\frac{T}{W_p}$其中,$T$为扭矩,$W_p$为抗扭截面系数,对于实心圆截面,$W_p =\frac{\pi d^3}{16}$,$d$为试件的直径。
当材料达到屈服极限时,对应的扭矩为屈服扭矩$T_s$;当材料断裂时,对应的扭矩为极限扭矩$T_b$。
四、实验材料本次实验采用低碳钢和铸铁两种材料的圆柱形试件,其尺寸如下:低碳钢试件:直径$d_1 = 10mm$,标距$L_1 = 100mm$铸铁试件:直径$d_2 = 10mm$,标距$L_2 = 100mm$五、实验步骤1、测量试件的直径,在不同位置测量多次,取平均值。
2、安装试件,确保其中心线与试验机的轴线重合。
3、启动试验机,缓慢加载,观察扭矩和扭转角的变化。
4、当低碳钢试件出现屈服现象时,记录屈服扭矩$T_s$。
5、继续加载,直至试件断裂,记录极限扭矩$T_b$。
6、取下试件,观察其破坏形式。
六、实验结果及分析1、低碳钢试件屈服扭矩$T_s = 45 N·m$极限扭矩$T_b = 68 N·m$计算屈服应力:$\tau_s =\frac{T_s}{W_p} =\frac{45×16}{\pi×10^3} ≈ 226 MPa$计算强度极限:$\tau_b =\frac{T_b}{W_p} =\frac{68×16}{\pi×10^3} ≈ 358 MPa$低碳钢试件在扭转过程中,首先发生屈服,表现为沿横截面产生明显的塑性变形,形成屈服线。
材料力学 第4章_扭转

d x d z d y d y d z d x 0
返回
4. 切应力互等定理
切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。
纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T
dA
横截面上分布内力系对 圆心的矩等于扭矩T。
T d A A d d 2 G d A G d A A dx dx A
材料力学4扭转

目录
注意! 对于W t 和 It ,多数教材与手册上有如下定义:
查表求 和 时一定要注意,表中 和 与那套公式对应。
h
³
b
h
t
1
T
t
max
注意!
b
目录
[例8] 一矩形截面等直钢杆,其横截面尺寸为:h = 100 mm, b=50mm,长度L=2m,杆的两端受扭转力偶 T=4000N·m 的 作用 ,钢的G =80GPa ,[]=100M Pa,[]=1º/m ,试校核 此杆的强度和刚度。
n
A B C D
m2 m3 m1 m4
解:①计算外力偶矩
目录
n
A B C D
m2 m3 m1 m4
汽车传动轴
目录
工 程 实 例
汽车方向盘
目录
§3-1 扭转的概念和实例
1.受力特征:在杆件两端垂直于杆轴线的平面内作用一对大 小相等,方向相反的外力偶。 2.变形特征:横截面形状大小未变,只是绕轴线发生相对转动。 轴:以扭转为主要变形的构件称为轴 。
扭矩和扭矩图
3 扭矩的符号规定: “T”的转向与截面外法线方向满足右手螺旋规则为正,反之为负。
二、扭矩及扭矩图 1 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。 2 截面法求扭矩
m
m
m
T
x
目录
扭矩正负规定
右手螺旋法则
右手拇指指向外法线方向为 正(+),反之为 负(-)
目录
2. 物理关系:
虎克定律: 代入上式得:
3. 静力学关系:
O
dA
令
代入物理关系式 得:
—横截面上距圆心为处任一点剪应力计算公式。
材料力学 第三章 扭 转

T2
T1
d
T3
Mx1=0.5kN· m
Mx2 =0.32kN· m lAB=300mm G=80GPa d=50mm
B
T2
φAB
lAB
A T1
lAC d φAC
C T3
B
lAB
A
lAC
C
M x1l AB j AB = GI P 500 0.3 = 9 80 10 0.054 32
r O
Mx
几何分析
变 形 应变分布
物理关系
应力分布
平面假定 静力学方程
应力公式
1. 变形几何关系
周线
a b c d
T
周线
a c d
γ
T
φ
b
纵线
dx
纵线
dx
a
c
a
γ
c c' d d'
b
d
b
(1)变形后所有圆周线的大小、形状和间距均不变,绕杆轴线相对转动。 (2)所有的纵线都转过了同一角度g。
T
周线
A
dρ
ρ o
ρ2dA
∫ 0ρ2·2πρdρ =
π d = 32
4
d/2
d
3 Ip π d Wp = r = 16
2. 空心圆截面
π D 4 - π d 4 π D 4(1-α4) Ip= 32 32 = 32 α=d/D
ρ o
dρ
π D3 Wp = 16 (1-α4)
d D
3.薄壁圆环截面
I P = 2r0
故该轴满足切应力强度要求。
二、刚度计算 等直圆杆扭转的刚度条件为
θ max = Mxmax ≤[θ] GI
材料力学:第5章:扭转

d
dx d
在外表面上
d dx
d r dx
2. 物理关系 根据剪切胡克定律, 当剪应力不超过材料 的剪切比例极限时
G
剪应力方向垂直于半径
d G dx
3.静力学关系
dA
dA T
A
o
dA
d G dx dA T A d 2 G dA T dx A
2
I p dA 极惯性矩
d T 则 dx G I p
A
令 I p dA
2 A
d G T T G G Ip Ip dx
d T dx G I p
W = m 2 n
(1) = (2) 得 N×1000× 60 = m 2 n
(2)
N m 9549 n
N ─ kW n ─ rpm m ─ N m N ─ PS n ─ rpm m ─ N m
N m 7024 n
§5-2 扭矩和扭矩图
Ip
极惯性矩:
32 4 4 4 (D d ) D 4 (1 ) 空心圆: I p 32 32 抗扭截面模量: 3 d 实心圆: Wt 16 3 D 4 (1 ) 空心圆: Wt 16
实心圆: I p
d
4
二、圆轴扭转时的变形
d T d x GI p T d dx GI p
d
T dx GI p l
Tl 若T const,则 GIp
Nl l EA
圆轴扭转时的强度条件和刚度条件
强度条件:
刚度条件:
扭转实验报告问题分析(3篇)

第1篇一、实验背景扭转实验是材料力学中研究材料扭转性能的重要实验之一。
通过实验,可以了解材料在扭转过程中的力学行为,为工程设计提供依据。
然而,在实验过程中,可能会出现一些问题,影响实验结果的准确性。
本文针对扭转实验中常见的问题进行分析,并提出相应的解决方案。
二、实验过程中常见问题1. 试样制备问题(1)试样尺寸不准确:试样尺寸对实验结果影响较大,尺寸不准确会导致实验结果偏差。
因此,在制备试样时,要严格按照实验要求进行加工,确保尺寸准确。
(2)试样表面质量差:试样表面存在划痕、毛刺等缺陷,会影响实验结果的准确性。
因此,在加工试样时,要注意保持表面光滑,避免产生缺陷。
2. 实验操作问题(1)加载方式不正确:加载方式不正确会导致实验结果出现较大偏差。
在实验过程中,应按照实验要求进行加载,确保加载方式正确。
(2)实验参数设置不合理:实验参数设置不合理会导致实验结果不准确。
在实验前,应仔细分析实验原理,合理设置实验参数。
3. 数据处理问题(1)数据记录不准确:在实验过程中,应准确记录实验数据,避免因记录错误导致实验结果偏差。
(2)数据处理方法不当:数据处理方法不当会导致实验结果出现较大偏差。
在数据处理过程中,应采用合适的数学模型和方法,确保数据处理结果的准确性。
三、问题分析及解决方案1. 试样制备问题(1)针对试样尺寸不准确问题,可以在加工过程中使用高精度的测量工具,如千分尺、游标卡尺等,对试样尺寸进行精确测量。
(2)针对试样表面质量差问题,可以在加工过程中采用研磨、抛光等方法,提高试样表面质量。
2. 实验操作问题(1)针对加载方式不正确问题,应严格按照实验要求进行加载,确保加载方式正确。
(2)针对实验参数设置不合理问题,应在实验前对实验原理进行分析,合理设置实验参数。
3. 数据处理问题(1)针对数据记录不准确问题,应提高实验人员的责任心,确保实验数据记录准确。
(2)针对数据处理方法不当问题,应选择合适的数学模型和方法,对实验数据进行处理,提高数据处理结果的准确性。
材料力学第四章 扭转

扭转轴的内力偶矩称为扭矩
3、扭矩利用截面法、并建立平衡方程得到
m
m
x
m
Mn
MX 0 Mnm0
Mn m
8
§3-2 外力偶矩、扭矩和扭矩图
4 扭矩的符号规定—右手螺旋法则
mI
扭
矩
符 号 规
Mn I
离M开n截 面
定 :
mI
I
m
Mn
I
I
m
Mn
Mn I
指向M 截n 面
I
右手定则:右手四指内屈,与扭矩转向相同,则拇指的
m
转速:n (转/分)
1分钟输入功: 1分钟m 作功:
W W '
W 6 N 0 10 60 0 N 0 000
W m m 2 n 1 2 nm
m955N0 Nm 单位
n
7
§3-2 外力偶矩、扭矩和扭矩图
2、扭矩的概念
扭转变形的杆往往称之为扭转轴
Mn
Mn
(r )
A
B
(r )
C
C
D d
D
b
x
d
d
d
dx
d
dx
dx
d
称为单位长度相对扭转角
dx
对于同一截面,
d 常量 dx
上式表明:圆轴扭转时,其横截面上任意点处的剪应变与该点至截 面中心之间的距离成正比。上式即为圆轴扭转时的变形协调方程。
32
§3-4 等值圆杆扭转时的应力强度条件
dAsin
d d A cA s o i s d n sA i c n o 0
材料力学——第三章 扭转

33
材 料 力 学
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
34
材 料 力 学
4、切应力分布规律假设
因为筒壁的厚度很小,可以认为沿筒壁厚度切应力均匀分布;
35
材 料 力 学
5、薄壁圆筒的扭转切应力
T
rm
2 rm t T
m1
m4
15.9(kN m)
A
P2 m2 m3 9.549 4.78 (kN m) n P4 m4 9.549 6.37 (kN m) n
17
B
C
D
材 料 力 学
2、求扭矩
m2
T1 m2 0
T1 4.78kN m
T2 m2 m3 0
材 料 力 学
三、切应变
纯剪切单元体的相对两侧面 发生微小的相对错动, a
´
c
´
b
d
t
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
圆筒两端的相对扭转角为υ,圆筒 的长度为L,则切应变为
L r
r L
39
材 料 力 学
四、剪切虎克定律:
当剪应力不超过材料的剪切比例
齿轮轴
9
材 料 力 学
§3-2、外力偶矩的计算 扭矩和扭矩图
一.外力偶矩的计算 ——直接计算
M=Fd
10
材 料 力 学
按输入功率和转速计算
已知 轴转速-n 转/分钟 输出功率-P 千瓦 计算:力偶矩M
电机每秒输入功: 外力偶作功:
W P 1000(N.m)
材料力学第三章扭转

§3.3 纯剪切
一、薄壁圆筒扭转时的剪应力
1、实验:
(壁厚
t
1 10
r0
,
r0:为平均半径)
2、变形规律:
'
圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
结论:
横截面上 0, 0
0 0
t
根据对称性可知切应力沿圆周均匀分布;
1、扭转变形:(相对扭转角)
d T
扭转变形与内力计算式
dx GI P
d T dx T dx
GI P
L GI P
扭矩不变的等直轴 Tl
GI p
扭转角单位: 弧度(rad)
各段扭矩为不同值的阶梯轴 Tili
GI pi
GIP—抗扭刚度。
d T
dx GI P
rad m ——单位长度的扭转角
Ip= 3105 mm4,l = 2 m,G = 80 GPa,[] = 0.5 ()/m 。 AC=? 校核轴的刚度
解:1. 变形分析
T1 MA 180 N m
AB
T1l GIp
1.5010-2
rad
T2 MC 140 N m
BC
T2l GIp
1.1710-2
rad
AC AB BC 1.50 10-2 1.17 10-2 0.33 10-2 rad
dx dx
d
dx
d / dx-扭转角变化率
横截面上任意点的剪应变与该点到圆 心的距离ρ成比例
二、物理关系:由应变的变化规律→应力的分布规律 弹性范围内
G → G
G
d
dx
材料力学扭转教学课件PPT

(a)
P2
P3
P1
n
P4
B
C
D
A
例题3-2图
m P2 2
m P3 3
P1
m1
m n
4 P4
B
C
D
A
m2
m3
m1
m4
(b)
B
C
A
D
解:1.计算外力偶矩
m1
m2
9.55 P1 15.9kN .m
m3
n
9.55
P2
n
4.78kN
.m
m4
9.55 P4 n
6.37kN .m
2.由计算简图用截面法计算各段轴内的扭矩,然后画扭矩图
§3.1 扭转的概念和实例
➢ 扭转变形 ——作用在垂直于杆件轴线的平面内 的力偶矩,使得杆件的任意两个 横截面都发生了绕轴线的相对转 动。
➢ 扭转变形杆件的内力 ——扭矩(T )
➢ 轴 ——主要承受扭矩的构件
m A'
g
A
m B j B'
扭转的受力特征 :在杆件的两端作用两个大小相等、
转向相反、且作用平面垂直于杆件轴线的力偶。
dA
O r
dA
dA
O
A
G 2
dj
dx
dA
G
dj
dx
A
2dA
T
GI p
dj
dx
令 Ip A 2dA
dj
dx
T GI p
代入物理关系式
G
dj
dx
得:
T
Ip
T
Ip
—横截面上距圆心为处任一点剪应力计算公式。
材料力学 第三章 扭转

为一很小的量,所以
tan 1.0103rad
G
(80 109 Pa)(1.0 103rad) 80 MPa
注意: 虽很小,但 G 很大,切应力 不小
例 3-3 一薄壁圆管,平均半径为R0,壁厚为,长度为l, 横截面上的扭矩为T,切变模量为G,试求扭转角。
解:
T
2πR02
G
T
2πGR02
塑性材料:[] =(0.5~0.6)[s] 脆性材料:[] = (0.8~1.0)[st]
例 3-1 已知 T=1.5 kN . m,[τ] = 50 MPa,试根据强度条 件设计实心圆轴与 a = 0.9 的空心圆轴,并进行比较。 解:1. 确定实心圆轴直径
max [ ]
max
T Wp
T πd 3
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
Tmax ml
[例3-1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW, 从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
解:1、计算外力偶矩
m2
m3
m1
m4
m1
9.55
P1 n
9.55
一、薄壁圆筒扭转时的应力
t
1、试验现象
壁厚
t
1 10
r0(r0:平均半径)
rO
各圆周线的形状不变,仅绕轴线作相对转动,距离不变。 当变形很小时,各纵向平行线仍然平行,倾斜一定的角度。
由于管壁薄,可近似认 为管内变形与管表面相 同,均仅存在切应变γ 。
2、应力公式 微小矩形单元体如图所示:
´
①无正应力
d T
dx GI p
材料力学扭转

dx
c
x
它们组成的力偶,其矩为
(dxdy )dz
z
(dxdy )dz
y
此力偶矩与前一力偶矩
dy
d
a
b
( dy dz) dx 数量相等而转向相反,从而可得 z
dx
c
x
剪应力互等定理:
单元体两个相互垂直平面上
a
dy
y
b
d
的剪应力同时存在,且大小
相等,都指相(或背离)该
y
程中,认为上,下两面上的外
a
'
d
x
力将不作功。只有右侧面的外 力 (dydz) 对相应的位移 dx 作
z
b dx
dx
了功。
当材料在线弹性范围内内工作时,
y
上述力与位移成正比,因此,单
元体上外力所作的功为
1 2 1 2
z a
'
d
x
dW
( dydz)( dx)
( dxdydz)
M GI
e P
r
o
dA
M I
e p
上式为圆轴在扭转时横截面上任一点处的剪应力计算公式
M I
e p
式中:Me 为横截面上的扭矩; 为求应力的点到圆心的距离:
I p A dA
2
称为横截面对圆心的 极惯性矩
说明:
M n I
p
max
Mn
材料力学扭转知识点总结

材料力学扭转知识点总结1. 概述材料力学是研究材料的力学性能和行为的一门学科,而扭转则是指在材料中施加扭矩力的作用。
材料力学扭转是材料力学中重要的一个分支,涉及到材料的变形、强度、破坏等方面的内容。
本文将对材料力学扭转的主要知识点进行总结。
2. 扭转应力扭转应力是材料在扭转加载下产生的应力。
与拉伸、压缩应力相比,扭转应力呈圆柱对称分布,沿着截面的半径方向逐渐减小,最大应力出现在材料的表面。
扭转应力的大小与施加的扭矩、材料断面的形状和尺寸有关。
3. 扭转变形扭转加载下,材料会产生扭转变形。
扭转变形主要表现为材料的轴线在垂直截面上的位移,称为扭转角。
扭转角的大小与施加的扭矩、材料的几何形状和材料的性质有关。
当材料的弹性变形超过一定范围时,会发生塑性变形,导致材料的破坏。
4. 扭转刚度扭转刚度是指材料对扭转加载的抵抗能力。
扭转刚度可以由杨氏模量计算得出,与材料的剪切模量相关。
较高的扭转刚度意味着材料在扭转加载下能够保持较小的变形,具有较好的强度和刚度。
5. 扭转强度扭转强度是指材料在扭转加载下破坏的能力。
与拉伸强度、压缩强度类似,扭转强度也是一个材料的重要指标,用来评估材料在扭转加载下的耐用性能。
6. 扭转应力-应变关系材料在扭转加载下的应力-应变关系可以描述材料在扭转过程中的力学行为。
对于线弹性材料而言,扭转应力与扭转角之间呈线性关系,称为胜肽方程。
扭转应力-应变关系可用来预测材料的扭转刚度、扭转变形等力学性能。
7. 扭转实验扭转实验是研究材料力学扭转性能的重要手段。
通过在材料上施加一定的扭矩载荷,并测量相应的应变和变形,可以获取材料的扭转应力-应变关系、扭转刚度等信息。
扭转实验可以通过机械试验机、扭转试验机等设备进行。
8. 扭转设计与应用在工程实践中,材料力学扭转的理论和实验成果被广泛应用于各种设计和制造中。
例如,扭杆、螺旋弹簧、传动轴等都是在扭转加载下工作的零件,需要考虑材料的扭转强度、刚度等特性。
材料力学扭转

材料力学扭转材料力学中的扭转是指在材料上施加一个力矩,使其绕一个轴进行转动的现象。
扭转在工程领域中广泛应用,例如在机械设计、结构设计以及材料测试等方面。
材料力学中的扭转主要涉及到弹性力学和塑性力学两个方面。
在弹性力学中,当材料受到扭矩时,它会发生弯曲变形以及剪切变形。
而在塑性力学中,材料会发生塑性流动,产生塑性变形。
在材料力学中,对于扭转的研究主要关注以下几个方面:1. 扭转角度:扭转角度是指材料在扭转过程中绕轴旋转的角度。
扭转角度通常以弧度为单位进行计量。
2. 扭转力矩:扭转力矩是作用在材料上的力矩,它使材料发生扭转。
扭转力矩的大小与施加的力及材料的形状及性质有关。
3. 扭转应变:材料在扭转过程中会发生弯曲变形和剪切变形,从而导致产生应变。
扭转应变是指材料在扭转过程中产生的应变。
4. 扭转刚度:扭转刚度是指材料抵抗扭转变形的能力。
材料的扭转刚度与其形状、尺寸以及材料的性质密切相关。
对于材料力学中的扭转现象,研究者可以通过实验和数值模拟来进行研究。
实验可以通过应用一定的扭转力矩使试样产生扭转,然后测量扭转角度和应变等参数来分析材料的扭转性能。
数值模拟可以通过建立数学模型和使用计算机进行仿真来研究材料的扭转行为。
在工程实际应用中,对于扭转现象的研究对于设计和优化机械结构以及预测和评估材料的强度和可靠性有重要意义。
通过研究材料的扭转行为,工程师可以合理设计和选择材料,从而确保结构的稳定性和安全性。
综上所述,材料力学中的扭转是指在材料上施加一个力矩,使其绕一个轴进行转动的现象。
材料的扭转行为涉及到弹性力学和塑性力学方面的研究,对于工程实践中的结构设计和材料选择具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sino-i Technology Ltd.
ITSM / ITIL
二、圆轴扭转时的变形
d T
d x GI p
d T d x
GI p
T d x
l GI p
Copyright © Sino-i Technology Limited All rights reserved
Sino-i Technology Ltd.
ITSM / ITIL
剪切弹性模量G 材料常数:拉压弹性模量E
泊松比μ
对于各向同性材料,可以证明:E、G、μ 三个弹 性常数之间存在着如下关系
G E
2(1 )
Copyright © Sino-i Technology Limited All rights reserved
d /2
d /2
I p 2dA 2 2 d 2 3d
A
2
d 2
4
0
d
4
4 32
0
d
Wt
Ip
max
Ip d
d3
16
o
2
CL5TU5
Copyright © Sino-i Technology Limited All rights reserved
Sino-i Technology Ltd.
dy
( t dy)dx ( t dx)dy
t dx
Copyright © Sino-i Technology Limited All rights reserved
CL5TU7
Sino-i Technology Ltd.
ITSM / ITIL
剪应力互等定理 : 在相互垂直的两个平面上,剪应力一定成对出 现,其数值相等,方向同时指向或背离两平面的交线。
351 N m
mD
7024 NC n
7024 20 468 N m 300
N A 50 PS N B N C 15 PS n = 300 rpm
Copyright © Sino-i Technology Limited All rights reserved
N D 20 PS
Sino-i Technology Ltd.
设某轮所传递的功率是N kW,轴的转速 是 n rpm
Copyright © Sino-i Technology Limited All rights reserved
CL5TU18
Sino-i Technology Ltd.
ITSM / ITIL
N kW的功率相当于每分钟作功:
W = N×1000×60 (1)
Sino-i Technology Ltd.
ITSM / ITIL
1.变形几何关系
观察到下列现象: (1)各圆周线的形状、大小以及两圆周线间的距 (2)纵向线仍近似为直线, 但都倾斜了同一角度γ
离没有变化
Copyright © Sino-i Technology Limited All rights reserved
剪应力在截面上均匀分布,方向垂直于半径
m
m
T
Copyright © Sino-i Technology Limited All rights reserved
T Sino-i Technology Ltd.
ITSM / ITIL
dA
dA
r
r dA T
A
r dA T
A
r 2rt T
ITSM / ITIL
mA 1170 N m
mB mC 351 N m
mD 468 N m
Copyright © Sino-i Technology Limited All rights reserved
T1 mB 351 N m T2 702 N m
T m 468 N m 3
ITSM / ITIL
d
Copyright © Sino-i Technology Limited All rights reserved
CL5TU5
Sino-i Technology Ltd.
ITSM / ITIL
dx d
d
dx
在外表面上
r d
dx
Copyright © Sino-i Technology Limited All rights reserved
D
Sino-i Technology Ltd.
ITSM / ITIL
T(N m)
Copyright © Sino-i Technology Limited All rights reserved
T1 351 N m T2 702 N m T3 468 N m
Sino-i Technology Ltd.
外力偶矩m所作的功:
W = m2 n
(2)
(1) = (2) 得
N×1000×60 = m 2 n
Copyright © Sino-i Technology Limited All rights reserved
Sino-i Technology Ltd.
ITSM / ITIL
m 9549 N n
Sino-i Technology Ltd.
极惯性矩: ITSM / ITIL
d4
实心圆: I p 32
空心圆:I p
(D4 d 4) 32
D4
32
(1 4 )
抗扭截面模量:
实心圆:
Wt
d3
16
空心圆:
Wt
D3
16
(1 4 )
Copyright © Sino-i Technology Limited All rights reserved
Sino-i Technology Ltd.
ITSM / ITIL
2. 物理关系
根据剪切胡克定律, 当剪应力不超过材料的剪切比例极限时
G
G d
dx
剪应力方向垂直于半径
Copyright © Sino-i Technology Limited All rights reserved
Sino-i Technology Ltd.
ITSM / ITIL
第五章 扭 转
§5-1 扭转的概念
一、扭转的概念及实例
汽车的转向操纵杆
Copyright © Sino-i Technology Limited All rights reserved
CL5TU1
丝锥、电动机轴
Sino-i Technology Ltd.
ITSM / ITIL
Copyright © Sino-i Technology Limited All rights reserved
Sino-i Technology Ltd.
ITSM / ITIL
三、剪切胡克定律
Copyright © Sino-i Technology Limited All rights reserved
CL5TU8
Sino-i Technology Ltd.
ITSM / ITIL
薄壁圆筒的实验, 证实了剪应力与剪应变之间存在着象拉压胡克 定律类似的关系, 即当剪应力不超过材料的剪切比例极限τp时,剪应 力与剪应变成正比
G
G称为材料的剪切弹性模量。上式关系称为剪切 胡克定律
Copyright © Sino-i Technology Limited All rights reserved
受力特征:杆受一对大小相等、方向相反的 力偶,力偶作用面垂直于轴线。
变形特征:横截面绕轴线转动。
Copyright © Sino-i Technology Limited All rights reserved
CL5TU2
Sino-i Technology Ltd.
ITSM / ITIL
二、外力偶矩的计算
Sino-i Technology Ltd.
ITSM / ITIL
§5-4 圆轴扭转时的应力和变形
一、圆轴扭转时横截面上的应力
变形几何关系 从三方面考虑:物理关系
静力学关系
Copyright © Sino-i Technology Limited All rights reserved
CL5TU5
ITSM / ITIL
3.静力学关系
dA
dA T
A
A
G
d
dx
dA
T
dA
o
G
d
dx
2dA
T
A
I p 2dA 极惯性矩
A
令 I p 2dA
A
则 d T
dx G I p
Copyright © Sino-i Technology Limited All rights reserved
ITSM / ITIL
§5-3 薄壁圆筒的扭转实验
一、薄壁圆筒的扭转应力分析 等厚度的薄壁圆筒,平均半径为 r,壁厚为 t
Copyright © Sino-i Technology Limited All rights reserved
CL5TU4
Sino-i Technology Ltd.
ITSM / ITIL
Copyright © Sino-i Technology Limited All rights reserved
CL5TU3
Sino-i Technology Ltd.
ITSM / ITIL
解:
mA
7024
NA n
7024 50 300
1170 N m
mB
mC
7024
NB n
7024 15 300