自回归模型的参数估计案例
自回归模型的参数估计
自回归模型的参数估计 1.局部调整模型的估计对于局部调整模型*1)1(t t t t u Y X Y +-++=-δδβδα,有t t u u δ=*,假定原模型中随机扰动项t u 满足古典假定,即0)(=t u E ,2)(σ=t u Var ,(,)0i j Cov u u i j =≠则有 ()()**21111(,)()()()0t t t t t tt t C o v u u E uE u uE u E u u δδδδδ----=--==*111(,)(,)(,)0t t t t t t Cov Y u Cov Y u Cov Y u δδ---===由此可见,随机解释变量1-t Y 与i u 不相关;随机扰动项i u 也不存在自相关,因此可以直接用最小二乘法对其进行估计。
具体操作过程如下 例1天津市城镇居民人均消费性支出Y 与人均可支配收入X 的关系 年份 人均消费性支出Y 人均可支配 收入X 年份 人均消费性支出Y 人均可支配收入X 1978 344.88 388.32 1990 731.203 831.9391 1979 381.386139 421.188119 1991 730.4053 849.8296 1980 447.00565 496.158192 1992 788.7386 925.7155 1981 451.981395 501.87907 1993 816.5225 973.7201 1982 459.352451 533.506013 1994 936.2933 1129.362 1983 479.594843 556.45488 1995 999.5327 1212.378 1984 542.169982 658.381555 1996 1055.869 1346.505 1985 616.512 700.416 1997 1139.044 1446.391 1986 710.389222 800.606287 1998 1203.478 1564.131 1987 751.079944 832.741935 1999 1301.497 1701.475 1988 767.168566 797.660468 2000 1366.9211817.89919896712.256276772.892259建立局部调整模型 t t t u X Y ++=βα*,将模型形式转化成下面的形式:*1*1*0*t t t t u Y X Y +++=-ββα然后直接用OLS 法估计模型参数。
自回归
第4章 自回归模型
谢琴
焦玉凤
内 容
4.1 4.2 4.3 4.4
• 自回归的基本概念 • 自回归过程的平稳条件 • 自回归过程的自相关函数 • 自回归过程的识别与估计
4.4自回归过程的识别与估计
4.4自回归过程的识别与估计
4.4自回归过程的识别与估计
(1
1
L
L
2
2
L
L ) y ε
p p t 2 2
t
(13.2.8)
p
引进算符多项式:
p
( L) 1
1
L
L
1 p
L
L
p
(13.2.9)
则(13.2.8)可改写成:
p ( L) y ε
t
1
t
或
y
t
( L) εt
若(13.2.2)是平稳随机过程,则必定收敛,即yt可表示为白噪声的无穷加权和。 可以证明 p (L) ,收敛的充要条件是算符多项式
ρ2 =φ1 ρ1 + φ2 +φ3 ρ1 + …+φp ρp-2
ρ3 =φ1 ρ2 + φ2 ρ1+φ3 + …+φp ρp-3 … … … ρp =φ1 ρp-1 + φ2ρp-2+φ3 ρp-3 + …+φp (13.2.21)
4.3自回归过程的自相关函数
向量自回归模型
诊断主要是对模型残差进行一系列检验, 如果诊断结果表明模型存在问题,需要
以判断模型是否充分拟合了数据,是否 对模型进行修正或重新设定,以确保模
存在异常值或违反模型假设的情况。常
型的准确性和可靠性。
见的诊断方法包括残差诊断、正态性检
验、异方差性检验等。
03
向量自回归模型的实现
向量自回归模型的编程语言实现
诊断与修正困难
向量自回归模型在诊断和修正模型中的问题时较为复杂,需要较高 的统计技巧和经验。
对数据要求高
向量自回归模型要求数据具有平稳性,对于非平稳数据需要进行差分 或其他处理,可能会影响模型的准确性和稳定性。
向量自回归模型的发展趋势与未来展望
改进估计方法
针对向量自回归模型参数过多的问题,未来研究可以探索更加有 效的参数估计方法,提高模型的泛化能力。
能够更好地捕捉时间序列数据的长期趋势和稳定性。
解释性强
02
向量自回归模型能够清晰地揭示多个变量之间的相互影响关系,
有助于理解经济现象之间的内在联系。
适用范围广
03
向量自回归模型适用于多种类型的数据,包括平稳和非平稳时
间序列数据。
向量自回归模型的缺点
参数过多
向量自回归模型需要估计的参数数量较多,容易产生过拟合问题, 导致模型泛化能力下降。
极端天气事件预测
通过向量自回归模型预测极端天气事件的发生, 如暴雨、洪涝、干旱等,有助于减轻灾害损失。
3
气候变化对生态系统的影响
利用向量自回归模型分析气候变化对生态系统的 影响,如植被分布、物种多样性和生态平衡等。
向量自回归模型在社会科学领域的应用
经济发展预测
通过分析历史经济发展数据,利用向量自回归模型预测未来经济 发展趋势,为政策制定提供依据。
eviews操作实例-向量自回归模型VAR和VEC
-5.4324 -5.7557
5% 临界值
-2.9202 -2.9202 -2.9202
模型形式 (C t p)
(c 0 3) (c 0 0) (c 0 0)
DW值
1.6551 1.9493 1.8996
结论
LGDPt ~I(1) LCt ~I( 1)
LIt~I(1)
注 C为位移项, t为趋势,p为滞后阶数。
yNt
的最大p阶滞后变量为解释变量的方程组模型,方程组模 型中共有N个方程。显然,VAR模型是由单变量AR模型推广到 多变量组成的“向量”自回归模型。
对于两个变量(N=2),Yt ( yt xt )T 时,VAR(2)模型为
2
Yt iYti Ut 1Yt1 2Yt2 Ut i 1
6
用矩阵表示:
xt
121 yt1
122xt1
221yt2
222xt2
u2t
显然,方程组左侧是两个第t期内生变量;右侧分 别是两个1阶和两个2阶滞后应变量做为解释变量,且 各方程最大滞后阶数相同,都是2。这些滞后变量与随 机误差项不相关(假设要求)。
7
由于仅有内生变量的滞后变量出现在等式的 右侧,故不存在同期相关问题,用“LS”法估计 参数,估计量具有一致和有效性。而随机扰动列 向量的自相关问题可由增加作为解释应变量的滞 后阶数来解决。
3
政策分析。但实际中,这种模型的效果并不令人满 意。
联立方程组模型的主要问题:
(1)这种模型是在经济理论指导下建立起来的结构模型 。遗憾的是经济理论并不未明确的给出变量之间的动态关 系。
(2)内生、外生变量的划分问题较为复杂; (3)模型的识别问题,当模型不可识别时,为达到可识别 的目的,常要将不同的工具变量加到各方程中,通常这种 工具变量的解释能力很弱; (4)若变量是非平稳的(通常如此),则会违反假设, 带来更严重的伪回归问题。
第七章自回归模型
●自回归模型的构建 ●自回归模型的估计
第三节 自回归模型的构建
本节基本内容:
●库伊克模型 ●自适应预期模型 ●局部调整模型
一、库伊克模型
无限分布滞后模型中滞后项无限多,而样本观测 总是有限的,因此不可能对其直接进行估计。要 使模型估计能够顺利进行,必须施加一些约束或 假定条件,将模型的结构作某种转化。
库伊克变换的缺陷
1.它假定无限滞后分布呈几何递减滞后结构。 这种假定对某些经济变量可能不适用,如固定资
产投资对总产出影响的滞后结构就不是这种类型。
2.库伊克模型的随机扰动项形如 u* = u - λu t t t-1 说明新模型的随机扰动项存在一阶自相关,且与
解释变量相关。
3.将随机变量作为解释变量引入了模型,不一定符合
三、德宾h-检验
DW检验法不适合于方程含有滞后被解释变量的 场合。在自回归模型中,滞后被解释变量是随机
变量,已有研究表明,如果用DW检验法,则d
统计量值总是趋近于2。也就是说,在一阶自回 归中,当随机扰动项存在自相关时,DW检验却 倾向于得出非自相关的结论。 德宾提出了检验一阶自相关的h统计量检验法。
i=0Yt -1 = α + β0 λi-1 X t -i +ut -1
i=1
∞
(7.9)
对(7.9)式两边同乘 λ并与(7.8)式相减得:
Yt - λYt-1 = (α+ β0 λi X t-i +ut ) - ( λα+ β0 λi X t-i + λut-1 )
(3)给定显著性水平 ,查标准正态分布表 得临界值 h 。若 h > h,则拒绝原假 设ρ = 0 ,说明自回归模型存在一阶自相关; 若
一阶自回归的方差协方差矩阵
一阶自回归的方差协方差矩阵
一阶自回归模型(AR(1))的方差协方差矩阵可以通过自回归模型的参数估计来计算。
假设AR(1)模型为:
X_t = c + φ*X_{t-1} + ε_t
其中,X_t表示时间t的随机变量,c是常数项,φ是自回归系数,ε_t是时间t的随机误差项。
方差协方差矩阵可以表示为:
Var(X_t) = Var(c + φ*X_{t-1} + ε_t)
= φ^2 * Var(X_{t-1}) + Var(ε_t)
因为AR(1)模型中的随机变量是序列相关的,所以需要计算时间t-1的随机变量X_{t-1}的方差。
根据AR(1)模型,可以得到X_{t-1}的方差为:
Var(X_{t-1}) = Var(c + φ*X_{t-2} + ε_{t-1})
= φ^2 * Var(X_{t-2}) + Var(ε_{t-1})
通过递归计算,可以得到方差协方差矩阵的形式为:
Var(X_t) = φ^2 * Var(X_{t-1}) + Var(ε_t)
= φ^2 * (φ^2 * Var(X_{t-2}) + Var(ε_{t-1})) + Var(ε_t)
= φ^4 * Var(X_{t-2}) + φ^2 * Var(ε_{t-1}) + Var(ε_t)
= …
可以发现,方差协方差矩阵的形式为无穷级数。
一般情况下,我们可以假设时间序列满足平稳性(即方差和自相关系数随时间不变),从而简化方差协方差矩阵的计算。
向量自回归模型
为了叙述方便,下面先考虑的VAR模型都是不含外生 变量的非限制向量自回归模型,用下式表示
yt A1 yt1 Ap yt p εt 或
A(L) yt εt
(1.5)
11
VAR模型的稳定性
现在讨论VAR模型的稳定性。稳定性是指当 把一个脉动冲击施加在VAR模型中某一个方 程的新息(innovation)过程上时,随着时 间的推移,这个冲击会逐渐地消失。如果是 不消失,则系统是不稳定的。
42
可以在对话框内添入相应的信息: (1) 选择模型类型(VAR Type):
无约束向量自回归(Unrestricted VAR)或者向量误 差修正(Vector Error Correction)。无约束VAR模型是 指VAR模型的简化式。 (2) 在Estimation Sample编辑框中设置样本区间。
9
IPt a11IPt1 a12M1t1 b11IPt2 b12M1t2 C1 1,t
M1t a2,1IPt1 a22M1t1 b21IPt2 b22M1t2 C2 2,t
其中,aij ,bij , ci 是要被估计的参数。也可表示成:
参数的估计量误差较大。
(5)无约束VAR模型的应用之一是预测。由于在VAR模型
中每个方程的右侧都不含有当期变量,这种模型用于样本
外一期预测的优点是不必对解释变量在预测期内的取值做
任何预测。
(6)用VAR模型做样本外近期预测非常准确。做样本外长
期预测时,则只能预测出变动的趋势,而对短期波动预测
C(L) C0 C1L C2 L2 C0 Ik
39
自回归模型的参数估计案例
自回归模型的参数估计案例案例一:建立中国长期货币流通量需求模型。
中国改革开放以来,对货币需求量(Y)的影响因素,主要有资金运用中的贷款额(X)以及反映价格变化的居民消费者价格指数(P)。
长期货币流通量模型可设定为Y—B o "iX t +為只+片(1)其中,Y t e为长期货币流通需求量。
由于长期货币流通需求量不可观测,作局部调整:Y t -YL(Y t e-Y.)(2)其中,Y为实际货币流通量。
将(1)式代入(2)得短期货币流通量需求模型:Y 二o Mt 2p (1- )Y「J表1中列出了1978年到2007年我国货币流通量、贷款额以及居民消费者价格指数的相关数据。
居民消费者价格指数年份货币流通量Y (亿元)贷款额X (亿元)P (1990 年=100)1978212.046.21850.01979267.747.12039.61980346.250.62414.31981396.351.92860.21982439.152.93180.61983529.854.03589.91984792.155.54766.11985987.860.65905.6 19861218.464.67590.819871454.569.39032.519882134.082.310551.3 19892344.097.014360.1 19902644.4100.017680.7 19913177.8103.421337.8 19924336.0110.026322.9 19935864.7126.232943.1 19947288.6156.739976.0 19957885.3183.450544.1 19968802.0198.761156.6 199710177.6204.274914.1 199811204.2202.686524.1 199913455.5199.793734.3200014652.7200.699371.1 200115688.8201.9112314.7 200217278.0200.3131293.9 200319746.0202.7158996.2 200421468.3210.6178197.8 200524031.7214.4194690.4 200627072.6217.7225347.2 200730375.2228.1261690.9对局部调整模型1X t + P2r t(1-「JYx ”运用OLS法估计结果如图1:D E餐n血nt Vanable Y fJethac Least Squares Date Tima 21 12Sample r3C|U3tedj 1979 2007Included otsen'aticns 29 after adj」wtnignt辱Vansble Coefficient Std Errcr t-Statistic ProbC-202 5275 221 964S -O 91Z430 0 3703X0D36T100012565 2842001 C 003SP 7 4557283065733 2.431956 C 022bYM)0 723634 0 132796 5 449199 0 0030^squared 0.9985B2F^ean depencent /ar 9059.631Adjjsted R-squared 0.998412S.D lepsndent ,ar 9007.257S.E of regression358.9392 Akaike irfir ci iltn uri14.73163Sum squand rssid 3220934Schwarz cnterior U 92022Loc likelihcod-209.6086 F-statisti:50E8 997L;urb i r-atscn sta:1724407ProbiF-statistic)U U'JUUJU图1回归估计结果由图1短期货币流通量需求模型的估计式:Y = -202.5+ 0.0357Xt + 7.4557R + 0.7236Y T 由参数估计结果? 0.7236,得? 0.2764o由于= -202.5= 0.0357, 、2 = 7.4557。
ARIMA模型预测案例
ARIMA模型预测案例假设我们要预测公司未来一年的销售额,已经收集到了该公司过去几年的销售额数据,我们希望通过ARIMA模型对未来的销售额进行预测。
首先,我们需要对销售额数据进行初步的可视化和分析。
通过绘制时间序列图,可以观察到销售额的趋势、季节性和随机性。
这些特征将有助于我们选择ARIMA模型的参数。
接下来,我们需要对数据进行平稳性检验。
ARIMA模型要求时间序列具有平稳性,即序列的均值和方差不随时间变化。
可以通过ADF检验或单位根检验来判断序列是否平稳。
如果序列不平稳,我们需要对其进行差分处理,直到达到平稳性。
接下来,我们需要确定ARIMA模型的参数。
ARIMA模型由AR(自回归)、I(差分)和MA(移动平均)三个部分组成。
AR部分反映了序列的自相关性,MA部分反映了序列的滞后误差,I部分反映了序列的差分情况。
我们可以使用自相关函数(ACF)和部分自相关函数(PACF)的图像来帮助确定ARIMA模型的参数。
根据ACF和PACF图像的分析,我们可以选择初始的ARIMA模型参数,并使用最大似然估计方法来进行模型参数的估计和推断。
然后,我们可以拟合ARIMA模型,并检查拟合优度。
接着,我们需要进行模型诊断,检查模型的残差是否满足白噪声假设。
可以通过Ljung-Box检验来判断残差的相关性。
如果残差不满足白噪声假设,我们需要重新调整模型的参数,并进行重新拟合。
最后,我们可以利用已经训练好的ARIMA模型对未来的销售额进行预测。
通过调整模型的参数,我们可以得到不同时间范围内的销售额预测结果。
需要注意的是,ARIMA模型的预测结果仅仅是一种可能的情况,并不代表未来的真实情况。
因此,在实际应用中,我们需要结合其他因素和信息来进行决策。
综上所述,ARIMA模型是一种经典的时间序列预测方法,在实际应用中具有广泛的应用价值。
通过对时间序列数据的分析和模型的建立,我们可以对未来的趋势进行预测,并为决策提供参考。
然而,ARIMA模型也有一些限制,如对数据的平稳性要求较高,无法考虑其他因素的影响等。
第七章第三节 自回归模型的构建
(3)
0 i X ti
ut
Yt 0 i X ti ut (3) i0
将(3)式滞后一期,得
Yt1 0 i X ti1 ut1 i0
0
X i1 t i
ut 1
i 1
上式两端同乘以,得:
局部调整模型是构造自回归模型的另一种方法。这种方法早先是用来研究
物资贮备问题。例如,企业为了保证生产或供应,必须保持一定的原材料贮备。
对于一定的产量或销售量Xt ,存在着预期的最佳库存Yt*
t 时刻被解释变量的期望值是同期解释变量的线性函数:
Y * X u
t
t
t
假定: Yt Yt1 (Yt* Yt1 )
X
* t 1
(Xt
X
* t 1
)调低;
2)如果上一期预期值偏低,
即( X t
X
* t 1
)
0
新的预期会通 过 :
X
* t
X
* t 1
(Xt
X
* t 1
)调高;
例如:X t 120 ,
X
* t 1
100
预期误差:( X t
X
* t 1
)
20
新的预期调整:
投资取决于预期的利润;
长期利率取决于预期的短期利率与预期的通货膨胀率之和
即影响被解释变量的因素不是Xt,而是预期值
X
t
Y X * u (H)
t
t
t
由于X t是无法直接观察的量,我们总希望预期值与实际值误差很小,这很难
时变参数向量自回归模型
时变参数向量自回归模型1. 引言时变参数向量自回归模型(Time-Varying Parameter Vector Autoregressive Model,TVAR)是一种用于分析时间序列数据的经济计量模型。
它可以捕捉到时间序列数据中的动态性和非线性关系,因此在经济学、金融学等领域被广泛应用。
本文将介绍时变参数向量自回归模型的基本原理、建模方法以及应用案例,帮助读者全面了解该模型。
2. 基本原理2.1 自回归模型自回归模型(Vector Autoregressive Model,VAR)是一种多元时间序列分析方法。
它假设时间序列数据之间存在线性关系,并可以通过过去若干期的数据来预测未来的值。
VAR模型可以表示为:Y t=c+Φ1Y t−1+Φ2Y t−2+⋯+Φp Y t−p+εt其中,Y t是一个n维向量,表示第t期的观测值;c是一个常数向量;Φ1,Φ2,…,Φp是n×n的系数矩阵,表示自回归系数;εt是一个n维向量,表示误差项。
2.2 时变参数向量自回归模型时变参数向量自回归模型是在VAR模型的基础上引入了时变参数的扩展模型。
它认为自回归系数在时间上是可变的,可以通过某种方式来描述其动态性。
时变参数向量自回归模型可以表示为:Y t=c+Φ1(t)Y t−1+Φ2(t)Y t−2+⋯+Φp(t)Y t−p+εt其中,Φi(t)表示第i个滞后期的自回归系数在时间t上的取值。
3. 建模方法3.1 参数估计对于时变参数向量自回归模型,参数估计是一个关键步骤。
常用的方法有贝叶斯方法、频域方法和局部似然方法等。
贝叶斯方法通过引入先验分布来估计参数,可以获得参数的后验分布。
频域方法利用频域上的特征来估计参数,可以捕捉到数据的周期性。
局部似然方法则在每个时间点上估计参数,可以灵活地适应时变性。
3.2 模型选择在建立时变参数向量自回归模型时,需要选择合适的滞后阶数和模型形式。
滞后阶数决定了过去多少期的数据被考虑进模型中,一般通过信息准则(如AIC、BIC等)来选择最优阶数。
自回归模型的python实现
自回归模型(Autoregressive Model)是一种经典的时间序列预测模型,在许多领域中都有着广泛的应用。
它的核心思想是利用过去时间点的观测值来预测未来的观测值。
在本文中,我将介绍自回归模型的概念,并使用Python实现一个简单的自回归模型。
1.自回归模型概述自回归模型是建立在时间序列数据上的统计模型。
它假设当前时刻的观测值是过去时刻的观测值的线性组合,其中线性关系由模型的参数确定。
自回归模型可以被表示为如下形式:X_t = c + Σ(φ_i *X_(t-i)) + ε_t 其中,X_t是当前时刻的观测值,c是常数项,φ_i是参数,ε_t是误差项。
根据历史观测值和参数的不同,自回归模型可以分为不同阶数的自回归模型,如一阶自回归模型(AR(1))、二阶自回归模型(AR(2))等。
2.自回归模型的Python实现为了实现自回归模型,我们需要借助Python中的统计分析库statsmodels。
我们需要安装statsmodels库,可以使用以下命令进行安装: pip install statsmodels接下来,我们使用一个示例数据集来演示自回归模型的实现。
假设我们有一个包含100个观测值的时间序列数据,可以使用以下代码生成一个随机的时间序列数据:import numpy as np生成随机时间序列数据np.random.seed(0) data = np.random.randn(100)我们可以使用statsmodels库中的AR模型来建立自回归模型,并进行参数估计和预测。
以下是一个简单的自回归模型的实现代码示例: fromstatsmodels.tsa.ar_model import AutoReg构建AR模型model = AutoReg(data, lags=1)拟合模型model_fit = model.fit()打印模型系数print(model_fit.params)进行单步预测predictions = model_fit.predict(start=len(data), end=len(data))print(predictions)在上述代码中,我们首先使用AutoReg类构建了一个自回归模型,其中lags参数指定了模型的阶数,这里我们选择了一阶自回归模型(lags=1)。
案例二-ARMA模型建模与预测指导【范本模板】
案例二 ARMA 模型建模与预测指导一、实验目的学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA 模型的阶数p 和q ,学会利用最小二乘法等方法对ARMA 模型进行估计,学会利用信息准则对估计的ARMA 模型进行诊断,以及掌握利用ARMA 模型进行预测。
掌握在实证研究中如何运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作.二、基本概念宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。
AR 模型:AR 模型也称为自回归模型.它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测, 自回归模型的数学公式为:1122t t t p t p t y y y y φφφε---=++++式中: p 为自回归模型的阶数i φ(i=1,2, ,p )为模型的待定系数,t ε为误差, t y 为一个平稳时间序列。
MA 模型:MA 模型也称为滑动平均模型。
它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。
滑动平均模型的数学公式为:1122t t t t q t q y εθεθεθε---=----式中: q 为模型的阶数; j θ(j=1,2, ,q )为模型的待定系数;t ε为误差; t y 为平稳时间序列。
ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA, 数学公式为:11221122t t t p t p t t t q t q y y y y φφφεθεθεθε------=++++----三、实验内容及要求1、实验内容:(1)根据时序图判断序列的平稳性;(2)观察相关图,初步确定移动平均阶数q 和自回归阶数p ;(3)运用经典B —J 方法对某企业201个连续生产数据建立合适的ARMA (,p q )模型,并能够利用此模型进行短期预测。
2、实验要求:(1)深刻理解平稳性的要求以及ARMA 模型的建模思想;(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA 模型;如何利用ARMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果.四、实验指导 1、模型识别 (1)数据录入打开Eviews软件,选择“File"菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Unstructured /Undated”,在“Date range”栏中输入数据个数201,点击ok,见图2—1,这样就建立了一个工作文件。
自回归模型的参数估计案例
自回归模型的参数估计案例自回归模型(AutoRegressive Model, AR)是一种用来描述时间序列数据的统计模型,它的基本思想是将当前时间点的观测值与前一时间点的值相关联,通过线性组合来预测未来的观测值。
在本文中,我们将介绍一个用于估计自回归模型参数的案例。
假设我们有一个每日销售额的时间序列数据,我们希望建立一个自回归模型来预测未来的销售额。
我们使用美国家零售商的销售数据作为案例数据,数据集中包含了该零售商自2000年1月1日至2024年12月31日每天的销售额。
我们将使用Python中的statsmodels库进行模型拟合和参数估计。
首先,我们需要导入相关的库和数据集。
```pythonimport pandas as pdimport statsmodels.api as sm#读取数据data = pd.read_csv('sales_data.csv')```接下来,我们可以先观察一下数据的基本情况。
```pythondata.head```日期,销售额----------,--------2000/1/2,1605.02000/1/3,2096.02000/1/4,2579.02000/1/5,2894.0我们可以看到,数据集包含两列,一列是日期,另一列是销售额。
接下来,我们将日期列设置为数据的索引,并将销售额列转换为时间序列对象。
```python#将日期列设置为索引data.set_index('Date', inplace=True)#将销售额列转换为时间序列对象ts = data['Sales']```现在,我们可以开始建立自回归模型。
AR模型的一项关键任务是确定时滞(lag),即前一时间点(或多个时间点)对当前时间点的影响。
我们可以使用自相关图(ACF,Autocorrelation Function)和偏自相关图(PACF, Partial Autocorrelation Function)来帮助我们选择合适的时滞。
ARlMA模型案例分析
[编辑]案例一:ARlMA模型在海关税收预测中的应用2008年。
海关税收预算计划8400亿元.比2007年实际完成数增加10.8%,比2007年预算数增加22.1%。
为了对2008年江门海关税收总体形势进行把握,笔者尝试利用SAS 统计分析软件的时间序列预测模块建立ARIMA模型,对2008年江门海关税收总值进行预测。
从预测结果来看,预测模型拟合度较高,预测值也切合实际情况,预测模型具有一定的应用价值。
现将预测的方法、原理以及影响税收工作的相关因素分析。
一、ARlMA模型原理ARIMA模型全称为自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA)。
是由博克思(Box)fFfl詹金斯(Jenkins)于70年代初提出的一著名时问序列预测方法,所以又称为box--jenkins模型、博克思一詹金斯法。
其中ARIMA(p,d.q)称为差分自回归移动平均模型,AR是自回归,P为自回归项;MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。
ARIMA模型可分为3种:(1)自回归模型(简称AR模型);(2)滑动平均模型(简称MA模型);(3)自回归滑动平均混合模型(简称ARIMA模型)。
ARIMA模型的基本思想是:将预测对象随时问推移而形成的数据序列视为—个随机序列.以时间序列的自相关分析为基础.用一定的数学模型来近似描述这个序列。
这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。
ARlMA模型在经济预测过程中既考虑了经济现象在时间序列上的依存性,又考虑了随机波动的干扰性,对于经济运行短期趋势的预测准确率较高,是近年应用比较广泛的方法之一。
二、应用ARIMA模型进行预测每月税收数据.可以看作是随着时间的推移而形成的一个随机时间序列,通过对该时间序列上税款值的随机性、平稳性以及季节性等因素的分析,将这些单月税收值之间所具有的相关性或依存关系用数学模型描述出来,从而达到利用过去及现在的税收值信息来预测未来税收情况的目的。
实验十一 向量自回归模型(VAR模型)
1
协整
0、问题的提出
经典回归模型 (classical regression model)是建立在 稳定数据变量基础上的,对于非稳定变量,不能使用经典 回归模型,否则会出现虚假回归等诸多问题。 由于许多经济变量是非稳定的,这就给经典的回归分析方 法带来了很大限制。 但是,如果变量之间有着长期的稳定关系,即它们之间是 协整 的( cointegration) ,则是可以使用经典回归模型方 法建立回归模型的。 例如,中国居民人均消费水平与人均GDP变量的例子中: 因果关系回归模型要比ARMA模型有更好的预测功能, 其原因在于,从经济理论上说,人均GDP决定着居民人均 消费水平,而且它们之间有着长期的稳定关系,即它们之 间是协整的(cointegration)。
12
二、协整检验的具体方法 (一)EG检验
假如Xt和Yt都是I (1),如何检验它们之间是否存 在协整关系,我们可以遵循以下思路:
首先用OLS对协整回归方程 yt xt t 行估计。 进
然后,检验残差 e 是否是平稳的。因为如果Xt和 t Yt没有协整关系,那么它们的任一线性组合都是 非平稳的,残差 et 也将是非平稳的。
从协整的定义可以看出:
(d,d)阶协整是一类非常重要的协整关系,它的经济意义 在于: 两个变量,虽然它们具有各自的长期波动规律,但 是如果它们是(d,d)阶协整的,则它们之间存在着一个长 期稳定的比例关系。 例如:假设中国CPC和GDPPC,它们各自都是2阶单整, 并且将会看到,它们是(2,2)阶协整,说明它们之间存在着 一个长期稳定的比例关系,从计量经济学模型的意义上讲, 建立如下居民人均消费函数模型
CPCt 0 1GDPPC t t
最全的VAR模型理论基础及其Eviews实现
计算复杂度较高,需要迭代优化算法 。
03
VAR模型的检验
平稳性检验
单位根检验
用于检验时间序列数据是否存在单位根,即是否平稳。常用的单位根检验方法有 ADF检验和PP检验。
趋势图检验
通过观察时间序列数据的趋势图,可以初步判断数据是否平稳。如果数据存在明 显的趋势或季节性,则可能需要进行差分或季节调整。
VAR模型的应用场景
总结词
VAR模型广泛应用于经济学、金融学和社会科学等领域,用于分析多个时间序列数据之间的相互关系 。
详细描述
在经济学中,VAR模型常用于分析不同经济指标之间的动态关系,如GDP、通货膨胀率和利率等。在 金融学中,VAR模型用于评估投资组合的风险和资产价格的预测。在社会科学中,VAR模型用于研究 不同社会现象之间的相互关系,如人口统计数据、犯罪率和教育水平等。
参数识别
VAR模型中的参数需要通过识别 或估计来确定,这可能会受到数 据质量和样本大小的影响。
解释难度
由于VAR模型涉及多个变量之间 的交互作用,解释模型结果相对 复杂,需要具备一定的经济理论 基础。
未来研究方向
扩展应用领域
VAR模型在各个领域都有广泛的应用 前景,未来可以进一步探索其在不同 领域的适用性和有效性。
EViews中VAR模型的参数估计与检验
EViews提供了多种参数估计方法,如最小二乘法、最大似然估计法等,用户可以根据需要选择合适的 估计方法。
在估计参数后,EViews还提供了多种检验方法,如平稳性检验、残差检验、异方差性检验等,以验证模 型的稳定性和可靠性。
用户可以通过EViews的图形和表格功能,直观地查看参数估计和检验的结果,并进行相应的分析和解释。
全面性
计量经济学第八章分布滞后模型
根据实际问题的特点、实际经验给各滞后变 量指定权数,滞后变量按权数线性组合,构成新 的变量。权数据的类型有:
•递减型: 即认为权数是递减的, X 的近期值对 Y 的 影响较远期值大。 如消费函数中,收入的近期值对消费的影 响作用显然大于远期值的影响。 例如:滞后期为 3的一组权数可取值如下: 1/2, 1/4, 1/6, 1/8
1.
滞后效应与与产生滞后效应的原因
因变量受到自身或另一解释变量的前几期值 影响的现象称为滞后效应。 表示前几期值的变量称为滞后变量。 如:消费函数 通常认为,本期的消费除了受本期的收入影 响之外,还受前1期,或前2期收入的影响: Ct=0+1Yt+2Yt-1+3Yt-2+t Yt-1,Yt-2为滞后变量。
该模型可用OLS法估计。假如参数估计结果为:
ˆ0
=0.5
ˆ 1 =0.8
则原模型的估计结果为:
0 .8 0 .8 Yˆ t 0 . 5 Xt X 2 4
t 1
0 .8 6
X
t2
0 .8 8
X
t3
0 .5 0 .4 X t 0 .2 X
t 1
0 . 133 X
①在解释变量x之后必须指定k和m的值,d为可选项, 不指定时取默认值0;1强制b0趋于0;2强制bk趋于0; 3强制两端趋于0。
②如果有多个具有滞后效应的解释变量,则分别用几 个PDL项表示;例如: LS Y C PDL(x1,4,2) PDL(x2,3,2,2) ③在估计分布滞后模型之前,最好使用互相关分析命 令CROSS初步判断滞后期的长度k; 命令格式为: CROSS Y X 接着输入滞后期 p 之后,将输出 yt 与 xt , xt-1…xt-p的各期相关系数,以判断较为合适的滞后 期长度k。 例 表给出了中国电力基本建设投资X与发电 量Y的相关资料,拟建立一多项式分布滞后模型 来考察两者的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
案例一:
建立贵州省长期个人收入量差距模型。贵州省改革开放以来,对个人收入差距量(Y)的影响因素,主要有收入运用中的收入额(X)以及反映价格变化的居民消费者价格指数(P)。
个人收入量模型可设定为
(1)
其中, 为长期个人收入差距量。由于长期个人收入差距量不可观测,作局部调整:
(2)
42964.60
22863.90
2001
46385.40
24370.10
2002
51274.00
26243.20
2003
57408.10
28035.00
2004
64623.10
30306.20
2005
74580.40
33214.40
2006
85623.10
36811.20
取1阶滞后,Eviews操作及输出结果为:在Eviews建立工作文件和录入数据后,格兰杰因果检验步骤为:
228.1
261690.9
对局部调整模型 运用
由回归估计结果的个人收入量差距模型的估计式:
由参数估计结果 ,得 。
由于 , , 。将 分别带入上述三个方程,可求得 , , 。最后得到长期个人收入差距模型的估计式为:
估计结果表明:
1收入额对贵州省个人收入量的影响,为0.0357,长期为0.1292,即收入额每增加1元,个人收入差距量将增加0.0357元,长期个人收入差距量将增加0.1292元。
15688.8
201.9
112314.7
2002
17278.0
200.3
131293.9
2003
19746.0
202.7
158996.2
2004
21468.3
210.6
178197.8
2005
24031.7
214.4
194690.4
2006
27072.6
217.7
225347.2
2系检验)
根据宏观经济学可知,可支配收入与消费之间可能存在互为因果的关系。表2中列出了1978-2006年贵州省居民实际可支配收入与居民实际消费总支出的相关数据,下面我们检验1978~2006年间实际可支配收入(X)与居民实际消费总支出(Y)之间的因果关系。
表2
年份
实际可支配收入(X)
居民实际消费总支出(Y)
1978
6678.800
3806.700
1979
7551.600
4273.200
1980
7944.200
4605.500
1981
8438.000
5063.900
1982
9235.200
5482.400
1983
10074.60
5983.200
1984
11565.00
6745.700
1985
11601.70
7729.200
1986
13036.50
8210.900
1987
14627.70
8840.000
1988
15794.00
9560.500
1989
15035.50
9085.500
1990
16525.90
9450.900
1991
18939.60
10375.80
1992
22056.50
2居民消费物价指数对贵州省个人收入量的影响,为7.4557,长期为26.97,即价格指数每增加1个百分点,将导致个人收入差距量增加7.4557元,长期个人收入差距量增加26.97元。
注意:尽管D.W.=1.724407,但不能据此判断自回归模型不存在自相关(Why?)。
由LM检验或者B-G检验可用于检验随机误差项的高阶自相关性。
2039.6
1980
346.2
50.6
2414.3
1981
396.3
51.9
2860.2
1982
439.1
52.9
3180.6
1983
529.8
54.0
3589.9
1984
792.1
55.5
4766.1
1985
987.8
60.6
5905.6
1986
1218.4
64.6
7590.8
1987
1454.5
如果直接对下式作OLS回归
可得如图3的估计结果:
图3回归估计结果
在图3中,D.W=0.959975,查自由度n=30,k=3的D.W.检验表可知dl=1.28,du=1.57,容易判断该模型随机误差项存在一阶正自相关。事实上,对于自回归模型,t项的自相关问题始终存在,对于此问题,至今没有完全有效的解决方法。唯一可做的,就是尽可能地建立“正确”的模型,以使序列相关性的程度减轻。因此,上述个人收入量差距模型的估计式 的设定更“正确”。
11815.30
1993
25897.30
13004.70
1994
28783.40
13944.20
1995
31175.40
15467.90
1996
33853.70
17092.50
1997
35956.20
18080.60
1998
38140.90
19364.10
1999
40277.00
20989.30
2000
步骤1:
步骤2
步骤3:
单击OK后有如图1的检验结果:
图1 X与Y的格兰杰因果关系检验结果
其中, 为实际个人收入量。
将(1)式代入(2)得个人收入量差距模型:
表1中列出了1978年到2007年贵州省个人收入量、收入额以及居民消费者价格指数的相关数据。
表1
年份
个人收入量Y(元)
居民消费者价格指数P(1990年=100)
收入额X(元)
1978
212.0
46.2
1850.0
1979
267.7
47.1
LM检验的Eviews步骤:
1、估计方程
2、在Equation窗口中单击“View”→“Residual Test”→“Serial Correlation LM Test”,并选择滞后期为1,屏幕将显示如图2所示的信息。
图2回归结果
在图2中,LM=0.636639,小于显著性水平5%下自由度为1的卡方分布的临界值 ,因此,可以接受随机误差项不存在一阶自相关性的原假设。
156.7
39976.0
1995
7885.3
183.4
50544.1
1996
8802.0
198.7
61156.6
1997
10177.6
204.2
74914.1
1998
11204.2
202.6
86524.1
1999
13455.5
199.7
93734.3
2000
14652.7
200.6
99371.1
2001
69.3
9032.5
1988
2134.0
82.3
10551.3
1989
2344.0
97.0
14360.1
1990
2644.4
100.0
17680.7
1991
3177.8
103.4
21337.8
1992
4336.0
110.0
26322.9
1993
5864.7
126.2
32943.1
1994
7288.6