最新温州市中考数学模拟试题卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年温州市中考数学模拟试题卷
参考公式:二次函数y=ax 2+bx+c (a ≠0)的图象的顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭ 一、选择题(本大题有10小题,每小题4分,共40分。
)
1、在0,1,2, 3.5---这四个数中,最小的负整数是( ▲ )
A 、0
B 、1-
C 、2-
D 、 3.5-
2、如图,直线a ,b 被直线c 所截,已知a ∥b ,∠1=35°,则∠2的度数为( ▲ )
A 、35°
B 、55°
C 、145°
D 、165°
3、已知点M ()2,3-在双曲线k y x
=上,则下列各点一定在该双曲线上的是( ▲ ) A 、()3,2- B 、()2,3-- C 、()2,3 D 、()3,2
4、图1所示的物体的左视图(从左面看得到的视图)是( ▲ )
图1 A 、 B 、 C 、 D 、 (第2题)
5、抛物线()2
y x 11=--+的顶点坐标是( ▲ )
A 、()1,1
B 、()1,1-
C 、()1,1-
D 、()1,1-
6、在一次中学生田径运动会上,参加男子跳高的14名运动员成绩如表所示:
则这些运动员成绩的中位数是( ▲ )
A 、1.66
B 、1.67
C 、1.68
D 、1.75
7、已知⊙O 1和⊙O 2内切,它们的半径分别为2cm 和5cm ,则O 1O 2的长是( ▲ )
A 、2cm
B 、3cm
C 、5cm
D 、7cm
8、如图是某校九年级部分男生做俯卧撑的成绩进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是( ▲ )
A 、100,55%
B 、100,80%
C 、75,55%
D 、75,80%
9、如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D=35°,则∠OAC 的度数是( ▲ )
A 、35°
B 、55°
C 、65°
D 、70°
(第8题) (第9题) (第10题)
10、如图,正方形ABCD 的边长为4,点E 是AB 边上的一点,将△BCE 沿着CE 折叠至△FCE ,若CF 、CE 恰好与正方形ABCD 的中心为圆心的⊙O 相切,则折痕CE 的长为( ▲ )
A 、53
B 、5
C 、833
D 、以上都不对 二、填空题(本题有6小题,每小题5分,共30分)
11、分解因式:()2x 14--= ▲
12、母线长为3cm ,底面直径为4cm 的圆锥侧面展开图的面积是 ▲ cm 2
13、若一次函数y kx b =+(k ,b 都是常数,k ≠0)的图象如图所示,则不等式kx b 0+>的解为 ▲
(第13题) (第14题) (第16题)
14、如图,已知D 为BC 上一点,∠B =∠1,∠BAC=78°,则∠2= ▲
15、目前甲型H1N1流感病毒在全球已有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x 个人,那么可列方程为 ▲ .
16、5个正方形如图摆放在同一直线上,线段BQ 经过点E 、H 、N ,记△RCE 、△GEH 、 △MHN 、△PNQ 的面积分别为s 1,s 3,s 2,s 4,已知s 1+s 3=17,则s 2+s 4= ▲
三、解答题(本题有8小题,共80分,各小题都必须写出解答过程)
17、(本题10分)(1)计算:()00822cos 45+--
(2)解方程:(选择其中一小题解答)
①
212x 1
x 1=-- ②22x 0-=
18、(本题7分)数学课上,老师让甲、乙、丙三位同学分别计算当x=1-、2、4时,二次函数2y x mx n =++的函数值,甲、乙两同学正确算得当x=1-时,y=6;当x=2时,y=3;丙同学由于看错了n 而算得当x=4时,y=5。
(1)求m 、n 的值; (2)丙同学把n 看成了什么数?请你通过计算把它求出来。
19、(本题8分)第16届亚运会将于2010年11月12日至27日在广州进行,亚运会火炬传递初定于在2010年8月下旬举行圣火采集仪式,其后启动火炬传递。
某地作为广州亚运会圣火传递城市之一,在安排火炬手时,打算由运动员A 、B 、C 完成某路段的圣火传递。
如果任意安排这三位运动员在该路段的跑步顺序,请用列表或画树状图的方法求:
(1)运动员A 跑第一位的概率; (2)火炬由运动员A 传给运动员B 概率。
20、(本题9分)如图,已知:△ABC内接于⊙O,点D在OC的延长线上,cosB=
3
2
,
∠D=30°。
(1)求证:AD是⊙O的切线;(2)若AC=6,求AD的长.
21、(本题9分)如图,下列正方形网格的每个小正方形的边长均为1,⊙O的半径为10。
规定:顶点既在圆上又是正方形格点的直角三角形
.....称为“圆格三角形”,请按下列要求各画一个“圆格三角形”,并用阴影表示出来。
(1)直角边长度为整数(2)面积为8 (3)一个内角所对的弧长为10 2
22、(本题11分)如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.
(1)求证:①△AEF≌△BEC;②四边形BCFD是平行四边形;
(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,
求sin∠ACH的值.
23、(本题12分)甲、乙两玩具厂为摆脱金融危机影响,采取出口转内销策略,力争2011年第一季度控制月利润下滑趋势,第二季度实现月利润回升。
措施落实后,两厂形势逐渐好转,订单量逐月增加。
从已有订单来看,两厂都预计自2011年起本厂的月利润y (十万元)与月份x 之间满足一定的函数关系。
甲厂预测的关系:21y x x 28
=-+;乙厂则预测该厂的月利润与月份也满足二次函数关系,且图象形状与甲厂的相同。
又知乙厂预测的该厂前几个月份的月利润如图所示,试根据上述信息解决下列问题:
(1)求乙厂预测的月利润y (十万元)与月份x 之间的函数关系式;
(2)x 为何值时,两厂的月利润差距为5万元?
(3)当两厂的月利润差距超过50万元时,月利润低的玩具厂被月利润高的玩具厂收购。
如果不考虑其他因素,按上述趋势,是否会出现收购的情况?如果会,谁被谁收购?何时被收购?如果不会,请说明理由。
24、(本题14分)如图,在菱形ABCD中,AB=2cm,∠BAD=60°,E为CD边的中点,点P从点A开始沿AC方向以每秒23cm的速度运动,同时,点Q从点D出发沿DB方向以每秒1cm的速度运动,当点P到达点C时,P,Q同时停止运动,设运动的时间为x 秒.
(1)当点P在线段AO上运动时.
①请用含x的代数式表示OP的长度;
②若记四边形PBEQ的面积为y,求y关于x的函数关系式(不要求写出自变量的取值范围);(2)显然,当x=0时,四边形PBEQ即梯形ABED,请问,当P在线段AC的其他位置时,以P,B,E,Q为顶点的四边形能否成为梯形?若能,求出所有满足条件的x的值;若不能,请说明理由.
(备用图)
2011年温州市中考数学模拟金卷(一)
16、5个正方形如图摆放在同一直线上,线段BQ经过点E、H、N,记△RCE、△GEH、△MHN、△PNQ的面积分别为s1,s3,s2,s4,已知s1+s3=17,则s2+s4= 68
20、
22、
23、解:(1)设乙厂预测的月利润y (十万元)与月份x 之间的函数关系式为21y x bx c 8
=++ 由上图可知,取x 2x 4,y 0.5y 1
==⎧⎧⎨⎨==⎩⎩
则22122b c 0.58184b c 018⎧⨯++=⎪⎪⎨⎪⨯++==⎪⎩,解得1b 2c 1⎧=-⎪⎨⎪=⎩
所以,乙厂预测的月利润y (十万元)与月份x 之间的函数关系式为211y x x 182=
-+ (2)①若y 甲-y 乙=0.5,则221
1
1x x 2x x 10.5882⎛⎫⎛⎫-+--+= ⎪ ⎪⎝⎭⎝⎭
,解得x=1 ②若y 乙-y 甲=0.5,则22111x x 1x x 20.5828⎛⎫⎛⎫-
+--+= ⎪ ⎪⎝⎭⎝⎭
,解得x=3 所以,x=1或3时,两厂的月利润差距为5万元
(3)①若y -y 5>乙甲,即221
11x x 1x x 25828⎛⎫⎛⎫-+--+> ⎪ ⎪⎝⎭⎝⎭
,解得x>12 ②y -y 5>乙甲,即221
11x x 2x x 1588
2⎛⎫⎛⎫-+--+> ⎪ ⎪⎝⎭⎝⎭,解得x 8<-(不合)
所以,会出现收购的情况,12个月后(或一年后或第13个月),甲厂会被乙厂收购。
24、
精品文档
精品文档。