AVO叠前地震反演.
AVO处理技术(重要)解析
一个共识
在AVO振幅恢复中应减少单道的道均衡,以免
引起虚假的AVO现象。AVO处理和分析的关键 是叠前信息的保持、提取、显示和解释。充分 考虑补偿与炮检距有关的振幅衰减,消除非岩 性因素引起的振幅变化,这是进行AVO分析的 关键。
处理的目的就是要最大限度地消除
这些因素对振幅的影响,恢复和保 持振幅相对变化与反射系数大小单 一因素的关系
角度道和角道集的形成
从数据采集到处理,反射振幅都是作为炮检距
的函数来描述的,而Zoeppritz方程及其近似表 达式则均是以入射角作为变量进行描述的。因 此,我们在很多情况下,需要将振幅与炮检距 的关系(AVO),转换成振幅与入射角角度的 关系(AVA),并形成角度道道集。
处理可能产生的问题
反射振幅的恢复和保持常用的处理方法主要
剔除不正常炮和道以及样点“野”值 几何球面扩散补偿 地表一致性振幅补偿
吸收衰减补偿
剩余振幅补偿
几何球面扩散补偿
球面扩散补偿因子与炮检距密切相关,简单地用零炮
检距球面扩散补偿因子代替非零炮检距球面扩散补偿 因子是不合适的 Ostrander的研究表明:用零炮检距补偿因子代替非 零炮检距补偿因子,当地表为低速层时,炮检距的振 幅补偿量不足,而当地表为高速层时,炮检距的振幅 补偿量偏大。由于地震速度梯度一般随深度增加而增 加,因此用零炮检距球面扩散补偿因子代替非零炮检 距球面扩散补偿因子,其补偿量不足。 吕牛顿的研究表明:对于中浅层,零炮检距和非零炮 检距球面扩散补偿因子差别较大,而对深层反射,两 者差别很小。
影响地震数据振幅改变的因素 -----大地滤波系统
球面扩散 地层吸收 界面透射损失
层间多次反射
薄层振幅调谐 波的相位转换 介质各向异性 地质构造因素
AVO分析的基本方法
岩性 泥岩 砂岩(含气) 泥岩
速度 3050 2600 3050
泊松比 0.3 0.15 0.3
密度 2.4 2.3 2.4
(a) 厚度为1/8 出现了明显的干涉现象, 形成复合波,使顶底界面不能分开,随着炮检距
的增加振幅在增强,在整个变化过程中形状基本没有改变
(b) 厚度为1/4 随着砂层厚度的增加,振幅随着炮检距的增加在增强,但是其幅度更加明显,振幅达到 极大。这时即使不能把薄层顶底反射面分开的情况下,也能推断出底部反射面的存在
密度 2.5 1.8 2.5
(
a) 厚度为1/8
(b) 厚度为1/4
(c) 厚度为1/2
(d) 厚度为1
模型5:水层模型
岩性 泥岩 砂岩(含水) 泥岩
速度 2250 2850 3050
泊松比 0.4 0.27 0.4
密度 2.0 2.4 2.0
(a) 厚度为1/8
(b) 厚度为1/4
含气和含水砂岩模型
(b)泥岩-含水砂
岩分界面波阻抗差 异大,垂直入射反 射振幅呈“亮点” 特征,AVO呈减少 趋势;
含气和含水砂岩模型
(c)当泥岩夹含
水砂岩,砂岩顶底 反射分不开,AVO 响应反映泥岩-含 水砂岩问的调谐作 用,宏观上看, AVO呈减少趋势, 反射同相轴出现扭 曲现象,极性反转 。
当气层厚度大于 1/16 波长时, AVO 明显呈增加趋
势。事实上,当气层厚度大于 1/4 波长时,气层的 顶底反射可区分,气水分界面AVO呈增加现象,当 气层厚度介于1/4~1/16波长之间时,气层顶底反射 分不开,形成复合波,AVO也呈增加趋势。但是, 当气层厚度小于1/16波长时,AVO明显呈减小趋势 ,出现极性反转。由此可见:即使岩性组合相同, 由于厚度的变化,也会引起AVO特征的差异,薄层 调谐作用对AVO影响很大,也反映AVO分析存在的 多解性 。
avo反演matlab程序
avo反演matlab程序以下是关于avo反演(Amplitude versus Offset inversion,简称avo 反演)的Matlab 程序的详细说明。
我们将一步一步回答您的问题,并附上必要的代码和解释。
1. 什么是avo反演?Amplitude versus Offset inversion(avo反演)是地球物理学中的一种分析方法,主要用于从地震数据中获取地下地质信息。
通过对反射波振幅和偏移距的变化关系进行分析,avo反演可以提供地下岩石的弹性参数等重要信息。
它在石油勘探和地下水资源调查中具有广泛的应用。
2. Matlab程序实现avo反演的基本步骤如何?a. 数据预处理:在实施avo反演之前,首先需要对地震数据进行预处理。
这涉及到对数据进行去噪、时距校正等操作。
Matlab提供了多种函数和工具箱来实现这些操作。
例如,您可以使用Matlab的'detrend' 函数来去除趋势项和去掉噪声。
您还可以使用'interp1' 函数进行时距校正。
b. avo反演算法:avo反演通常通过拟合Kiessling方程(aVO模型)的方法进行。
该方程描述了反射系数与角度以及岩石物性之间的关系。
具体的avo反演算法会根据数据的特点和需要进行定制开发。
以下是一个基本的avo反演算法的示例:MATLABfunction [vp, vs, rho] = avo_inversion(angle, reflectivity) % angle: 角度数据,单位为度% reflectivity: 反射系数数据% 设置默认参数vp0 = 2500; % 初始纵波速度模型vs0 = 1500; % 初始横波速度模型rho0 = 2000; % 初始密度模型iter = 10; % 迭代次数% 初始化速度和密度模型vp = vp0 * ones(size(angle));vs = vs0 * ones(size(angle));rho = rho0 * ones(size(angle));% 开始迭代for i = 1:iter% 计算反射系数的模拟值reflectivity_pred = avo_model(vp, vs, rho, angle);% 计算残差residual = reflectivity - reflectivity_pred;% 更新速度和密度模型[vp_update, vs_update, rho_update] = avo_update(vp, vs, rho, angle, residual);vp = vp + vp_update;vs = vs + vs_update;rho = rho + rho_update;endendfunction reflectivity_pred = avo_model(vp, vs, rho, angle) % avo模型计算反射系数的模拟值% vp, vs, rho: 各层速度和密度模型% angle: 角度数据,单位为度reflectivity_pred = zeros(size(angle));for i = 1:length(vp)reflectivity_pred(i) = (vp(i) - 2 * vs(i)) / (vp(i) + 2 * vs(i)) * sind(angle(i)) ^ 2;endendfunction [vp_update, vs_update, rho_update] = avo_update(vp, vs, rho, angle, residual)% avo反演更新速度和密度模型% vp, vs, rho: 速度和密度模型% angle: 角度数据,单位为度% residual: 反射系数残差vp_update = zeros(size(vp));vs_update = zeros(size(vs));rho_update = zeros(size(rho));for i = 1:length(vp)vp_update(i) = 0.1 * residual(i) * (2 * vs(i)) / (vp(i) + 2 * vs(i)) * sind(angle(i)) ^ 2;vs_update(i) = -0.1 * residual(i) * (vp(i) - 2 * vs(i)) / (vp(i) + 2 * vs(i)) * sind(angle(i)) ^ 2;rho_update(i) = 0.1 * residual(i) * (vp(i) - 2 * vs(i)) * (vp(i) +2 * vs(i)) * cosd(angle(i)) / (vp(i) + 2 * vs(i)) ^ 2;endend3. 如何使用Matlab进行avo反演?在上述例子中,我们定义了三个输入参数:angle(角度数据,单位为度),reflectivity(反射系数数据),和一个可选的迭代次数参数iter。
AVO叠前地震反演
什么是地震反演?
地震反演:是利用地标观测的地震资料,和已知地质规律 和专精测井资料为约束,对地下岩层空间结构和物理性质 进行成像(求解)的过程,广义的地震反演包含了地震处 理解释的整个内容。
波阻抗反演:是指利用地震资料反演地层波阻抗(或速度) 的地震特殊处理解释技术。波阻抗与地震资料是因果关系, 具有明确的物理意义,是储层岩性预测、油藏特征描述的 确定性方法。
什么是叠前地震反演?
叠前反演技术是油气勘探领域中的一项新技术,它 利用是指利用经过偏移的叠前不同炮检距道集数据 所记录的振幅、频率、相位等信息以及横波、纵波、 密度等测井资料,联合反演出与岩性、含油气性相 关的多种弹性参数,来综合判别储层物性及含油气 性。
叠前地震反演分类
叠前地震反演可分为: 1.基于波动方程的全波形反演
所以在入射角小于30°时,Shuey公式可以进一步近似为:
Aki-Richards近似式与Shuey近似式都是由Zeoppritz方程 简化而来,在反演过程中其精度也不同,在入射角较小, 目的层埋深较深时,两方程的精度都较高。但是Shuey近 似使用的前提假设是Vp/Vs=2,所以在使用时,要根据项 目反演方法的特点,在基本上保证精度的情况下,选用合 适的公式作为反演过程中求取反射系数的基础公式。
AVO分类
I类:阻抗值高于上覆地层的高阻抗含气砂岩。法线入 射有较高的正反射系数,随偏移距增加,反射系数变 小、变负值、变正值,当偏移距足够大时,又变成大 的正反射系数。所以随偏移距的增加振幅的极性有变 化。一般不易观测到远偏移距的强振幅,只看到振幅 随偏移距增加而减少的现象,看不到极性反转,可识 别(高压实成熟砂岩—深层—暗点) 。 II类:阻抗值与上覆地层接近,接近零反射系数含气砂 岩,有正、有负,一般淹没在噪声中。一般不易观测到 远偏移距的强振幅,所以这类AVO不易识别(中等压实 —中层—极性反转) 。
叠前反演1(AVO)
纵横波转换经验公式
• 1、Castagna经验公式:
• VP=1.360+1.16 VS • 2、Smith经验公式: • VP=1.425 VS +0.79 • 3.甘利灯经验公式: • VP=0.937+1.35 VS • 4.李庆忠经验公式: • VP=0.0874 VS 2+0.094 VS +1.25
P波剖面
G波剖面
图4-3 原始CRP道集
图4-4 主测线377超道集
图4-6 主测线377角道集
近
远
图4-8 主测线409近、远 偏移距剖面的对比
近
远
图4-9 沿层近、远偏移距切片的对比
图4-10 主测线409截距剖面
图4-16 沿层潜在烃指示切片
1、AVO技术利用叠前振幅信息来识别气层,能够 对油气藏进行定性或半定量描述。
VP 2 K43Vs
, = Lamé 系数 = 密度
K= λ + 2/3 岩石体积模量
密度
• 密度影响可以用以下方程表示:
ρsat ρm(1 ) ρwSw ρhc(1 Sw )
这里:ρ 密度,
孔隙度
Sw 含水饱和度 sat,m,hc, w 含水饱和度、骨架、碳氢、水的下标
子波主频越高合成记录上AVO现象越明显,但是大多数情况下实际的地震记 录上子波主频并不是很高,所以只能看到由于目的层薄而引起的调谐后的结果。
三、AVO处理技术研究
• 1、AVO分析的基本理论 • 2、地震数据的叠前保幅处理 • 3、正演模拟及目的层流体替换 • 4、CMP道集处理(超道集、 • 角道集、部分叠加) • 5、AVO反演
AVO叠前地震反演
AVO的地质意义 AVO的地质意义:
(1) AVO应用的基础是泊松比的变化,而泊松比的变化是不同岩性和不同孔 隙流体介质之间存在差异的客观事实。所以,AVO技术的地质基础在于不同岩石 以及含有不同流体的同类岩石之间泊松比存在差别。 (2)Domenico(1977)研究了含气、含油、含水砂岩的泊松比随埋藏深 度的变化规律,结果发现含不同流体砂岩的泊松比随深度的变化特征是不同的: A.含气砂岩的泊松比随着深度的增加而增加,但泊松比的值总是小于 含油和含水砂岩的泊松比值; B.含水砂岩的泊松比随着深度的增加而减小,但泊松比的值总是大于 含油和含气砂岩的泊松比值; C.含油砂岩的泊松比也随着深度的增加而减小,泊松比的值总是介于 含水和含气砂岩泊松比值之间。
如果储层有气顶存在,则砂岩速度会降低,利用低速度标志可以圈定气藏的边界。
基于Zoeppritz方程的AVO反演
AVO技术特点:
AVO技术以弹性波理论为基础,利用叠前CRP道集对地震反射振幅随 炮检距的变化特征进行研究、分析,得到反射系数与入射角的关系,用 以分析反射界面上下的岩性特征及物性参数,进行预测和判断油气储层 流体性质、储层岩性等。主要有以下特点[6,7]:
叠前反演技术是油气勘探领域中的一项新技术,它是 指利用经过偏移的叠前不同炮检距道集数据所记录的振幅、 频率、相位等信息以及横波、纵波、密度等测井资料,联合 反演出与岩性、含油气性相关的多种弹性参数,来综合判别 储层物性及含油气性[4]。
地震反演技术
为什么要进行叠前反演?
(1)叠后反演基于常规处理的水平叠加数据,以自激自收 为假设条件,叠加剖面无法反应野外采集所记录的振幅随炮 检距变化的特性,并损失了与炮检距关系密切的大量横波信 息[5]。
AVO理论模型及响应:
AVO叠前反演
AVO技术特点 技术特点
AVO技术以弹性波理论为基础,利用叠前CDP道集对地震反射振幅随 技术以弹性波理论为基础,利用叠前 技术以弹性波理论为基础 道集对地震反射振幅随 炮检距的变化特征进行研究、分析,得到反射系数与入射角的关系, 炮检距的变化特征进行研究、分析,得到反射系数与入射角的关系,用以 分析反射界面上下的岩性特征及物性参数, 分析反射界面上下的岩性特征及物性参数,进而预测和判断油气储层流体 性质、储层岩性等。主要有以下特点: 性质、储层岩性等。主要有以下特点: 特点 ⒈利用叠前CDP资料直接分析,充分利用了多次覆盖的原始信息; 资料直接分析, 利用叠前 资料直接分析 充分利用了多次覆盖的原始信息; ⒉利用了振幅随入射角的变化特点,解释岩性和储层流体性质更可靠; 利用了振幅随入射角的变化特点,解释岩性和储层流体性质更可靠; 方程的AVO反演的在预测岩性方面有重要意义; 反演的在预测岩性方面有重要意义 ⒊基于Zeoppritz方程的 基于 方程的 反演的在预测岩性方面有重要意义; 研究岩性和含油气性, 地质、 ⒋用AVO研究岩性和含油气性,需要地质、测井和钻井资料配合; 研究岩性和含油气性 需要地质 测井和钻井资料配合; 波降速效应, 在气藏检测方面有明显的优势; ⒌由于含气储层的P波降速效应,AVO在气藏检测检测方面有明显的优势 是基于严格的知识表达、 ⒍AVO是基于严格的知识表达、有明确地质含义的地球物理方法。 是基于严格的知识表达 有明确地质含义的地球物理方法。
提 纲
引言 AVO技术的基本分析方法 技术的基本分析方法 PP波AVO叠前反演 波 叠前反演 PSV波AVO叠前反演 波 叠前反演 AVO叠前联合反演 叠前联合反演 小结
如何理解AVO技术 技术 如何理解
AVO技术的应用前提: 技术的应用前提 技术的应用前提: ⑴反射振幅强弱与反射系数大小成正比; 反射振幅强弱与反射系数大小成正比; ⑵反射系数大小主要取决于界面上下岩石弹性参数的变化。 反射系数大小主要取决于界面上下岩石弹性参数的变化。 理解AVO技术必须要理解 个过程: 技术必须要理解5个过程 理解 技术必须要理解 个过程: ⑴岩石的岩性参数是如何影响弹性参数的; 岩石的岩性参数是如何影响弹性参数的; ⑵岩石弹性参数的变化是如何影响地震反射的; 岩石弹性参数的变化是如何影响地震反射的; ⑶如何处理才能使反射振幅与反射系数成正比; 如何处理才能使反射振幅与反射系数成正比; 分析的基本方法; ⑷AVO分析的基本方法; 分析的基本方法 分析结果。 ⑸如何解释AVO分析结果。 如何解释 分析结果
avo反演matlab程序
avo反演matlab程序AVO反演(Amplitude Versus Offset)是一种地球物理方法,用于从地震数据中推断岩石的弹性参数,以便更好地了解地下结构。
MATLAB是一个广泛使用的科学计算和数据可视化软件,有着丰富的工具箱和函数库,可以用于编写AVO反演的程序。
本文将介绍如何使用MATLAB编写AVO反演程序。
首先,我们需要准备一些地震数据。
地震数据通常以二维或三维地震剖面的形式存在,其中包含了大量振幅和偏移信息。
为了方便演示,我们可以使用MATLAB的示例数据来进行AVO反演。
```MATLABdata = load('seismic_data.mat'); % 导入示例地震数据trace = data.seismic_data; % 提取地震剖面中的一条道```接下来,我们可以对地震数据进行预处理,包括去噪和平滑处理。
可以使用MATLAB的滤波函数或者小波变换函数来实现。
```MATLABnoisy_trace = wdenoise(trace, 'Wavelet', 'haar'); % 使用小波变换去噪smooth_trace = smoothdata(noisy_trace, 'gaussian', 10); % 使用高斯平滑滤波平滑数据```在AVO反演中,我们需要定义合适的模型来描述地下的波速和泊松比分布。
常用的模型包括背景模型和岩性模型。
背景模型用于描述整个区域的基本特征,而岩性模型用于描述特定地层的参数变化。
我们可以使用MATLAB的矩阵和数组来定义模型。
```MATLABbackground_velocity = 2000; % 背景波速background_density = 2200; % 背景密度rock_velocity = [2300, 2400, 2500]; % 岩石波速rock_density = [2300, 2400, 2500]; % 岩石密度```在进行AVO反演之前,我们需要对地震数据进行预处理,以提取出合适的特征用于反演。
AVO地震参数反演方法概述
叠前AVO地震反演方法概述(刘文劼 095211068)AVO是一项利用振幅随偏移距变化特征分析和识别岩性及油气藏的地震勘探技术。
理论分析表明:振幅系数随入射角变化与分界面两侧岩石的弹性参数有关,它是通过非常复杂的非线性关系与介质的密度p1和p2、纵波速度a1和a2、横波速度b1和b2及入射角联系起来。
振幅系数随入射角变化本身隐含了岩性参数的信息,利用AVO关系可以直接反演岩石的密度p、纵波速度a和横波速度b,定量进行地震油藏描述。
波阻抗反演是零炮检距数据模型反演,那么AVO分析就是非零炮检距数据反演。
由于通过叠加得到零炮检距剖面,一方面丢失与炮检距有关的信息,另一方面叠加道又不是真正的零炮检距道,致使反演结果的稳定性以及它的应用均受到了一定程度的制约,AVO分析是在具有不同炮检距道集上进行分析,充分应用了叠前各种信息。
因此,它有相对好的应用前景。
目前叠前AVO反演方法主要有以下几种:(1)基于Powell算法的AVO非线性反演采用朱向阳和熊有伦提出的改进的Powell共扼方向算法,以Aki-Richard近似式为基础, 充分利用叠前地震数据丰富的振幅和旅行时信息,模拟平面波在层状弹性半空间传播时形成的地面反射记录,并使其与实际数据间的差异最小,从而获得地层的密度、纵波速度和横波速度分布。
(2)基于贝叶斯理论的AVO非线性反演基于贝叶斯理论, 结合似然函数与先验地质信息反演纵横波阻抗及密度。
先验模型参数的分布采用的是Huber分布。
Huber分布对于小的模型参数值进行一致性加权, 对于大的模型参数值采用拉普拉斯分布产生的权函数进行加权, 使之更能准确地反映模型参数的分布规律。
(3)点约束稀疏脉冲叠前反演基于贝叶斯参数估计的理论,假设似然函数服从高斯分布,待反演的参数服从改进的Cauchy分布,从而得到稀疏的反射稀疏序列,然后用已知点的纵波阻抗、横波阻抗和密度对反演结果进行点约束,从而使反演的结果更加准确可靠。
基于叠前深度偏移的avo反演及解释
基于叠前深度偏移的avo反演及解释近年来,由于气象观测数据和地震影像学建模技术的发展,地震反演技术取得了巨大进展。
AVO(属性体积反演)是地震反演技术中的一种重要方法。
AVO技术可用于发现属性体积的结构和流体属性,从而对油气藏的探寻过程产生重要影响。
然而,由于大量地震模拟数据的产生,AVO技术终于可以运用在现实的油气勘探过程中。
AVO反演是指从物理模型的角度通过计算地震模拟数据来反演特征属性体积的技术,主要目的是通过测量棱镜结构、孔隙度和介电性等属性体积来发现油气源层。
AVO反演具有较高的精度,能够有效提高油气藏的定位精度。
但是,在AVO反演过程中,由于深度的不确定性,很难有效地判断深度的影响,而且如何考虑深度变化对反演结果的影响也成为一个重要的问题。
为了解决这一问题,科学家基于叠前深度偏移(Pre-Stack Depth Migration,PSDM)技术,提出了一种新的AVO反演方法。
该方法使用PSDM技术,将原始AVO曲线中的深度不确定性和深度变化分解出来,从而有效地考虑了深度因素对反演结果的影响。
首先,该方法使用PSDM技术,将AVO数据中的深度不确定性和深度变化分离出来。
然后,对叠前深度偏移的AVO数据进行反演,以改善反演结果的精确性及可靠性。
最后,基于解释数据的深度变化,对AVO反演结果进行解释,以确定油气源层的位置。
该方法也可以用于更加准确地解释深度方面的单一或复杂地质问题。
例如,对于水淹源的地区,该方法可以有效地解决深度影响的问题,以更准确地解释地质结构。
此外,基于叠前深度偏移的AVO反演技术还能有效地将各类地球物理技术,如S-型重力结构或回归方程,应用到AVO反演中,从而更加精确地分析和解释油气源层。
综上所述,使用基于叠前深度偏移的AVO反演技术,可以有效地分解出深度不确定性和深度变化,有效改善AVO反演结果的精确性及可靠性。
通过其他地球物理技术和解释方法,可以更加准确地探测油气藏。
叠前地震数据储层AVO参数反演及应用研究
叠前地震数据储层AVO参数反演及应用研究地震反射波振幅随炮检距变化(简称AVO技术)是最近几十年发展起来的一项新的直接寻找油气的地震勘探技术。
其基本原理是反射系数随入射角度的变化而变化,即反射系数是入射角度的函数,理论基础是Zoeppritz方程及其近似式。
AVO参数反演可以分为单波AVO和多波AVO反演。
单波AVO反演主要是利用单一的纵波反射波或纵波转换波进行参数反演;而多波AVO主要是指结合pp波、p-sv波或其他类型的波来进行联合参数反演。
在实际反演过程中,主要步骤是进行AVO正演模拟并利用测井资料作为约束条件,对实际AVO角度道集进行约束反演,定量提取岩石物性参数,进而直接预测油气。
本文是在AVO正演模拟的基础上,利用测井资料约束进行单波AVO反演,来提取实际资料对应的泊松比剖面。
本文首先阐述了AVO反演的地球物理基础,其中包括完全形式的Zoeppritz 方程及其简化形式,并对各种简化形式的特点及其使用条件进行了说明。
然后阐述了三类含油气岩石的AVO特性,并利用Zoeppritz近似方程来计算反射系数,进而合成AVO正演地震记录。
接着介绍了本文进行AVO反演的算法混沌模拟退火的基本原理及其特点和应用效果。
最后利用混沌模拟退火算法,结合AVO正演模拟、将CDP道集转换成角度道集并从中提取子波进行了模拟地震数据和实际地震资料的反演。
从反演的效果来看,利用上述算法进行反演的速度较快而且效果较好,说明该方法是有效可行的。
叠前AVO反演技术分析
求。
关键 词 : 叠前 AVO反 演 ; Z o e p p r i t z 方程 ; 泊松 比
中图分类号 : T E l 3 2 文献 标识码 : A 文章 编号 : 1 O 0 4 —5 7 1 6 ( 2 0 1 3 ) O 5 ~。 0 7 3 —0 2
COS
・— —
大量的地震信息 , 从而使反演获得的岩性、 物性信息更 加 丰富 、 可 靠 一 引。
1 叠前 A V o 反演 的理论基 础
s i n 0 2
-
-
C O S  ̄
-
.
.
s i n9 2
.
尺 _ R
1) p
—s i n
-
c 0 s 2 仇
s 2 ' U p 1 1 0 2 7  ̄ s i n 2 0 2
随着油 田勘探 技术 的不 断提高 , 地震反 演方法 越来 越 成 为油藏 描述 , 特别 是 隐蔽 油气藏 描述 中应用最 广泛 的勘探 技术 。目前 常规叠后 反演虽 然数据量 小 , 反 演速 度快 , 反演成本低, 具有较好的稳定性, 但叠后地震资料
1 . 1 Z o e p p r i t z方程
P 、 』 。 2 ——反 射界 面上下介 质 的密度 。
1 . 2 Z o e p p r i t z 方程 的近似
由Z o e p p r i t z 方程给出的反射和透射系数公式的精 确表达式 不 但 形 式 复 杂 , 而 且 很难 直 接 看 出其 物 / , A v s / ' 0 , △ P / l D 和 其他值相比为小值 , 所 以可略去它们的高次项, 纵波的 反 射系数 近似 为 :
地震叠前反演AVO原理
VoxelGeo
2
Reflection at the interface:
P S
Vp1; Vs1; r1 Vp2; Vs2; r2
ST
PT
3
Zoeppritz Equations in matrix form
`PP `PS Q `P`P `P` S
SP ` SS ` S`P ` S` S `
叠前反演技术介绍
叠前AVO技术
AVO是一种通过分析CDP道集中反射系数随入射角 (炮检距)而变化来研究地下岩性的地震方法。
借助于Zoeppritz方程或近似式,对CDP道集反射 振幅的变化作最小平方拟合,直到理论与观测值很好 的拟合为止。最终可以导出泊松比、拉梅常数、体积
模量、切变模量和杨氏模量等弹性参数,进而进行岩
4
O and R are the matrices:
sin 1 cos 1 sin 2 cos 2 cos1 sin 1 cos 2 sin 2 o 2 r1Vs1 sin 1 cos1 r1VS1 (1 2 sin 2 1 ) 2 r 2Vs 2 sin 2 cos 2 r 2VS 2 (1 2 sin 2 2 ) 2 r V (1 2 sin 2 ) r1VS1 sin 21 r 2V p 2 (1 2 sin 2 ) r 2VS 2 sin 2 2 1 1 p1
5
Notice that:
1 2 1 2
= Angle of incidence – P-wave = Angle of transmission – P-wave
= Angle of incidence – S-wave
叠前反演1(AVO)
(1) 直射线:
tan X X ,
2d Vt0 这里 : X 偏移距,
d 深度 VRMSt0 , 2
t0 双程时间, VRMS 均方根速度。
(2) 射线参数:
sin
XVINT tVR2MS
,
这里 :VINT 间隔速度,
t 总旅行时
基本的岩石物理概念
• AVO 响应依赖于有孔隙的含油气岩石中的 P波速 度(VP)、 S波速度 (VS) 和密度 () 的特性。
截距/梯度分析
道集
AVO 分析
截距
梯度
综合分析
AVO属性剖面
P波剖面和G波剖面
依据Aki和Richard以及Shuey的结果,在一定的假设条件下即△ ρ 、△ VP 、△ VS分别相对于ρ、VP、VS比较小,且VP/VS=2,于是得到
如果我们把ρVP定义为纵波波阻抗,把△㏑( ρVP )定义为纵波的反 射系数;把ρVS定义为横波波阻抗,把△㏑( ρVS )定义为横波的反射系 数。那么,在法线入射情况下,代表纵波反射振幅的截距P等于纵波波阻抗 自然对数的一半或纵波反射系数的一半。斜率G等于1/2纵波反射系数与横 波反射系数之差。
2、Shuey近似公式
Shuey公式的物理意义
P为截距,反映垂直入射时的反射振幅, G为梯度,反映振幅随入射角的变化率。
四个单层模型
(a) 、VP、和 都增加
(b) 、 VP 增加、 减小
(c) 、 VP 减小、 增加
(d) 、 VP、和 都减小
四类AVO异常
这是摘自 Castagna et al (1998) 文章里 的图7,更详细地说 明了4类异常的概念
输入为含水饱和度为50% 输出为含水饱和度为50%
叠前地震资料ava变参数反演方法
叠前地震资料ava变参数反演方法地震勘探是寻找和研究地下构造和资源分布的重要手段。
地震勘探是通过将地震波引入地下来探测地层结构和岩性,从而对地下结构进行判读的一种方法。
在井下开展的地震勘探主要包括叠前地震勘探和叠后地震勘探。
本文将主要介绍叠前地震资料AVA变参数反演方法。
AVA变参数反演方法是一种利用剩余好展、反射系数等地震资料变化特征来获得地层岩性、厚度和孔隙率等地质信息的方法。
区别于常规的反演方法,大多涉及单一参数反演,价格不菲,限制操作灵活,Ava变参数法不一样,因为它不受岩石密度对地震波速度差异的影响,因此更受到工业界和学术界的青睐。
AVA变参数反演方法可以通过分析地震波从地下不同岩石层中反射或折射时的振动特征,重新构造地下岩层的厚度,速度差异、泊松比、密度等参数。
该方法可以分析地震资料中剩余好展特征,利用该特征反演地下岩层的孔隙度,岩石弹性模量等参数,获得地质信息。
AVA变参数反演方法的主要应用领域是水生环境、城市建筑、地下煤矿采矿、石油勘探等行业。
在石油工业领域,AVA变参数反演方法已经得到广泛应用。
它不仅可以指导石油勘探的工作,还可以评估油藏基本属性,指导钻井、采油及开发工作,使整个石油生产链更加合理有效。
然而,AVA变参数反演方法有着自身的限制因素。
首先,这种方法依赖于早期获取的地震资料,并且只能捕捉该时刻的振动情况,无法获取后续的振动情况。
相对于叠后地震资料的面临的问题,叠前资料的解释质量也存在一定的不确定性。
其次,折射和反射产生的振幅变化不仅与地下层的特性有关,还受到地震波的入射角度和透过介质时的散射机制的影响,所以反演过程具有一定的误差。
总的来说,AVA变参数反演方法是一种越来越受欢迎的地球物理学方法,对于解释地球深部结构,地质构造,石油勘探等领域具有很大的应用价值。
同时,我们也需要看到该方法存在的缺点,只有在科研人员逐步改进该方法优化其精度的基础前提下,才能产生更好的应用效果。
基于叠前深度偏移的avo反演及解释
基于叠前深度偏移的avo反演及解释
最近,自然界中的地震活动越来越多,表示我们必须加强对地震活动的监测和分析,从而及时发现危险情况并采取积极措施,降低灾害。
地震反演是地震学研究和应用中一个重要的技术课题,是由观测到的地震记录信号推出发震源和结构的方式,可以建立地质模型,帮助更好地理解地质结构,有助于预测地震活动。
本文重点讨论基于叠前深度偏移的AVO反演及其解释。
首先,讨论叠前深度偏移。
叠前深度偏移是利用地震测深仪及其传感器所测量的地震数据,利用叠前处理技术,来进行深度偏移的技术。
叠前处理的技术可以帮助我们分析出空间上的地质变化,从而更好地探查地质结构,识别发震源的位置。
接下来,讨论AVO反演。
AVO反演就是基于AVO(amplitude versus offset)理论的地震反演技术,它结合了叠前处理法和叠后处理法,利用接收几何的物理机制,将接收信号和发射信号进行叠加和叠后处理,从而得出反射系数,并由此建立地质模型,推导发震源和走向。
最后,讨论基于AVO反演及解释。
基于AVO反演及解释,利用叠前深度偏移法确定地质结构特征,利用AVO反演得出反射系数,利用反射系数建立邻近的地质模型。
有了地质模型,通过对比不同的模型参数及其对应的反射系数,就可以对地质模型进行解释,找出地震活动的发震源和走向,从而实现精细地震反演。
本文介绍了基于叠前深度偏移的AVO反演及其解释。
叠前处理可以帮助我们分析出地质变化,AVO反演可以推出发震源和结构,而基
于AVO反演及解释可以找出地震活动的发震源和走向,实现精细地震反演。
本文的研究可以为我们更好的预测和防治地震灾害提供更好的技术支持。
叠前反演(AVO)处理技术
一个共识
在AVO振幅恢复中应减少单道的道均衡,以免
引起虚假的AVO现象。AVO处理和分析的关键 是叠前信息的保持、提取、显示和解释。充分 考虑补偿与炮检距有关的振幅衰减,消除非岩 性因素引起的振幅变化,这是进行AVO分析的 关键。
处理的目的就是要最大限度地消除
这些因素对振幅的影响,恢复和保 持振幅相对变化与反射系数大小单 一因素的关系
叠前反演(AVO) 经常 要将炮检距道集转 换成角道集的形式 ( a )为共中心点道 集,不同地震道, 反射点相同,对于 同一地震道,地震 信息来自相同的激 化和接收点; ( b )为共角度道集 ,不同地震道,入 射角相同,对于同 一地震道,地震信 息来自不同的激化 和接收点
反射振幅的恢复和保持
数据处理与AVO分析效果之间的关系,有好的
积极的一面,也有负的消极的一面,这完全取 决于AVO分析数据的前期处理是否得当,当数 据信噪比很低时,是不能用于AVO分析处理的 ;这时只有进行叠前压噪处理,提高叠前数据 的信噪比以后,才能用于AVO分析。 应用的叠前压噪手段必须保持有效信号的原始 振幅相对关系,如果破坏了这种关系,即使信 噪比提高了,对于AVO分析而言也是失败的。 因此,叠前压噪方法必须是高保真的。我们知 道,信号的保真涉及三个重要参数,即振幅、 频率和相位,在这里我们更加注重的是振幅相 对关系的保真
影响地震数据振幅改变的因素 -----大地滤波系统
球面扩散 地层吸收 界面透射损失
层间多次反射
薄层振幅调谐 波的相位转换 介质各向异性 地质构造因素
影响地震数据振幅改变的因素 -------数据采集系统
激发与接收条件的变化 震源和检波器的耦合状况变化 风化层性质横向变化