线性规划数学模型

合集下载

线性规划的数学模型

线性规划的数学模型

线性规划的数学模型引言线性规划(Linear Programming, LP)是数学规划的一种方法,用于解决一类特殊的优化问题。

线性规划的数学模型可以表示为一个线性的目标函数和一系列线性约束条件。

本文将介绍线性规划的数学模型及其应用。

数学模型线性规划的数学模型可以用以下形式表示:最大化:$$ \\max_{x_1,x_2,...,x_n} Z=c_1x_1+c_2x_2+...+c_nx_n $$约束条件:$$ \\begin{align*} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n&\\leq b_1 \\\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n &\\leq b_2 \\\\ &\\vdots \\\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n&\\leq b_m \\\\ x_1,x_2,...,x_n &\\geq 0 \\end{align*} $$其中,Z为目标函数的值,Z1,Z2,...,Z Z为目标函数的系数,Z1,Z2,...,Z Z为决策变量,Z ZZ为约束条件的系数,Z1,Z2,...,Z Z为约束条件的右侧常数。

线性规划的应用线性规划在实际问题中有广泛的应用,其应用领域包括但不限于以下几个方面:生产计划线性规划在生产计划中的应用是最为常见的。

通过建立适当的数学模型,可以最大化生产线的产能,同时满足客户需求和资源限制。

例如,一个工厂需要决定每个月生产的产品数量,以最大化利润。

这个问题可以通过线性规划来解决。

运输问题线性规划在运输问题中的应用也非常广泛。

运输问题涉及到将特定产品从供应地点运送到需求地点,以满足需求并尽量降低运输成本。

线性规划可以用来决定每个供应地点到每个需求地点的运输量,以最小化总运输成本。

资源分配在资源有限的情况下,线性规划可以用于优化资源的分配。

线性规划模型

线性规划模型

j 1
i 1
将目标函数和约束条件放在一起,即得指派问题的数学模型.
第i人花费在第j项工作的时间用cijxij表示,在所有的工作中,第i人干仅干一项工作,
若第i人被分配去干第j0项工作,则当j0≠j时,cijxij=0,所以花费的总时间为T

nn
cij xij
.
i1 j 1
n
n
对于第i人,应有 xij 1 ;对于第j项工作,应有 xij 1 .
cT x
Ax b

A
eq
x beq
l b x u b
Matlab中求解线性规划的命令为:
[x,fval]=linprog(c,A,b,Aeq,beg,lb,ub)
其中,x返回的决策变量x的取值,fvla返回的是目标函数的最优值.
注:若没有某种约束,则相应的系数矩阵赋值为空矩阵,如没有等式约束,则令Aeq=[], beq=[].
(7)模型的分析与评价
在建立线性模型是,总是假定aij,bi,cj都是常数,但实际上这些系数往往是估计值 和预测值,如市场条件一变,aij值就会变化;bi往往因工艺条件的改变而改变;cj是根据 资源投入后的经济效果决定的一种决策选择.因此,这些参数在什么范围内变化时,线 性规划问题的最优解不变.
2.整数规划模型
3. 0-1整数模型
在部分规划问题中,每个需要做的决策只有两种时,可以使用0-1整数规划建模,它的 变量xi仅取值0或1.此类模型可用Lingo和Matlab求解.Matlab中规定0-1整数规划模型中的标准形 式为:
min cT x Ax b
s.t. Aeq x beq
Matlab中求解0-1规划的命令为: [x,fval]=bintprog(c,A,b,Aeq,beq)

线性规划基本模型

线性规划基本模型
单纯形法是一种求解线性规划问题的经 典算法,其基本思想是通过不断迭代来 寻找最优解。
在每次迭代中,单纯形法会根据目标函数的 系数和约束条件,通过一系列的数学运算, 将问题转化为更简单的形式,直到找到最优 解或确定无解。
单纯形法具有简单易懂、易于实现 的特点,是解决线性规划问题最常 用的方法之一。
对偶问题
等式约束
等式约束优化是指在优化问题中包含等式约束的线性规划问题。等式约束通常 表示决策变量之间的关系,满足等式约束是找到最优解的必要条件。
求解算法
对于包含等式约束的线性规划问题,可以采用一些特殊的算法进行求解,如消 元法或拉格朗日乘子法。这些算法能够更高效地处理等式约束,并找到最优解。
05
线性规划的扩展模型
线性规划基本模型
• 线性规划概述 • 线性规划的基本概念 • 线性规划的求解方法 • 线性规划的优化方法 • 线性规划的扩展模型 • 线性规划的实际应用案例
01
线性规划概述
定义与特点
定义
线性规划是一种数学优化方法,通过 在一定的约束条件下最大化或最小化 一个线性目标函数,来找到一组变量 的最优解。
现状
目前,线性规划已经发展成为一 个成熟的学科分支,有许多成熟 的算法和软件工具可用于解决各 种实际问题。
02
线性规划的基本概念
线性方程组
线性方程组
01
线性规划问题通常由一组线性方程组成,这些方程描述了决策
变量之间的关系。
线性方程的解
02
线性方程组可能有多个解,但在线性规划中,我们通常只关心
满足特定约束条件的解。
资源利用
线性规划可以确定最佳的资源利用方案,包括原材料、设备、劳动力等,以最小化生产成本或最大化 利润。

优化模型一:线性规划模型数学建模课件

优化模型一:线性规划模型数学建模课件
题的求解过程。
混合整数线性规划问题求解
要点一
混合整数线性规划问题的复杂性
混合整数线性规划问题是指包含整数变量的线性规划问题 。由于整数变量的存在,混合整数线性规划问题的求解变 得更加困难,需要采用特殊的算法和技术来处理。
要点二
混合整数线性规划模型的求解方 法
为了解决混合整数线性规划问题,可以采用一些特殊的算 法和技术,如分支定界法、割平面法等。这些方法能够将 问题分解为多个子问题,并逐步逼近最优解,从而提高求 解效率。
目标函数的类型
常见的目标函数类型包括最小化、最大化等。
确定约束条件
约束条件
01
约束条件是限制决策变量取值的条件,通常表示为数学不等式
或等式。
确定约束条件的原则
02
根据问题的实际情况,选择能够反映问题约束条件的条件作为
约束条件。
约束条件的类型
03
常见的约束条件类型包括等式约束、不等式约束等。
线性规划模型的建立
也可以表示为
maximize (c^T x) subject to (A x geq b) and (x leq 0)。
线性规划的应用场景
生产计划
物流优化
在制造业中,线性规划可以用于优化生产 计划,确定最佳的生产组合和数量,以满 足市场需求并降低成本。
在物流和运输行业中,线性规划可以用于 优化运输路线、车辆调度和仓储管理,降 低运输成本和提高效率。
初始基本可行解
在线性规划问题中,一个解被称为基 本可行解,如果它满足所有的约束条 件。
在寻找初始基本可行解时,可以采用 一些启发式算法或随机搜索方法,以 快速找到一个可行的解作为起点。
初始基本可行解是线性规划问题的一 个起始点,通过迭代和优化,可以逐 渐逼近最优解。

线性规划问题及其数学模型

线性规划问题及其数学模型

第一章线性规划问题及其数学模型一、问题旳提出在生产管理和经营活动中常常提出一类问题,即怎样合理地运用有限旳人力、物力、财力等资源,以便得到最佳旳经济效果。

例1 某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需旳设备台时及A、B两种原材料旳消耗,如表1-1所示。

表1-1该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应怎样安排计划使该工厂获利最多?这问题可以用如下旳数学模型来描述,设x1、x2分别表达在计划期内产品I、II旳产量。

由于设备旳有效台时是8,这是一种限制产量旳条件,因此在确定产品I、II旳产量时,要考虑不超过设备旳有效台时数,即可用不等式表达为:x1+2x2≤8同理,因原材料A、B旳限量,可以得到如下不等式4x1≤164x2≤12该工厂旳目旳是在不超过所有资源限量旳条件下,怎样确定产量x1、x2以得到最大旳利润。

若用z表达利润,这时z=2x1+3x2。

综合上述,该计划问题可用数学模型表达为:目旳函数 max z =2x 1+3x 2 满足约束条件 x 1+2x 2≤84x 1≤16 4x 2≤12 x 1、x 2≥0例2 某铁路制冰厂每年1至4季度必须给冷藏车提供冰各为15,20,25,10kt 。

已知该厂各季度冰旳生产能力及冰旳单位成本如表6-26所示。

假如生产出来旳冰不在当季度使用,每千吨冰存贮一种季度需存贮费4千元。

又设该制冰厂每年第3季度末对贮冰库进行清库维修。

问应怎样安排冰旳生产,可使该厂整年生产费用至少?解:由于每个季度生产出来旳冰不一定当季度使用,设x ij 为第i 季度生产旳用于第j 季度旳冰旳数量。

按照各季度冷藏车对冰旳需要量,必须满足:⎪⎪⎩⎪⎪⎨⎧++++++33231343221242114144x x x x x x x x x x 。

,,,25201510==== 又每个季度生产旳用于当季度和后来各季度旳冰旳数量不也许超过该季度旳生产能力,故又有⎪⎪⎩⎪⎪⎨⎧++++++33232213121143424144x x x x x x x x x x 。

第二章线性规划的图解法

第二章线性规划的图解法

➢ 答案:
X2 ➢ 最优解为: x1 =15 ,x2=10 40 ➢ 最优值为:z*=2500×15+1500×10

30
=52500
3x2=75
20
(15,10)
10
O
10
20
30
40
50 X1
3x1+2x2=65
2x1+x2=40
五、线性规划问题解的情况
➢ 例1.5的最优解只有一个,这是线性规划问题 最一般的解的情况,但线性规划问题解的情 况还存在其它特殊的可能:无穷多最优解、 无界解或无可行解。
... am1x1+am2x2 +…+amnxn≤( =, ≥ )bm x1 ,x2 ,… ,xn ≥ ( ≤) 0 或无约束
xj为待定的决策变量; cj为目标函数系数,或价值系数、费用系数; aij为技术系数; bj为资源常数,简称右端项; 其中i=1,2,…m; j=1,2,…n
可以看出,一般LP模型的特点: A、决策变量x1,x2,x3,……xn表示要寻求
O
100 200 300
X1
3、无界解的情况
➢若将例1.5的线性规划模型中约束条件1、2的 不等式符号改变,则线性规划模型变为:
➢ 目标函数:Max z= 50x1+100 x2 约束条件:x1+x2 ≥ 300 2x1+x2 ≥ 400 x2≤250 x1 ≥0, x2 ≥0
B、定义决策变量;
C、用决策变量的线性函数形式写出所要追求 的目标,即目标函数;
D、用一组决策变量的等式或不等式来表示在 解决问题过程中所必须遵循的约束条件。
三、线性规划的数学模型
1、LP模型的一般形式 目标函数:

最新-第三章线性规划数学模型课件-PPT

最新-第三章线性规划数学模型课件-PPT

X1
18
例4、 maxZ=3X1+2X2
X2
-X1 -X2 1
X1 , X2 0
无解
无可行解
-1
0
X1
-1
19
总结
唯一解 有解
无穷多解 无解 无有限最优解
无可行解
20
单纯形法
• 单纯形法(Simplex Method)是美国数学 家但泽(Dantzig)于1947年提出的。基 本思想是通过有限次的换基迭代来求出 线性规划的最优解。
3
线性规划的特点
❖决策变量连续性:求解出的决策变量值 可以是整数、小数;
❖线性函数:目标函数方程和约束条件方 程都是线性方程;
❖单目标:目标函数是单目标,只有一个 极大值或一个极小值;
❖确定性:只能应用于确定型决策问题。
4
例1、生产计划问题
A B 备用资源
煤12
30
劳动日 3 2
60
仓库 0 2
• 利用单纯形法解决线性规划问题,实际上是从 线性规划问题的一个基本可行解转移到另一个 基本可行解,同时目标函数值不减少的过程。
• 对于两个变量的线性规划问题,就是从可行域 的一个端点转移到另一个端点,而使得目标函 数的值不减少。
25
线性规划的扩展
一、整数规划(整数线性规划):部分或 全部的决策变量只能取整数值。
8
一般式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn (=, )b1 a21X1+ a22X2+…+ a2nXn (=, )b2 ……… am1X1+ am2X2+…+ amnXn (=, )bm Xj 0(j=1,…,n)

线性规划概念与数学模型

线性规划概念与数学模型

约束条件的图解:
每一个约束不等式在平面直角坐标系中都 代表一个半平面,只要先画出该半平面的边 界,然后确定是哪个半平面。
怎么画边界
?
怎么确定 半平面
以第一个约束条件(工时)
x1+2 x2 8 为例 说明约束条件的图解过程。
如果全部的劳动工时都用来生产甲 产品而不生产
乙产品,那么甲产品的最大可能产量为8吨,计算
D
条件的边界--
4
Q4
Q3
直线CD,EF: E
3
F
4x1 =16,4x2 =12
2
Q2 4x2 = 12
1
Q1
0
1
2
3
4
5
6
7
8
9
B
C
x1+4x2 = 8
4x1=16
三个约束条件及非负条件x1,x2 0所代表的公共部分
--图中阴影区,就是满足所有约束条件和非负条件的点的
集合,即可行域。在这个区域中的每一个点都对应着一个可
目标函数值递增的方向, 用箭头标出这个方向。 图中两条虚线 l1和l2就 分别代表 目标函数等值线 2x1+3x2=0 和 2x1+3x2=6, 箭头表示使两种产品的总 利润递增的方向。
5
l3
A4
E
B
3
l1 l2 2
1
1
2
D
F 4x1=12
Q2 4,2
x1+2x2 = 8
A
3
4
5
6
7
8
9
B
4x1=16 C
1 1
1 1
1 1
B1 1
4 , B2 1

线性规划问题及其数学模型

线性规划问题及其数学模型

6
例 : min z x1 2 x2 3x3
x1
x2 x3 7 x7
x1
x2 x3 2
3x1 x2 2 x3 7
x1, x2 0, x3无约x束 3 x4 x5
上页 下页 返回
解 :标准形为
max z x1 2x2 3(x4 x5 ) 0x6 0x7
供需平衡
上页 下页 返回
线性规划模型举例
(一) 运输问题 (二) 布局问题 (三) 分派问题 (四) 生产计划问题 (五) 合理下料问题
上页 下页 返回
线性规划模型的条件
• (1)要求解问题的目标函数能用数 值指标来反映,且为线性函数;
• (2)存在着多种方案; • (3)要求达到的目标是在一定约束
• “” 约束:加入非负松驰变量
例: max z 2x1 3x2 0x3 0x4 0x5
x1 2x2 x3
8
4
x1
4 x2
x4 16 x5 12
x1, x2 , x3, x4 , x5 0
上页 下页 返回
• “” 约束: 减去非负剩余变量;
• xk可正可负(即无约束);
x 令 xk Mxak' x xk" xk' , xk" 0
i 1
每人只做一件工作
n xij 1
每人i 对每1,件2工,作只, n有
j 1
做与不做两种情况
xij 0 或 1 i, j 1,2,, n
上页 下页 返回
(四)生产组织与计划问题
(Ⅰ) 生产的机器最多 (Ⅱ) 总的加工成本最低 (Ⅲ)生产存储问题
上页 下页 返回
(四)生产组织与计划问题 应如何分配机

《管理运筹学》02-1线性规划的数学模型及相关概念

《管理运筹学》02-1线性规划的数学模型及相关概念

03 线性规划的求解方法
单纯形法
1
单纯形法是一种求解线性规划问题的经典算法, 其基本思想是通过不断迭代来寻找最优解。
2
单纯形法的基本步骤包括:建立初始单纯形表格、 确定主元、进行基变换、更新单纯形表格和判断 是否达到最优解。
3
单纯形法在处理大规模线性规划问题时,由于其 迭代次数与问题规模呈指数关系,因此计算量较 大。
06 线性规划的案例分析
生产计划问题
总结词
生产计划问题是一个常见的线性规划应用场景,通过合理安排生产计划,企业可以优化资源利用,降低成本并提 高利润。
详细描述
生产计划问题通常涉及确定不同产品组合、生产数量、生产批次等,以满足市场需求、资源限制和利润目标。线 性规划模型可以帮助企业找到最优的生产计划,使得总成本最低或总利润最大。
最优性条件由单纯形法推导得出,是判断线性规划问题是否达到最优解的 重要依据。
解的稳定性
解的稳定性是指最优解在参数变化时保持相对稳定的能力。
在实际应用中,由于数据的不确定性或误差,参数可能会发生变化。因此,解的稳 定性对于线性规划问题的实际应用非常重要。
解的稳定性取决于目标函数和约束条件的性质,以及求解算法的鲁棒性。在某些情 况下,可以通过敏感性分析来评估解对参数变化的敏感性。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
目标函数是需要最大或最小化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是问题中给定的限制条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$ 或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。

( 6 )线性规划

( 6 )线性规划

x j ,即 x j 没有非负限制,则令

将下面线性规划问题化成标准型
max z x1 x2
四、线性规划解的性质
(一)几个概念 1.凸集 若连接n维点集S中任意两点 x , x 的线段
仍在S内,则称S为凸集。
(1) (2)
x 即:
(1)
, x ∈S,有 x (1 ) x ∈S,0≤λ≤1,
均为最小值点,即 AB连线上任一点均为解,故解有 无穷多个。
若线性规划问题
的约束条件为
由上图可知,此时可行域不存在,即可行解集 S=Φ,无可行解,也就没有最优解。
从几何直观上可以看到,可行域为一凸多边形,且
有几种可能:有惟一解,则一定在可行域的某个顶 点达到最优;有无穷多解,一定在可行域的某一边 界上达到最优;若可行域非空,但无解,则可行域 无界;若无可行解,则无最优解。由此可猜想:如
果可行域为凸多边形,且有最优解,则它一定在某
个顶点上达到。事实上,不难证明这一点。对于凸 多面体上的高维线性规划问题,若有最优解,也可
以证明最优解一定在凸多面体的顶点处达到。
三、线性规划的标准型
用图解法求解,虽然简单,但不实用,因而
有必要寻找另外的求解方法。 我们规定标准型为
矩阵形式
化成标准型
( 0)
若rank(A)=m,则每个基解的非零分量的个
数≤m。若个数<m,则称该基解是退化的,否则称
为非退化的。
(二)线性规划问题解的性质
1.线性规划问题的可行解为凸集。因而任意连接 两个可行解的线段上的点仍是可行解。 2.最优值可以在极点上达到。 3. 可行解集 S 中的点 x 是极点的充要条件是 x 为基 可行解。

线性规划模型

线性规划模型

线性规划模型线性规划(Linear Programming,LP)是一种用于求解线性优化问题的数学建模方法。

线性规划模型是在一组线性约束条件下,通过线性目标函数来寻找最优解的数学模型。

其基本形式如下:最大化或最小化:Z = c₁x₁ + c₂x₂ + … + cₙxₙ(目标函数)约束条件为:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ ≤ b₂…aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ ≤ bₙx₁, x₂, …, xₙ ≥ 0其中,c₁, c₂, …, cₙ为目标函数中各项的系数;a₁₁,a₁₂, …, aₙₙ为约束条件中各项的系数;b₁, b₂, …, bₙ为约束条件中的常数项;x₁, x₂, …, xₙ为决策变量。

线性规划模型的求解过程分为以下几个步骤:1. 建立数学模型:根据问题的描述,确定决策变量,确定最优化目标,建立目标函数和约束条件。

2. 确定可行解区域:根据约束条件,画出约束条件所确定的可行解区域。

3. 求解最优解:在可行解区域内寻找目标函数最大化或最小化的解。

常用的求解方法有单纯形法和对偶单纯形法。

4. 解释结果:根据最优解,给出对决策变量和目标函数的解释,进一步分析结果的意义。

线性规划模型适用于许多实际问题的求解,如生产计划、资源分配、物流调度等。

通过构建适当的数学模型,可以帮助管理者做出理性决策,最大化或最小化目标函数。

然而,线性规划模型也有其局限性。

首先,线性规划只能处理线性约束条件和线性目标函数,对于非线性问题无法求解。

其次,线性规划假设决策变量是连续的,对于离散的决策问题,线性规划无法适用。

此外,线性规划模型还需要求解算法的支持,对于复杂问题需要较高的计算资源。

总之,线性规划模型是一种常用的数学建模方法,通过线性约束条件和线性目标函数,求解最优解,帮助解决实际问题。

但线性规划模型也有其适用范围和局限性,需要根据具体问题来选择合适的求解方法。

数学模型之数学规划模型

数学模型之数学规划模型

多目标规划模型的应用案例
资源分配问题
投资组合优化
在有限的资源条件下,如何分配资源 以达到多个目标的优化,如成本、质 量、时间等。
在风险和收益的权衡下,如何选择投 资组合以达到多个目标的优化,如回 报率、风险分散等。
生产计划问题
在满足市场需求和生产能力限制的条件 下,如何制定生产计划以达到多个目标 的优化,如利润、成本、交货期等。
整数规划模型的应用案例
总结词
整数规划模型在生产计划、资源分配、物流优化等领域有广泛应用。
详细描述
在生产计划领域,整数规划模型可以用于安排生产计划、优化资源配置和提高生产效率。在资源分配 领域,整数规划模型可以用于解决资源分配问题,例如人员分配、物资调度等。在物流优化领域,整 数规划模型可以用于车辆路径规划、货物配载等问题,提高物流效率和降低运输成本。
数学规划模型可以分为线性规划、非线性规划、整数规划、动态 规划等类型,根据问题的特性选择合适的数学规划模型进行建模 。
数学规划模型的应用领域
01
02
03
04
生产计划
数学规划模型可以用于制定生 产计划,优化资源配置,提高 生产效率。
物流运输
通过建立数学规划模型,可以 优化物流运输路线和运输方式 ,降低运输成本。
80%
金融投资组合优化
通过建立线性规划模型,可以优 化投资组合,实现风险和收益的 平衡。
03
非线性规划模型
非线性规划模型的定义
非线性规划模型是一种数学优化模型 ,用于解决目标函数和约束条件均为 非线性函数的问题。
它通过寻找一组变量的最优解,使得 目标函数达到最小或最大值,同时满 足一系列约束条件。
• 整数规划与混合整数规划的拓展:整数规划模型解决了离散变量的优化问题,混合整数规划则进一步扩展了整数规划的适 用范围。

线性规划模型(1)

线性规划模型(1)

线性规划模型简介线性规划(Linear Programming, LP)是数学规划的一种重要分支,它旨在寻找一组线性方程的最佳解。

线性规划模型广泛应用于运筹学、经济学、管理学等领域,具有较强的实践意义。

基本概念目标函数在线性规划模型中,目标函数是线性方程组中的一个方程,用于表示要优化的目标。

通常情况下,线性规划问题有两类目标:最小化目标和最大化目标。

最小化目标函数的线性规划问题称为“最小化问题”,最大化目标函数的线性规划问题称为“最大化问题”。

约束条件线性规划的约束条件是一个线性方程组,用于限制解的可行域。

约束条件可以是等式约束或不等式约束。

等式约束要求线性方程组的解满足给定的等式关系,不等式约束要求线性方程组的解满足给定的不等式关系。

可行解在线性规划问题中,可行解是满足所有约束条件的解。

可行解是问题的解空间中的一个点。

最优解最优解是在线性规划模型中要求得的解,它是使目标函数取得最大(或最小)值的可行解。

线性规划问题的一般形式线性规划问题可以用以下一般形式表示:max/min Z = c^T * xsubject to:Ax <= bx >= 0其中,Z是目标函数的值,c是目标函数的系数向量,x是决策变量向量。

A是约束条件矩阵,b是约束条件的右侧常数列。

线性规划模型的求解方法线性规划模型可以通过多种方法来求解,常见的方法有: 1. 单纯形法(Simplex Method):单纯形法是一种迭代求解线性规划问题的方法。

该方法通过逐步移动顶点来搜索可行解空间,直到找到最优解。

2. 内点法(Interior Point Method):内点法是一种直接求解线性规划问题的方法。

该方法利用内点理论,在可行解空间内搜索最优解。

3. 分支定界法(Branch-and-Bound Method):分支定界法将线性规划问题划分为多个子问题,并通过剪枝策略逐步缩小搜索范围,直到找到最优解。

4. 整数规划算法(Integer Programming Algorithms):当线性规划问题的决策变量要求为整数时,可以使用整数规划算法进行求解。

线性规划模型

线性规划模型

线性规划模型线性规划模型是一种数学模型,用于解决优化问题,确保特定的目标实现而满足一定约束条件。

它是基于线性关系的一类优化模型,其目的是最大化或最小化一个线性函数,同时满足相关的线性约束条件。

线性规划模型涉及了数学、经济、管理、工程等领域,常常被用于优化决策和资源分配。

线性规划模型有五个基本要素:决策变量、目标函数、约束条件、可行解和最优解。

其中,决策变量是待优化的参数或变量;目标函数是一个以决策变量为自变量的线性函数,代表目标的数学表达式;约束条件是必须满足的限制条件,它们也是线性函数形式;可行解是满足所有约束条件的决策变量组合,这些组合可以被用于计算目标函数的值;最优解是在所有可行解中,能够使目标函数取得极值(最大化或最小化)的可行解。

线性规划模型的主要应用在资源优化领域,例如制造、物流、贡献分析和供应链管理。

其中,生产调度和库存管理是常见的应用场景。

生产调度通常涉及如何分配生产设备的时间和资源,以最小化成本并最大化效益。

库存管理通常涉及如何保持合理库存水平以满足需求,同时尽量减少成本和风险。

线性规划模型计算软件广泛应用,其中最广泛的是 Microsoft Excel 中的插件,如Solver。

Solver 可以通过线性规划模型来找到最佳决策组合,以最小化或最大化目标函数。

其他流行的线性规划软件包包括 MATLAB,AMPL 和 Gurobi 等。

然而,线性规划模型有几个限制:一是实际问题往往不是线性的,因此需要更复杂的模型来处理更复杂的问题;二是线性规划模型假设所有参数是确定的,但在许多情况下参数是不确定的,需要采用随机规划模型。

因此,针对问题的实际特点和需求,选择更合适的数学模型和工具是非常重要的。

总之,线性规划模型是优化问题的一个强大工具,可以在许多领域帮助决策者做出最佳决策。

然而,在应用模型过程中要仔细考虑模型的局限性,并尝试更复杂的模型,以获得更好的决策结果。

线性规划模型和图解法全

线性规划模型和图解法全
本章教学目的、重点、难点:
Chapter2 线性规划模型和图解法
1. 规划问题阐述
生产和经营管理中经常提出如何合理安排,使人力、物力等各种资源得到充分利用,获得最大的效益,这就是规划问题。
线性规划通常解决下列两类问题:
(1)当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源 (如资金、设备、原标材料、人工、时间等)去完成确定的任务或目标
练习: 用图解法求解下面线性规划模型:
线性规划模型的图解法
分析: 用图解法求解下面线性规划模型: 图1最大化线性规划模型的图解法
分析:
用图解法求解下面线性规划模型:
多边形区域OABCD中的点就是线性规划问题的可行解(可行点),多边形区域 OABCD称为线性规划问题的可行解区域。显然它是一个凸区域。
图解法简单直观,有助于领会线性规划的基本性质及一般求解方法的基本思想。
例1.4 用图解法求解线性规划问题
max Z = 2X1 + X2 X1 + 1.9X2 ≥ 3.8 X1 - 1.9X2 ≤ 3.8 s.t. X1 + 1.9X2 ≤10.2 X1 - 1.9X2 ≥ -3.8 X1 ,X2 ≥ 0
X1 - 1.9X2 = -3.8(≥)
X1 + 1.9X2 = 10.2 (≤)
(7.6,2)
D
L0: 0=3X1+5.7X2
max Z
34.2 = 3X1+5.7X2
蓝色线段上的所有点都是最 优解这种情形为有无穷多最 优解,但是最优目标函数值 max Z=34.2是唯一的。
可行域
线性规划模型的图解法
下面介绍QM软件的使用方法:
线性规划模型的图解法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配料问题
原料 化学成分
成分含量(%)


产品成分 最低含量(%)
A
12
3
4
B
2
3
2
C
3
15
5
成本(元/千克) 3
2
z
x1
x2
min z = 3x1+2x2 12 x1 +3x2 ≥ 4 2 x1 +3x2 ≥ 2
s.t. 3 x1+15x2 ≥ 5 x1 +x2 = 1 x1 , x2 ≥ 0
配料平衡条件
二、配料问题的数学模型
改写成
- x11 + x12 + x13 ≤ 0 - x11+ 3x12 -x13 ≤ 0 -3x21 +x22 + x23 ≤ 0
x21 +x22 - x23 ≤ 0
⑵ 资源约束(据表2-4)
x11+ x21 + x31 ≤ 100 x12+ x22 + x32 ≤ 100 x13+ x23 + x33 ≤ 60
二、配料问题的数学模型
三、目标函数
⑴ 总产值(据表2-3) 产品X的产值: 50(x11+ x12 + x13 ) 产品Y的产值: 35(x21+ x22 + x23 ) 产品Z的产值: 25(x31+ x32 + x33 )
以上三项之和即总产值。
⑵ 总成本(据表2-4) 原料A的成本: 65(x11+ x21 + x31 ) 原料B的成本: 25(x12+ x22 + x32 ) 原料C的成本: 35(x13+ x23 + x33 )
二、约束条件
⑴ 规格约束(据表2-3)
x11 x11+ x12 + x13
≥ 0.50
x21 x11+ x12 + x13
≥ 0.25
j i
XHale Waihona Puke Y ZABCx11 x12 x13 x21 x22 x23 x31 x32 x33
x12 x11+ x12 + x13
x22 x11+ x12 + x13
≤ 0.25 ≤ 0.50
通过学习本章,应当了解线性规划的有关概念,掌握线性规划 模型的建立及优化方法,会用计算机对大型线性规划模型问题 进行求解和分析。本章的难点为单纯形计算方法。
2
第一节 线性规划问题的提出
线性规划是运筹学的一个重要分支,主要用于研究解 决有限资源的最佳分配问题,即如何对有限资源做出 最佳方式的调配和最有利的使用,以便最充分地发挥 资源的效能,以获取最佳经济效益。
线性规划要研究的两类问题中都有一个限制条件:第 一类问题是给出一定量的人力、物力和财力等资源; 第二类问题是给定一项任务。
4
第二节 线性规划问题的数学模型
当用线性规划的方法对实际问题进行优化时, 必须把这个实际问题用恰当的数学形式表达出 来,这个表达的过程,就是建立数学模型的过 程。数学模型的建立需要经验和技巧以及有关 的专业知识,只有通过大量的实践,在建立模 型时才能得心应手。初学时可从题目中所给出 的限制条件和目标入手,由限制条件建立起线 性方程组,由目标得到目标函数。
原料D不少于25% 原料P不超过50%
单价(元/kg)
50 35
原料
最大供量 (kg/天)
单价 (元/kg)
A 100
65
B 100
25
Z
不限
25
C 60
35
应如合配制,才能使利润达到最大?
二、配料问题的数学模型
一、决策变量
设以 xij 表示每天生产的 第i 种产品中所含第j 种原料 的数量(kg,右表)。
它的适用领域非常广泛,从工业、农业、商业、交通 运输业、军事的计划和管理及决策到整个国民经济计 划的最优方案的提出,都有它的用武之地,是现代管 理科学的重要基础和手段之一。
3
第一节 线性规划问题的提出
线性规划研究的问题主要有以下两类。
(1) 给出一定量的人力、物力、财力等资源,如何统筹 规划这些有限资源完成最大任务。(如资金、设备、原标 材料、人工、时间等) (2) 给定一项任务,如何运筹规划,合理安排,以最少 资源来完成它。(如产品量最多 、利润最大.)
≤0
s.t. x11
x21+x22 - x23
+x21
+x31
≤0 ≤ 100
x12
+x22
+x32 ≤ 100
x13
+x23
+x33≤ 60
xij ≥ 0, i = 1, 2, 3; j = 1, 2, 3
配料问题
练习: 某化工厂根据一项合同要为用户生产一种用 甲、乙两种原料混合配制而成的特殊产品。甲、乙 两种原料都含有A,B,C三种化学成分,其含量 (%)是:甲为12,2, 3;乙为3,3,15。按合同规 定,产品中三种化学成分的含量(%)不得低于4,2, 5。甲、乙原料成本为每千克3,2元。厂方希望总 成本达到最小,则应如何配制该产品?
以上三项之和即总成本。
二、配料问题的数学模型
目标函数为:
总利润 = 总产值 - 总成本
该问题的数学模型为:
max z =- -x1115x+11x+122+5xx1123+15x13-30x21+10x22-40x31≤-100x33
- x11+3x12 - x13
≤0
-3x21+x22 +x23
下面,结合若干个实际问题讨论数学模型的建 立。
5
一、投资问题的数学模型
解(参见教材P15)
6
二、配料问题的数学模型
解(参见教材P16)
二、配料问题的数学模型
某化工厂要用三种原料 A,B,C 混合配制三种不同规格
的产品 X,Y,Z。有关数据如下:
表2-3
表2-4
产品
X Y
规格
原料D不少于50% 原料P不超过25%
14
三、人力资源问题的数学模型
解(参见教材P17)
三、人力资源问题的数学模型
练习: 某昼夜服务的公交线路每天各时间段内 所需司机和乘务人员人数如下表所示:
班次 1 2 3 4 5 6
时间 6:00——10:00 10:00——14:00 14:00——18:00 18:00——22:00 22:00——2:00 2:00——6:00
1 第二章 线 性 规 划(Linear Programming)
线性规划问题是目标函数和约束条件均为线性的最优化问题。 自从1947年丹捷格(Dantzig)提出求解线性规划的单纯形方法以 来,线性规划在理论上趋向成熟。特别是在计算机能处理成千 上万个约束条件和决策变量的线性规划问题之后,线性规划的 适用领域更为广泛,已成为现代管理中经常采用的基本方法之 一。线性规划是最优化问题中的重要领域之一,很多运筹学中 的实际问题都可以用线性规划来表述。很多其他种类的最优化 问题算法也都可以分拆成线性规划子问题,然后求解。
相关文档
最新文档