复旦大学第三版数学分析答案大全
高等数学复旦大学出版第三版下册课后答案习题全之欧阳引擎创编
习题七欧阳引擎(2021.01.01)1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2)s==(3)s==(4)s==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故s==s==.5z6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则解得14z=9).即所求点为M(0,0,1497. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8. 验证:()()a b c a b c.++=++证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a, b, c 表示23.-u v解:10. 把△ABC 的BC 边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A 连接,试以AB =c ,BC =a 表示向量1D A ,2D A ,3D A 和4D A . 解:1115D A BA BD =-=--c a11. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M 的投影为M ',则12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A(x, y, z),则解得x=-2, y=3, z=0故A 的坐标为A(-2, 3, 0).13. 一向量的起点是P1(4,0,5),终点是P2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量. 解:(1)12Pr j 3,x x a PP ==(2) 12(7PP == (3) 12cos 14xa PP α==12cos 14za PP γ== (4) 12012{14PP PP ===-e j . 14. 三个力F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)15. 求出向量a= i+j+k, b=2i-3j+5k 和c=-2i-j+2k 的模,并分别用单位向量,,a b c e e e 来表达向量a, b, c. 解:||=a 16. 设m=3i+5j+8k, n=2i-4j-7k, p=5i+j-4k,求向量a=4m+3n-p 在x 轴上的投影及在y 轴上的分向量.解:a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k在x 轴上的投影ax=13,在y 轴上分向量为7j.17.解:设{,,}x y z a a a a =则有 求得12x a =.设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则222cos 42a ba b π⋅=⇒=⋅ 则214y a = 求得12y a =± 又1,a =则2221x y z a a a ++=从而求得11{,,}222a =±或11{,,}222-± 18. 已知两点M1(2,5,-3),M2(3,-2,5),点M 在线段M1M2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x, y, z}因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标.解:设P 的坐标为(x, y, z ),2222||(12)49PA x y z =++-=得2229524x y z z ++=-+又122190cos 2, 749x x α==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a, b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a·b; (2) (3a-2b)·(a+ 2b).解:(1)a·b=2π1cos ||||cos 3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b21. 已知a=(4,-2, 4), b=(6,-3, 2),计算:(1)a·b; (2) (2a-3b)·(a+ b); (3)2||-a b 解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}23. 若向量a+3b 垂直于向量7a-5b,向量a-4b 垂直于向量7a-2b,求a 和b 的夹角.解: (a+3b)·(7a-5b)=227||1615||0+⋅-=a a b b ①(a-4b)·(7a-2b) = 227||308||0-⋅+=a a b b ②由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 24. 设a=(-2,7,6),b=(4,-3,-8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直.证明:以a,b 为邻边的平行四边形的两条对角线分别为a+b,a -b,且a+b={2,4,-2}a-b={-6,10,14}又(a+b)·(a-b)= 2×(-6)+4×10+(-2)×14=0故(a+b)⊥(a-b).25. 已知a=3i+2j-k, b=i-j+2k,求:(1) a×b;(2) 2a×7b;(3) 7b×2a; (4) a×a.解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b)×(a -b)|;(2) |(3a +b)×(a -2b)|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a b(2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b a27. 求垂直于向量3i-4j-k 和2i-j+k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b 平行的单位向量)||⨯==--+⨯a b e i j k a b||sin||||26θ⨯===⨯a b a b . 28. 一平行四边形以向量a=(2,1,-1)和b=(1,-2,1)为邻边,求其对角线夹角的正弦.解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++=l l i j k所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.29. 已知三点A(2,-1,5), B(0,3,-2), C(-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯.证明:中点M ,N ,P 的坐标分别为故 1()4MN MP AC BC ⨯=⨯.30.(1)解: x y z x y z i j k a b a a a b b b ⨯=则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()() 若,,C a b 共面,则有 a b ⨯后与 C 是垂直的. 从而C 0a b ⨯⋅=() 反之亦成立. (2)C xy z x y z x y z a a a a b b b b C C C ⨯⋅=() 由行列式性质可得:故 C a ?b a b b C C a ⨯⋅=⨯⋅=⨯⋅()()()31. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积.解:设四顶点依次取为A, B, C, D.则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=ij k . 同理可求其他三个三角形的面积依次为12故四面体的表面积12S =+ 32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则13BCD V S h =⋅⋅,而11948222BCD S BC BD i j k =⨯=--+= 又BCD ∆所在的平面方程为:48150x y z +-+=则43h == 故1942323V =⋅⋅= 33. 已知三点A(2,4,1), B(3,7,5), C(4,10,9),证:此三点共线. 证明:{1,3,4}AB =,{2,6,8}AC = 显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M0(1,1,1)连成的向量与向量n=(2,3,-4)垂直,求动点的轨迹方程.解:设动点为M(x, y, z)因0M M n ⊥,故00M M n ⋅=.即2(x-1)+3(y-1)-4(z-1)=0整理得:2x+3y-4z-1=0即为动点M 的轨迹方程.35.求通过下列两已知点的直线方程:(1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).解:(1)两点所确立的一个向量为s={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为另取x0=0代入直线一般方程可解得y0=7,z0=17于是直线过点(0,7,17),因此直线的标准方程为:且直线的参数方程为:37. 求过点(4,1,-2)且与平面3x-2y+6z=11平行的平面方程. 解:所求平面与平面3x-2y+6z=11平行故n={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x-4)-2(y-1)+6(z+2)=0即3x-2y+6z+2=0.38. 求过点M0(1,7,-3),且与连接坐标原点到点M0的线段OM0垂直的平面方程.解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x-1+7(y-7)-3(z +3)=0即x+7y-3z-59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有得b=2. 故所求平面方程为1424x y z ++=40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程. 解:由平面的三点式方程知 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x-3y-2z=0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x-1=0;(3) 2x-3y-6=0; (4) x –y=0;(5) 2x-3y+4z=0.解:(1) y=0表示xOz 坐标面(如图7-2)(2) 3x-1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 42. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面.解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||42θ⋅====n nn n解得k=44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}(2) n1={3, -5,l }, n2={1,3,2}45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面.解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为即2x-y-3z=046. 求平行于平面3x-y+7z=5,且垂直于向量i-j+2k的单位向量.解:n1={3,-1,7}, n2={1,-1,2}.故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47. 求下列直线与平面的交点: (1)11126x y z -+==-, 2x+3y+z-1=0; (2) 213232x y z +--==, x+2y-2z+6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t=1故交点为(2,-3,6).(2) 直线参数方程为221332x ty t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t=0.故交点为(-2,1,3).48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s1={5,-3,3}×{3,-2,1}=533321i j k--={3,4,-1}s2={2,2,-1}×{3,8,1}=221381i j k-={10,-5,10}由s1·s2=3×10+4×(-5)+(-1) ×10=0知s1⊥s2 从而两直线垂直,夹角为π2.(2) 直线2314123x y z ---==-的方向向量为s1={4,-12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s2={0,2,-1}×{1,0,0}={0,-1,-2},于是49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x-y+2z-4=0垂直;(2)过点(0,2,4),且与两平面x+2z=1和y-3z=2平行;(3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s={3,-1,2}故过点(2,-3,4)的直线方程为(2)所求直线平行两已知平面,且两平面的法向量n1与n2不平行,故所求直线平行于两平面的交线,于是直线方向向量 故过点(0,2,4)的直线方程为(3)所求直线与已知直线平行,故其方向向量可取为s={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z ++==--和4x-2y-2z=3;(2)327x y z ==-和3x-2y+7z=8; (3)223314x y z -+-==-和x+y+z=3. 解:平行而不包含. 因为直线的方向向量为s={-2,-7,3} 平面的法向量n={4,-2,-2},所以于是直线与平面平行.又因为直线上的点M0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上.51. 求过点(1,-2,1),且垂直于直线的平面方程. 解:直线的方向向量为12123111-=++-ij k i j k ,取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x+2y+3z=0.52. 求过点(1,-2,3)和两平面2x-3y+z=3, x+3y+2z+1=0的交线的平面方程.解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++=其中λ为待定常数,又因为所求平面过点(1,-2,3)故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4.故所求平面方程为2x+15y+7z+7=053. 求点(-1,2,0)在平面x+2y-z+1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s=n={1,2,-1}所以垂线的参数方程为122x ty t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t)+2(2+2t)-(-t)+1=0 得23t =- 于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量 即11133211==-=---i j kn s j k 故过已知点的平面方程为y+z=1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==55. 求点(1,2,1)到平面x+2y+2z-10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s=n={1,2,2}所以垂线的参数方程为12212x ty t z t =+⎧⎪=+⎨⎪=+⎩ 将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离.56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R =设(x,y,z)为球面上任一点,则(x-1)2+(y-3)2+(z+2)2=14即x2+y2+z2-2x-6y+4z=0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M(x,y,z)3.=化简得:8x2+8y2+8z2-68x+108y-114z+779=0即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=.解:(1)母线平行于z 轴的抛物柱面,如图7-7.(2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8(3)母线平行于y 轴的椭圆柱面,如图7-9.(4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11.(6)z 轴,如图7-12.图7-11 图7-1259. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22209z x y +-=.解:(1)半轴分别为1,2,3的椭球面,如图7-13.(2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15.(4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形:(1) x2+y2+z2=a2与z=0,z=2a(a>0); (2)x+y+z=4,x=0,x=1,y=0,y=2及z=0;(3) z=4-x2, x=0, y=0, z=0及2x+y=4; (4) z=6-(x2+y2),x=0, y=0, z=0及x+y=1.解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-2161. 求下列曲面和直线的交点: (1)222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为代入曲面方程解得t=0,t=1.得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为 代入曲面方程可解得t=1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程. 解:设(x ,y ,z )为圆上任一点,依题意有 即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程.(1) 平面x=2; (2) 平面y=0; (3) 平面y=5; (4) 平面z=2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x=2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ==⎩为平面y=5上的一个椭圆.(4) 截线方程为229252x y z ⎧-=⎪⎨⎪=⎩为平面z=2上的两条直线.64. 求曲线x2+y2+z2=a2, x2+y2=z2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x2+y2=z, z=x+1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x2+y2=x+1即2215()24x y -+=.故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩ 习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1) {(x, y)|x≠0};(2) {(x, y)|1≤x2+y2<4}; (3) {(x, y)|y<x2};(4) {(x, y)|(x-1)2+y2≤1}∪{(x, y)|(x+1)2+y2≤1}.解:(1)开集、无界集,聚点集:R2,边界:{(x, y)|x=0}. (2)既非开集又非闭集,有界集,聚点集:{(x, y)|1≤x2+y2≤4},边界:{(x, y)|x2+y2=1}∪{(x, y)| x2+y2=4}. (3)开集、区域、无界集, 聚点集:{(x, y)|y≤x2}, 边界:{(x, y)| y=x2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x, y)|(x-1)2+y2=1}∪{(x, y)|(x+1)2+y2=1}. 2. 已知f(x, y)=x2+y2-xytan x y,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u v f u v w u w +=+,试求(,,).f x y x y xy +-解:f( x + y, x-y, x y) =( x + y)xy+(x y)x+y+x-y =(x + y)xy+(x y)2x. 4. 求下列各函数的定义域: 解:2(1){(,)|210}.D x y y x =-+> 5. 求下列各极限: 解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=01.4x y →→=-(4)原式=02.x y →→=(5)原式=0sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6. 判断下列函数在原点O(0,0)处是否连续: (3)222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y ++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O(0,0)处连续. (2)00sin lim lim1(0,0)0x u y uz z u→→→==≠= 故O(0,0)是z 的间断点.(3)若P(x,y) 沿直线y=x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P(x,y) 沿直线y=-x 趋于(0,0)点,则 故0lim x y z →→不存在.故函数z 在O(0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x,y)=233x y x y-+; (2) f (x,y)=2222y xy x+-;(3) f (x,y)=ln(1-x2-y2);(4)f (x,y)=222e ,0,0,0.x y x y y y -⎧⎪≠⎨⎪=⎩解:(1)因为当y=-x 时,函数无定义,所以函数在直线y=-x 上的所有点处间断,而在其余点处均连续.(2)因为当y2=2x 时,函数无定义,所以函数在抛物线y2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x2+y2=1时,函数无定义,所以函数在圆周x2+y2=1上所有点处间断.而在其余各点处均连续. (4)因为点P(x,y)沿直线y=x 趋于O(0,0)时.12lim (,)lime x x y x xf x y x -→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数: (1)z = x2y+2x y ;(2)s =22u v uv+;; (4)z = lntan x y; (5)z = (1+xy)y; (6)u = zxy; (7)u = arctan(x-y)z; (8)yzu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s vu =+2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+(4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂ (5)两边取对数得ln ln(1)z y xy =+ 故 []221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+ (6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+- (8)1.yzu y x x z-∂=∂9.已知22x y u x y=+,求证:3u u xy u x y∂∂+=∂∂. 证明:222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z zx y z x y∂∂+=∂∂. 证明:11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x,y 的对称性得 故11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y ⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂ 11.设,求fx(x,1) .欧阳引擎创编 2021.01.01解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角. 解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tanα=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z = x4+ y4-4x2y2; (2)z = arctan y x; (3)z = yx;(4)z = 2e x y +.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x,y 的对称性知 (2)222211z y y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭, (3)222ln ,ln ,xx z z y y y y x x ∂∂==∂∂(4)22e 2,e ,x y x y z z x x y++∂∂=⋅=∂∂14.设f (x, y, z) = xy2+yz2+zx2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f - 解:2(,,)2x f x y z y zx=+15.设z = x ln ( x y),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =;(3)zy u x =;(4)yzu x =.解:(1)∵2222e 2,e 2x y x y z z x y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )xy xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂1ln yz u x x y z∂=⋅⋅∂ ln y z u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz zz y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;;(3)(1.97)1.05.解:(1)设f(x,y)=x3·y2,则223(,)3,(,)2,x y f x y x y f x y x y ==故df(x,y)=3x2y2dx+2x3ydy=xy(3xydx+2x2dy) 取x=1,y=1,dx=0.02,dy=-0.03,则 (1.02)3·(0.97)2=f(1.02,0.97)≈f(1,1)+df(1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f(x,y)=则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d 0.05d 0.07(4.05,2.93)(4,3)d (4,3)0.053(0.07)]15(0.01)54.998x y f f f ==-=≈+=⨯+⨯-=+⨯-=(3)设f(x,y)=xy,则df(x,y)=yxy-1dx+xylnxdy , 取x=2,y=1,dx=-0.03,dy=0.05,则1.05d 0.03d 0.05(1.97)(1.97,1.05)(2,1)d (2,1)20.0393 2.0393.x y f f f =-==≈+=+=19.矩型一边长a=10cm ,另一边长b=24cm, 当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l ,则d d ).l l x x y y ==+当x=10,y=24,dx=0.4,dy=-0.1时,d 0.4240.1)0.062l =⨯-⨯=(cm)故矩形的对角线长约增加0.062cm. 20.解:因为圆锥体的体积为21.3V r h π=⋅0030,0.1,60,0.5r r h h ====-而221.33V V V dV r h yh r r h r h ππ∂∂≈=⋅+⋅=⋅+⋅∂∂ 0030,0.1,60,0.5r r h h ====-时,2213.1430600.130(0.5)33V π≈⨯⨯⨯⨯+⨯⨯-230()cm =-21.解:设水池的长宽深分别为,,x y z 则有:V xyz = 精确值为:50.242 2.850.22 3.6 2.80.2V =⨯⨯+⨯⨯⨯+⨯⨯⨯313.632()m =近似值为:V dV zx y xy z ≈=+ 0.4,0.4,0.2x y z ===430.4530.4540.2V dV ≈=⨯⨯+⨯⨯+⨯⨯314.8()m =22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2)z =arc tanx y ,x =u +v,y =u -v,求z u ∂∂,z v∂∂; (3)ln(e e )xyu =+,y =x3,求d d ux; (4)u =x2+y2+z2,x =e cos tt ,y =e sin tt ,z =e t,求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx y u v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vy x x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x yx x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =- (2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y x y x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+ 25. 设22()yz f x y =-,其中f(u)为可导函数,验证: 211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,zf x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂ 由对称性知,22224.z f y f y∂'''=+∂27. 设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x∂''''=⋅+⋅=+∂ ()()22222211122122432221112222222244,zy yf xy f y f xy f y f xy x yf y f xy f x y f ∂'''''''''=++⋅+⋅⋅+⋅∂'''''''=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yzxf xy x f xy f x f xy f x yxf ∂''''''''''=+++⋅+⋅⋅+⋅∂∂''''''''=++++∂''''=⋅+⋅=+∂∂'''''''''=++⋅+⋅⋅+⋅∂'=223411122244.x y f x yf x f ''''''+++(3)1313cos e cos e ,x y x y zf x f xf f x++∂''''=⋅+⋅=+∂ ()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y zxf x f f x f f x f xf xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y +++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+28. 试证:利用变量替换1,3x y x y ξη=-=-,可将方程22222430u u ux x y y∂∂∂++=∂∂∂∂ 化简为20uξη∂=∂∂. 证明:设1(,),3u f f x y x y ξη⎛⎫==-- ⎪⎝⎭2222222222222222222222221411(1)(1)3333u u u u ux x x u u u u u u u ux x x x x u u u uuu u x y ξηξηξηξηξηξξηηξηξξηηξξηηξηξξη∂∂∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=⋅+⋅+⋅+⋅=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫⎛⎫=+⋅-+⋅+⋅-=----- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭22u η∂∂222222222222222222222222211(1)33111211(1)(1)33933343142433u u u u u y u u u uuu u u y u u u x x y yu u u u ξηξηξξηηξηξξηηξξηηξ∂∂∂∂∂⎛⎫=⋅+⋅-=--- ⎪∂∂∂∂∂⎝⎭∂∂∂∂∂∂∂∂⎛⎫⎛⎫=-⋅-⋅--⋅-⋅-=++-- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭∂∂∂++∂∂∂∂∂∂∂∂∂=+++--∂∂∂∂∂2222222221239340.3u u u u u u ξηηξξηηξη⎛⎫⎛⎫∂∂∂∂+-++ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭∂=-=∂∂故20.uξη∂=∂∂ 29. 求下列隐函数的导数或偏导数:(1)2sin e 0xy xy +-=,求d d yx ;(2)arctan y x =,求d d y x;(3)20x y z ++-=,求,z zx y∂∂∂∂; (4)333z xyz a -=,求22,z z x y ∂∂∂∂. 解:(1)[解法1] 用隐函数求导公式,设F(x,y)=siny+ex-xy2,则 2e ,cos 2,x x y F y F y xy =-=-故 22d e e d cos 2cos 2x xx y F y y y x F y xy y xy--=-=-=--. [解法2] 方程两边对x 求导,得()2cos e 02x y y y x yy '⋅+-='+⋅故 2e .cos 2xy y y xy-'=- (2)设()221(,)arctanln arctan ,2y y F x y x y x x==-+ ∵222222121,21x xx y y F x yx y x y x +⎛⎫=-⋅=- ⎪++⎝⎭⎛⎫+ ⎪⎝⎭222221211,21y yy x F x yx x yy x -=-⋅=++⎛⎫+ ⎪⎝⎭∴d .d x y F y x y x F x y+=-=- (3)方程两边求全微分,得d 2d d 0,x y z ++-=,z x y =则d ,z x y =故z z x y ∂∂==∂∂ (4)设33(,,)3F x y z z xyz a =--,23,3,33,x y z F yz F xz F z xy =-=-=-则223,33x z F z yz yzx F z xy z xy∂-=-=-=∂--223,33y z F z xz xz y F z xy z xy∂-=-=-=∂-- ()()()()22222222322232222()zz z x x xz z xy xz y z y z xy y y z xy xz xz z x x xz z xy z xy x yzz xy xy z z xy ∂∂⎛⎫--- ⎪∂∂∂∂⎛⎫⎝⎭== ⎪-∂∂⎝⎭-⎛⎫⋅--- ⎪--⎝⎭==--30. 设F(x, y, z)=0可以确定函数x = x(y, z), y = y(x, z), z = z(x, y),证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂. 证明:∵,,,y x z x y zF F F x y zy F z F x F ∂∂∂=-=-=-∂∂∂ ∴ 1.y z x y z x F F F x y z F F F y z x ⎛⎫⎛⎫∂∂∂⎛⎫---⋅⋅=⋅⋅=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 31. 设11,0F y z x y ⎛⎫++= ⎪⎝⎭确定了函数z = z(x,y),其中F 可微,求,z z x y ∂∂∂∂.解:12122110x F F F F x x ⎛⎫'''=⋅+⋅=--⎪⎝⎭122122121222122221222011111z y x z y zF F F F F F F y F F F z x x F F x F F F F F y F z y y F F y F '''=⋅+⋅=⎛⎫''-=⋅+⋅ ⎪⎝⎭'-'∂=-=-=∂''''-''-∂=-=-=∂''32. 求由下列方程组所确定的函数的导数或偏导数:(1)22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩ 求:d d ,;d d y z x x (2)1,0,xu yv yu xv +=⎧⎨-=⎩ 求:,,,;u v u v x x y y ∂∂∂∂∂∂∂∂(3)2(,),(,),u f ux v y v g u x v y =+⎧⎨=-⎩ 其中f,g 具有连续偏导数函数,求,;u v x x∂∂∂∂ (4)e sin ,e cos ,uux u v y u v ⎧=+⎪⎨=-⎪⎩ 求,,,.u u v v x y x y ∂∂∂∂∂∂∂∂ 解:(1)原方程组变为222222320y z xy z x⎧-=-⎪⎨+=-⎪⎩ 方程两边对x 求导,得d d 22d d d d 23d d y z y x x xy z y z x xx ⎧-=-⎪⎪⎨⎪-=-⎪⎩ 当 2162023y J yz y y z-==+≠21d 16(61),3d 622(31)22d 12.2d 6231x y xz x x z x z x J yz y y z y x z xy x y x x J yz y z ----+===--++-===-++(2)设(,,,)1,(,,,),F x y u v xu yv G x y u v yu xv =+-=-,,,,,,,,x y u v x y u v F u F v F x F y G v G u G y G x =====-===-22u v u v F F x yJ x y G G y x===---故 22xvx v F F u yG G v x uux yv x J J x y--∂-+=-=-=∂+222222,,.u x u x y v yvuy u y F F x u G G y v vvx uy x J J x yF F v yG G u x u vx uy yJ J x yF F x vG G y u v xu vy y J J x y-∂--=-=-=∂+-∂--=-=-=∂+∂-=-=-=∂+ (3)设(,,,)(,),F u v x y f ux v y u =+-2(,,,)(,),G u v x y g u x v y v =--则 121221121(1)(21),21uv uvF F xf f J xf yvg f gG G g vyg ''-''''===---''- 故 12121221122121(21),(1)(21)xv xvuf f F F G G g yvg uf yvg f g u xJ J xf yvg f g ''''''''-----∂=-=-=∂''''---111111112211(1).(1)(21)u x uxxf uf F F G G g g g xf uf v xJ J xf yvg f g ''-'''''-+-∂=-=-=∂''''--- (4)(,),(,)u u x y v v x y ==是已知函数的反函数,方程组两边对x 求导,得1e sin cos ,0e cos (sin ),u u u u v v u v x x xu u v v u v x x x ∂∂∂⎧=++⎪⎪∂∂∂⎨∂∂∂⎪=---⎪∂∂∂⎩整理得 (e sin )cos 1,(e cos )sin 0,uu u v v u v x xu v v u v x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪-+=⎪∂∂⎩解得sin e (sin cos )1u u vx v v ∂=∂-+。
数学分析_复旦_欧阳光中陈传璋第三版3版上下册课后习题答案解析(下)
(4) b•
ê§ lim
x→∞
xb eax
=
lim
x→∞
bxb−1 aeax
=
··· =
lim
x→∞
b! abeax
=0
bؕ
ê§K[b]
b
<
[b]+1§u´
|x|[b] eax
|x|b eax
<
|x|[b]+1 eax (|x|
> 1)§
þ¡®y²§‚ 4••0§Ïd§¥m 4•••0.
l
§é?¿a, b§þk lim
lim
+
=
x→0
24
24
1
6
ax − bx
ax ln a − bx ln b
a
(9) lim
= lim
= ln a − ln b = ln (a = 0, b = 0)
x→0 x
x→0
1
b
x−1
1
(10) lim
x→1
ln x
= lim
x→1
1
=1
x
(11) lim ax − xa = lim ax ln a − axa−1 = aa(ln a − 1)
(x2 − 1) sin x
(4) lim x→1 ln
1 + sin π x
2
)µ
x2 sin 1
1
1
2x sin − cos
1 cos
(1) Ï
x ©f!©1Óžéx¦ ê§
x
x§
x x → 0ž4•Ø•3§Ïdâ
sin x
cos x
cos x
复旦大学数学系《数学分析》(第3版)(下册)章节题库-多变量微积分学-含参变量的积分和反常积分【圣才
时
从而
于是不等式 p≤α<p+1,蕴含 I(p)≥I(α)>I(p+1),I(p+1)≥I(α+1)>I(p+2),
由此推出
因为
所以由上式可得
在此式中用 α+n 代 α(因而 p+n≤α+n<p+n+1,亦即相应地用 p+n 代 p),即 得
由此可知当 n→∞时,数列 f(α+n)(n=1,2,…)有极限 π/2.但上面已证 f(x)以 1 为周期,所以
(2)证明如下: 因为在上面步骤②中已证 I(α)是 α 的减函数,所以 I(α)>I(α+1)>I(α+2),
由此可知
(最后一步用到上面步骤①中的结果),即 I(α+1)/I(a)介于 l 和(α+2)
2 / 44
圣才电子书
/(α+1)之间,从而
十万种考研考证电子书、题库视频学习平 台
这蕴含 f(α+1)=(α+2)I(α+1)I(α+2)=(α+1)I(α)I(α+1)=f(α).
因此 f 是周期函数(周期为 1),从而若 p 为一个整数,则
1 / 44
圣才电子书
十万种考研考证电子书、题库视频学习平
台
②因为当 0<x<π/2 时 0<sinx<1,所以当
由 分
F(y)= 而,更有
易知 f(x,y)是 0≤x≤1,0≤y≤1 上的连续函数.从而,积
是 0≤y≤1 上的连续函数,因此,
.从
9.设:
其中 a<b 及 f(y)为可微分的函数,
8 / 44
圣才电子书
求 F''(x).
十万种考研考证电子书、题库视频学习平 台
解:当 x∈(a,b)时,由于
于是,得
(3)利用对称性知,所求的体积为
数学分析(复旦大学版)课后题答案40-45
§udÃF¼êPÂÈ©§y{'4Gª§& 1 ln xy dx9uy Q[ , b ](b > 1)þÂñ. b
+∞ a A
ln
0
b dx x
Âñ
#f (x, y)Q[ a, +∞; c, d ]ë§é[ c, d)þzy§ f (x, y) dxÂñ§¢È©Qy = duÑ. y²ùÈ©Q[ c, d ]Âñ. y²µd f (x, d) dxuѧ&∃ε > 0, ∀A > a, ∃A , A A §¦ f (x, d) dx ε
dx [ p1 , p2 ]
Q
ë
2−p
dx [ p1 , p2 ]
Q
ë
6.
π −1 p 2−p 1 2 1 p π π −1 p 2−p p 2−p p1 2−p1 1 2 1−p1 x→π −0 1 p1 2−p1 p1 π 1 π −1 p−1 2−p1 π π −1 p 2−p 1 2 π p 2−p 1 2 π −1 p 1 2 π 0 p 2−p +∞ +∞
2−p
π −1 1 p 2−p
1 π −1 π sin x sin x sin x sin x dx = dx + dx + dx p (π − x)2−p p (π − x)2−p p (π − x)2−p p (π − x)2−p x x x x 0 0 1 π −1 1 sin x dx p 2−p 0 x (π − x) sin x sin x (0 x 1, 0 < p1 p p2 < 2) p 2 − p p 2 x (π − x) x (π − x)2−p2 sin x 1 lim xp2 −1 p = 2−p 2 − p 2 2 2 x→+0 x (π − x) π 1 sin x p2 < 2 p2 − 1 < 1 dx p2 (π − x)2−p2 x 0 1 sin x dx p ∈ [ p1 , p2 ] p (π − x)2−p x 0 1 sin x sin x (0 , 1 ] × [ p , p ] dx [ p1 , p2 ] 1 2 p (π − x)2−p xp (π − x)2−p x 0 π
数学分析复旦答案
数学分析复旦答案【篇一:复旦《数学分析》答案第四章1、2节】题 4.1 微分和导数⒈半径为1cm的铁球表面要镀一层厚度为0.01cm的铜,试用求微分的方法算出每只球需要用铜多少克?(铜的密度为8.9g/cm3。
)解球体积v?43?r3,每只球镀铜所需要铜的质量为2m???v?4??r?r?1.12g。
?0⒉用定义证明,函数y点之外都是可微的。
证当x?0时,?y?微。
当x?0时,?y???3x2在它的整个定义域中,除了x这一?x2是?x的低阶无穷小,所以y?x2在x?0不可?x?x?o(?x),所以y?x2在x?0是可微的。
习题 4.2 导数的意义和性质1.设f?(x0)存在,求下列各式的值:⑴⑵⑶lim?x?0f(x0??x)?f(x0) ?x;limx?x0f(x)?f(x0)x?x0;。
f(x0?(??x))?f(x0) (??x)??f(x0)。
limh?0f(x0?h)?f(x0?h) h解 (1)lim⑵⑶f(x0??x)?f(x0) ?xf(x)?f(x0)x?x0?x?0??lim?x?0x?x0lim?limf(x0?(x?x0))?f(x0) x?x0x?x0?0?f(x0)。
limf(x0?h)?f(x0?h) hf(x0?h)?f(x0)hh?0f(x0?h)?f(x0)hh?0?limh?0?lim?2f(x0)。
2.⑴用定义求抛物线y?2x2?3x?1的导函数;⑵求该抛物线上过点(?1,?2)处的切线方程;⑶求该抛物线上过点(?2,1)处的法线方程;⑷问该抛物线上是否有(a,b),过该点的切线与抛物线顶点与焦点的连线平行?解 (1)因为?y?x?2(x??x)?3(x??x)?1?(2x?3x?1)?xf(x)?lim?y?x?4x?3。
22?4x?3?2?x,所以?x?0(2)由于(3)由于f(?1)??1,切线方程为y??1?[x?(?1)]?(?2)??x?3。
f(?2)??5,法线方程为y??1?5[x?(?2)]?1?x?75。
高等数学复旦大学出版第三版课后答案习题十一
2.设L为xOy面内x轴上从点(a,0)到点(b,0)的一段直线,证明:?P?x,y?dx?L?baP?x,0?dx,其中P(x, y)在L上连续.
ቤተ መጻሕፍቲ ባይዱ
证:L:??x?x
?y?0a?x?b,起点参数为x=a,终点参数为x=b. 故?P?x,y?dx?L?baP?x,0?dx
3.计算下列对坐标的曲线积分:
261
(1)??x2?y2?dx,其中L是抛物线y=x2上从点(0,0)到点(2,4)的一段弧; L
222(2)?其中L为圆周(x-a)+y=a(a>0)及x轴所围成的在第一象限内的区域的整个边界xydx?L
(按逆时针方向绕行);
(3)?ydx?xdy,其中L为圆周x=Rcost,y=Rsint上对应t从0到的一段弧; Lπ2
(4)???x?y?dx??x?y?dy
x?y22L,其中L为圆周x2+y2=a2(按逆时针方向绕行);
(5)?x2dx?zdy?ydz,其中Γ为曲线x=kθ,y=acosθ,z=asinθ上对应θ从0到π的一段弧; ?
(6)?x3dx?3zy2dy???x2y?dz,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线; ?
习题十一
1.设L为xOy面内直线x=a上的一段,证明:?P?x,y?dx?0其中P(x, y)在L上连续.
L
证:设L是直线x=a上由(a,b1)到(a,b2)这一段, 则 L:??x?a
?y?tb1?t?b2,始点参数为t=b1,终点参数为t=b2故 ?LP?x,y?dx??b2b1?da?P?a,t????dt?dt???b2bP?a,t??0dt?0
(7)?,(0,1,0),?dx?dy?ydz,其中Γ为有向闭拆线ABCA,这里A,B,C依次为点(1,0,0)L
复旦大学数学系《数学分析》(第3版)(下册)-名校考研真题-多变量微积分学【圣才出品】
由于对任意的 y∈[c,d],有下式成立
所以有
即
.
5 / 54
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 2 部分 多变量微分学
第 14 章 偏导数和全微分
解答题 1.已知
1 确定,且 h(x)具有所需的性质.求
所以对任意的 ε>0,取 在(0,0)处连续.
,则当
时,有
,故 f(x,y)
7 / 54
圣才电子书
十万种考研考证电子书、题库视频学习平 台
由于当(x,y)≠(0,0)时,
,故
4.讨论
在(0,0)点的连续性和可微性.[武汉大学研] 解:(1)连续性.可以令 x=ζcosθ,y=ζsinθ,因为
十万种考研考证电子书、题库视频学习平 台
故
12.
解:由
又由
得
[上海交通大学研] 得
,于是
13.设 z 由 求 [南京大学研]
解:由
得 ①式两端再对 x 求导得
定义为 x,y 的隐函数,其中 为二次连续可微,
两边对 x 求导 ①
所以 f(x,y)在(0,0)点连续. (2)可微性.由于 从而
选取特殊路径 y=kx,有 为 1,所以 f(x,y)在(0,0)点不可微.
5. 解:由于
,求 dz.[华东师范大学研]
8 / 54
,极限不
圣才电子书
十万种考研考证电子书、题库视频学习平 台
故
.
6.函数 数.[天津大学研]
同时
,
.
5.若函数 f(x,y)在 上对 x 连续,且存在 L>0,对任意的 x、y′有
高等数学复旦大学出版第三版课后答案
206习题十1. 根据二重积分性质,比较ln()d D x y σ+⎰⎰与2[ln()]d D x y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有图10-112x y ≤+≤从而 0l n ()x y ≤+<故有2l n ()[l n ()]x y x y+≥+ 所以 2l n ()d [l n ()]dD Dx yx y σσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2从而 ln(x +y )>1 故有2l n ()[l n ()]x y x y+<+207所以 2l n ()d [l n ()]dD Dx yx y σσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值: (1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ==≤≤≤≤⎰⎰; (3)2222(49)d ,{(,)|4}D I x y D x y x y σ=++=+≤⎰⎰. 解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而 04xy ≤≤.从而22≤故2d D D σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而 d D σσ=⎰⎰ (σ为区域D 的面积),由σ=4 得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d D D D x y σσσ≤≤⎰⎰⎰⎰⎰⎰ 即220sin sin d d D D x y σσσ≤≤=⎰⎰⎰⎰ 而2πσ=所以2220sin sin d πD x y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以22229494()925x y x y ≤++≤++≤故 229d (49)d 25d D D D x y σσσ≤++≤⎰⎰⎰⎰⎰⎰ 即229(49)d 25Dx y σσσ≤++≤⎰⎰208而2π24πσ=⋅=所以2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值: (1)222(,{(,)|};D a D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,D a σ⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3Da a σ=⎰⎰ (2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰ 4.设f (x ,y )为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f (x ,y )为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x 0,y 0)为圆心,r 为半径的圆盘,所以当0r →时,00(,)(,),x y ξη→ 于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d D f x y σ⎰⎰化为累次积分: (1) {(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥209(3)2{(,)|,2,2}D x y y y x x x=≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yD y f x y y f x y x σ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y =x -2与抛物线x =y 2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y D yf x y y f x y x σ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y =2x 与曲线2y x=的交点(1,2),与x =2的交点为(2,4),曲线2y x=与x =2的交点为(2,1),区域D 可表示为22,1 2.y x x x≤≤≤≤图10-5210所以2221(,)d d (,)d xD xf x y x f x y y σ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序: (1) 2220d (,)d yyy f x y x⎰⎰; (2)e ln 1d (,)d xx f x y y ⎰⎰;(3) 1320d (,)d yy f x y x-⎰; (4)πsin 0sin2d (,)d xx x f x y y -⎰⎰;(5) 1233001d (,)d d (,)d yyy f x y y y f x y x -+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以2224002d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D :1e,0ln .x y x ≤≤≤≤如图10-7所示.图10-7D 亦可表示为:01,e e,y y x ≤≤≤≤211所以e ln 1e10ed (,)d d (,)d y xx f x y y y f x y x =⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y ≤≤≤≤-如图10-8所示.图10-8D 亦可看成D 1与D 2的和,其中 D 1:201,0,x y x ≤≤≤≤D 2:113,0(3).2x y x ≤≤≤≤-所以2113213(3)2001d (,)d d (,)d d (,)d yx x y f x y x x f x y y x f x y y --=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D 为:0π,sinsin .2xx y x ≤≤-≤≤如图10-9所示.图10-9D 亦可看成由D 1与D 2两部分之和,其中 D 1:10,2arcsin π;y y x -≤≤-≤≤ D 2:01,arcsin πarcsin .y y x y ≤≤≤≤-所以πsin 0π1πarcsin 0sin 12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx y yx f x y y y f x y x y f x y x ----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D 1与D 2两部分组成,其212中 D 1:01,02,y x y ≤≤≤≤D 2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤- 所以()1233230012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y --+=⎰⎰⎰⎰⎰⎰7.解:因为(,)Df x y d σ⎰⎰为一常数,不妨设(,)Df x y C =⎰⎰则有(,)x y f xy C =+从而有(,)()x y Df xy f uv C dudv =++⎰⎰而{}2(,)0 1.0D x y x y x =≤≤≤≤21(,)00()u x y f xy uv C dv du ⎡⎤∴=+⎰⎰+⎣⎦2120012u xy uv cv du ⎡⎤=+⎰+⎢⎥⎣⎦ 152012xy u cu du ⎡⎤=+⎰+⎢⎥⎣⎦163011123xy u cu ⎡⎤=++⎢⎥⎣⎦11123xy C =++18C ∴=故(,)18x y f xy ∴=+8. 计算下列二重积分:213(1) 221d d ,:12,;Dx x y D x y x y x≤≤≤≤⎰⎰ (2) e d d ,x yD x y ⎰⎰D由抛物线y 2 = x ,直线x =0与y =1所围;(3) d ,x y ⎰⎰D 是以O (0,0),A (1,-1),B (1,1)为顶点的三角形; (4) cos()d d ,{(,)|0π,π}D x y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx D x x x x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000ed d de d d e d()xx x y y yyyD xx y y x y y y==⎰⎰⎰⎰⎰⎰ 2111100ed (e 1)d e d d y x y y yy y y y y y y y ==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰ (3) 积分区域D 如图10-13所示.214图10-13D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxxx y x y x y x x --⎡==+⎢⎣⎰⎰⎰⎰⎰ 112300ππ1πd .2236x x x ==⋅=⎰ ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x x x x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224(1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d x x x⎰求不出来,故应改变积分次序。
复旦大学第三版数学分析答案
一﹑细心填一填,你一定能行(每空2分,共20分)1.当 = 时,分式的值为零.2.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为.3.请你写出一个图象在第一、三象限的反比例函数.4.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:,,,,则小麦长势比较整齐的试验田是(填“甲”或“乙”).5.如图,□ABCD中,AE,CF分别是∠BAD,∠BCD的角平分线,请添加一个条件使四边形AECF为菱形.6.计算.7.若点()、、都在反比例函数的图象上,则的大小关系是.8.已知梯形ABCD中,AD∥BC,∠ABC=60°,BD=2 ,AE为梯形的高,且BE=1,•则AD=______.9.如图,中,,,,分别以为直径作三个半圆,那么阴影部分的面积为(平方单位).10.如图,矩形ABCD的对角线BD过O点,BC∥x轴,且A(2,-1),则经过C点的反比例函数的解析式为.二﹑精心选一选,你一定很棒(每题3分,共30分)11.下列运算中,正确的是A. B. C. D.12.下列说法中,不正确的是A.为了解一种灯泡的使用寿命,宜采用普查的方法B.众数在一组数据中若存在,可以不唯一C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差13.能判定四边形是平行四边形的条件是A.一组对边平行,另一组对边相等 B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等 D.一组对边平行,一组对角相等14.反比例函数在第一象限的图象如图所示,则k的值可能是A.1 B.2 C.3 D.415.在平面直角坐标系中,已知点A(0,2),B(,0),C(0,),D(,0),则以这四个点为顶点的四边形是A.矩形B.菱形 C.正方形 D.梯形16.某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10 8 12 15 10 12 11 9 10 13.则这组数据的A.平均数是11 B.中位数是10 C.众数是10.5 D.方差是3.917.一个三角形三边的长分别为15cm,20cm和25cm,则这个三角形最长边上的高为A.15cmB.20cmC.25cmD.12cm18.已知,反比例函数的图像经过点M(k+2,1)和N(-2, ),则这个反比例函数是A. B. C. D.19.如图所示,有一张一个角为600的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是A.邻边不等的矩形B.等腰梯形C.有一角是锐角的菱形D.正方形20.甲、乙两班举行跳绳比赛,参赛选手每分钟跳绳的次数经统计计算后填入下表:班级参加人数中位数方差平均次数甲 35 169 6.32 155乙 35 171 4.54 155某同学根据上表分析得出如下结论:①甲、乙两班学生跳绳成绩的平均水平相同,②乙班优秀的人数多于甲班优秀的人数(每分钟跳绳次数≥170为优秀),③甲班的成绩的波动情况比乙班的成绩的波动大。
复旦版数学分析答案
⒊ 指出下列表述中的错误:
(1) {0} = ∅ ;
(2) a ⊂ { a,b, c } ;
(3) { a,b } ∈{ a,b, c } ;
(4) { a,b,{a,b} } = { a,b } 。
解 (1){0}是由元素 0 构成的集合,不是空集。
(3) f (x) = sin2 x + cos2 x , g(x) = 1。
解 (1)函数 f 和 g 不等同;
5
(2)函数 f 和 g 不等同;
(3)函数 f 和 g 等同。
7. (1) 设 f (x + 3) = 2x3 − 3x2 + 5x − 1,求 f (x) ;
(2)
设f⎜⎛ ⎝xx −{a,b,{a,b}} ⊃ { a,b } ,但{a,b,{a,b}} ≠ { a,b } 。
⒋ 用集合符号表示下列数集:
(1)
满足
x x
− +
3 2
≤
0
的实数全体;
(2) 平面上第一象限的点的全体;
(3) 大于 0 并且小于 1 的有理数全体;
(4) 方程 sin x cot x = 0 的实数解全体。
⒎ 下述命题是否正确?不正确的话,请改正。 (1) x ∈ A ∩ B ⇔ x ∈ A 并且 x ∈ B ; (2) x ∈ A ∪ B ⇔ x ∈ A 或者 x ∈ B 。
解(1)不正确。 x ∈ A ∩ B ⇔ x ∈ A 或者 x ∈ B 。 (2)不正确。 x ∈ A ∪ B ⇔ x ∈ A 并且 x ∈ B 。
第一章 集合与映射
习 题 1.1 集合
高等数学复旦大学出版第三版课后答案习题十一
261习题十一1.设L 为xOy 面内直线x =a 上的一段,证明:(),d 0L P x y x =⎰其中P (x , y )在L 上连续.证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段, 则 L :12x a b t b y t=⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故()()()221d ,d d 0d 0d b b Lb ba P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(a ,0)到点(b ,0)的一段直线,证明:()(),d 0d b LaP x y x P x,x =⎰⎰,其中P (x , y )在L 上连续. 证:L :0x x a x b y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b .故()(),d ,0d b LaP x y x P x x =⎰⎰3.计算下列对坐标的曲线积分:(1)()22d -⎰Lx y x ,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧;(2)d Lxy x ⎰其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d Ly x x y +⎰,其中L 为圆周x =R cos t ,y =R sin t 上对应t 从0到π2的一段弧;(4)()()22d d Lx y x x y yx y+--+⎰,其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);(5)2d d d x x z y y z Γ+-⎰,其中Γ为曲线x =kθ,y =a cos θ,z =a sin θ上对应θ从0到π的一段弧;(6)()322d 3d d x x zy y x y z Γ++-⎰,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;(7)d d d Lx y y z -+⎰ ,其中Γ为有向闭拆线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1);(8)()()222d 2d Lx xy x y xy y -+-⎰,其中L 是抛物线y =x 2上从点(-1,1)到点(1,1)的段弧.解:(1)L :y =x 2,x 从0变到2,262()()22222435001156d d 3515Lxyx x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰(2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t=+⎧≤≤⎨=⎩L 2的方程为y =0(0≤x ≤2a ) 故()()()()()12π200π32ππ3223d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L a xy x xy x xy xa a t a a t t xat t ta t t t ta=+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t tRt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π. 故()()()()()()222π202π22d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx ya t a t a t a t a t a t ta a ta+--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰263(5)()()()2π220π322π3320332d d d sin sin cos cos d d 131ππ3x x z y y zkk a a a a kak a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x ty t z t t 从1→0.故()()3223221031041d 3d d 27334292d 87d 1874874xx zy y x y zt t t t t t t t tΓ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y xAB z =-⎧⎨=⎩,x 从0→1 ()01d d d 112ABx y y z dx -+=--=-⎡⎤⎣⎦⎰⎰.:1x BC y z =⎧⎨=-⎩,z 从0→1264()()()101120d d d 112d 12232B Cx y y z z dzz zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰:1y C A z x =⎧⎨=-⎩,x 从0→1 []1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LAB BC C Ax y y z x y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()()()221224211235412d 2d 222d 224d 1415Lxxy x y xy yx x xxx xx x xx x xx---+-⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰⎰4.计算()()d d L x y x y x y ++-⎰,其中L 是(1)抛物线y 2=x 上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线x = 2t 2+t +1, y = t 2+1上从点(1,1)到点(4,2)的一段弧.解:(1)L :2x y y y⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343Lx y x y x yy y y y y y yy y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰(2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2265故()()()()()2121221d d 32332d 104d 5411Lx y x y x yy y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰(3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且 L 1:1x y y=⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰从而()()()()()12d d d d 1271422LL L x y x y x yx y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()12213214320d d 32412d 10592d 10592432323Lx y x y x yt t t t t t ttt t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰5.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功.266解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t=⎧⎨=⎩,t :0→π2()()()()π2022π20π22222d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t tk b at tk b at k b a=+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6.计算对坐标的曲线积分:(1)d Lxyz z ⎰,Γ为x 2+y 2+z 2=1与y =z 相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅶ、Ⅷ封限;(2)()()()222222d d d Ly z x z x y x y z -+-+-⎰,Γ为x 2+y 2+z 2=1在第Ⅰ封限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分.解:(1)Γ:2221x y z y z ⎧++=⎨=⎩即2221x z y z ⎧+=⎨=⎩其参数方程为:cos 22x ty tz t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π 故:2π02π2202π202π0d cos d 222sin cos d 4sin 2d 161cos 4d 16216xyz z t t t t tt t t t t ttΓ===-==⎰⎰(2)如图11-3所示.267图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x ty t z =⎧⎪=⎨⎪=⎩t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sin cos d 2sin d 24233yzx zxy xyz t t t t t t t tt tΓ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334yzx zxy xyzyzx zxy xyzΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰7.应用格林公式计算下列积分:(1)()()d d 24356+-++-⎰ x y x y x y Γ, 其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;(2)()()222d d cos 2sin e sin 2e x x L x y x y x xy x y x x y ++--⎰ ,其中L 为正向星形线()2223330x ya a +=>;(3)()()3222d d 2cos 12sin 3+--+⎰Lx y xy y x y x x y ,其中L 为抛物线2x =πy 2上由点(0,0)到(π2,1)的一段弧;(4)()()22d d sin Lx y x y x y --+⎰,L是圆周y =上由点(0,0)到(1,1)的一段弧;(5)()()d d e sin e cos x x L x y y my y m +--⎰,其中m 为常数,L 为由点(a ,0)到(0,0)经过圆x 2+y 2=ax上半部分的路线(a 为正数).268图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4, Q =3x +5y -6,3Q x∂=∂,1P y∂=-∂,由格林公式得()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y +-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x, 则2cos 2sin 2exP x x x x y y∂=+-∂,2cos 2sin 2e xQ x x x x y x∂=+-∂.从而P Q yx∂∂=∂∂,由格林公式得.()()222d d cos 2sin esin 2e d d 0++--∂∂⎛⎫-=⎪∂∂⎝⎭=⎰⎰⎰ xx LD x yxy x xy x y x x y Q Px y xy(3)如图11-5所示,记O A ,AB , BO 围成的区域为D .(其中 BO=-L )图11-5P =2xy 3-y 2cos x ,Q =1-2y sin x +3x 2y 2262cos P xy y xy∂=-∂,262cos Q xy y xx∂=-∂由格林公式有:269d d d d 0L OA ABD Q P P x Q y x y x y -++∂∂⎛⎫-+== ⎪∂∂⎝⎭⎰⎰⎰ 故π21220012202d d d d d d d d ππd d 12sin 3243d 12π4π4++=+=+++⎛⎫=+-+⋅⋅ ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰LO A ABO A ABP x Q y P x Q yP x Q y P x Q yO x y y y y y y(4)L 、AB 、BO 及D 如图11-6所示.图11-6由格林公式有d d d d ++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BOD Q P P x Q y x y x y而P =x 2-y ,Q =-(x +sin 2y ).1∂=-∂P y,1∂=-∂Q x,即,0∂∂-=∂∂Q P xy于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()2222221122011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264LL BA O BP x Q y x y xy x y x y x yx y x y xy x y y x xy x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7270P =e xsin y -my , Q =e xcos y -m ,e cos xP y my∂=-∂,e cos xQ yx∂=∂由格林公式得:22d d d d d d d d 1π22π8L O AD DDQ P P x Q y x y x y m x ym x y a m m a +∂∂⎛⎫-+=⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰ 于是:()()[]220202πd d d d 8πd 0esin 00e cos 08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰LO A axxa m a P x Q y P x Q ym a xm m m a xm a8.利用曲线积分,求下列曲线所围成的图形的面积: (1)星形线x = a cos 3t ,y = a sin 3t ; (2)双纽线r 2 = a 2cos2θ; (3)圆x 2+y 2 = 2ax . 解:(1)()()()()()2π322π2π2422222π202π22π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t at t ta tt t a tt t t t at t t a=-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得cos x a θ=sin y a θ=从而x d y -y d x =a 2cos2θd θ.于是面积为:271[]π24π4π24π4212d d 2cos 2d sin 22LA x y y x a aaθθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π22π021d d 21d a+acos sin 2d 1cos 2πcos sin LA x y y xa a aa a θθθθθθθ=-=-=+=⋅-⎰⎰⎰9.证明下列曲线积分与路径无关,并计算积分值: (1)()()()()1,10,0d d x y x y --⎰;(2)()()()()3,423221,2d d 663x y xy yx y xy +--⎰;(3)()()1,221,1d d xy x x y-⎰沿在右半平面的路径;(4)()()6,81,0⎰沿不通过原点的路径;证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q yx∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d xx y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123P xy yy∂=-∂,2123Q xy yx∂=-∂,有P Q yx∂∂=∂∂,所以积分与路径无关.取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x y xy yx y xy y xy y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰272(3)2y P x=,1Q x=-,P ,Q 在右半平面内有连续偏导数,且21P yx∂=∂,21Q xx∂=∂,在右半平面内恒有P Q yx∂∂=∂∂,故在右半平面内积分与路径无关.取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11xy x x yy -==--⎰⎰(4) P =,Q =,且P Q yx∂∂==∂∂在除原点外恒成立,故曲线积分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,811,081529x y=+⎡=+⎣=⎰⎰⎰10.验证下列P (x , y )d x +Q (x , y )d y 在整个xOy 面内是某一函数u (x , y )的全微分,并求这样的一个函数u (x , y ): (1)(x +2y )d x +(2x +y )d y ; (2)2xy d x +x 2d y ;(3)(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y)d y ; (4)(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y . 解:证:(1)P =x +2y ,Q =2x +y .2P Q yx∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()()()()(),0,0002222d d ,22d d 2222222x y xyyu x y x y x y x y x x yx y xy xy xyxy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Q x yx∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()(),20,020022d d ,0d d x y xy u xy x x y x y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y,2316∂∂=+=∂∂P Q x xy yx,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y)d y273是某个定义在整个xOy 面内函数u (x ,y )的全微分,()()()()()(),22320,03200322d ,38812e 0d d 812e412e 12e 12x y y xyyyyu x x y x y x y x x y y x yxx y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos P x y y xy∂=-+∂,2cos 2sin Q y x x yx∂=-∂,有P Q yx∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分,()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xy u x y x y x y y x y x x y x x yy x xy y x x y=++-=+-=+⎰⎰⎰11.证明:22d d x x y y x y++在整个xOy 平面内除y 轴的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数. 证:22x P x y=+,22y Q x y=+,显然G 是单连通的,P 和Q 在G 内具有一阶连续偏导数,并且.()2222∂∂-==∂∂+P Q xyyxxy,(x ,y )∈G因此22d d x x y y x y++在开区域G 内是某个二元函数u (x ,y )的全微分.由()()22222222d d 11ln 22d x y x x y y dx y x yx y++⎡⎤==+⎢⎥++⎣⎦知()()221ln ,2u x y x y =+.12.设在半平面x >0中有力()3k F xi yj r=-+构成力场,其中k为常数,r =,证明:在此力场中场力所做的功与所取的路径无关.证:场力沿路径L 所作的功为.33d d Lk k W x x y yrr=--⎰其中3kx P r=-,3ky Q r=-,则P 、Q 在单连通区域x >0内具有一阶连续偏导数,并且53(0)P kxy Q x yrx∂∂==>∂∂因此以上积分与路径无关,即力场中场力所做的功与路径无关.13.当Σ为xOy 面内的一个闭区域时,曲面积分()d d ,,R x y x y z ∑⎰⎰与二重积分有什么关系?274解:因为Σ:z =0,在xOy 面上的投影区域就是Σ故()()d d d d ,,,,0R x y R x y x y z x y ∑∑=±⎰⎰⎰⎰当Σ取的是上侧时为正号,Σ取的是下侧时为负号. 14.计算下列对坐标的曲面积分:(1)22d d x y z x y ∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧;(2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x , y , z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧;(4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰ ,其中Σ是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧;(5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰ ,其中Σ为曲面z =z = h (h >0)所围成的立体的整个边界曲面,取外侧为正向;(6)()()22d d d d d d +++-⎰⎰ y y z x z x x y y xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:z =Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.((()()()()()()22222π4222π222222202π2200354*******d d d d d cos sin d 1sin 2d 81d d 1cos421612422π1635xyD RRRxy z x y x yx yr r rR R r r R R RR r R R R r R r ∑θθθθθθθ=-=-=-⎡⎤+--⎣⎦⎡=----⎣=-⋅-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()72220772π105RR r R⎡⎤-⎢⎥⎣⎦=(2)Σ如图11-8所示,Σ在xOy 面的投影为一段弧,图11-8275故d d 0z x y ∑=⎰⎰,Σ在yOz 面上的投影D yz ={(y ,z )|0≤y ≤1,0≤z ≤3},此时Σ可表示为:x =(y ,z )∈D yz ,故30d d d d 3yzD x y z y z z yy∑===⎰⎰⎰⎰⎰⎰⎰Σ在xOz 面上的投影为D xz ={(x ,z )|0≤x ≤1,0≤z ≤3},此时Σ可表示为:y =(x ,z )∈D xz ,故30d d d d 3xzD y z x z xz xx∑===⎰⎰⎰⎰⎰⎰⎰因此:d d d d d d 236π643π2z x y x y z y z xx x∑++⎡⎤=⎢⎥⎣⎦==⋅=⎰⎰⎰⎰(3)Σ如图11-9所示,平面x -y +z =1上侧的法向量为n ={1,-1,1},n 的方向余弦为cos α=cos β=,cos γ=,图11-9由两类曲面积分之间的联系可得:276()()()()()()()()()d d 2d d d d ,,,,,,cos d (2)cos d ()d d cos cos d d (2)d d ()d d cos cos (2)()d d d d 1d d xyD f x y z f y z x fz x yx y z x y z x y z s f y s f z x yf x x y f y x y f z x yf x f y f z x y f x x yx y z x y x y x y ∑∑∑∑∑αβαβγγ+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=+++++=+++++=-+++⎡⎤+⎣⎦=-+=+-⎡⎤--⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 111212xyD x y==⨯⨯=⎰⎰⎰⎰(4)如图11-10所示:图11-10Σ=Σ1+Σ2+Σ3+Σ4.其方程分别为Σ1:z =0,Σ2:x =0,Σ3:y =0,Σ4:x +y +z =1, 故()()12344110d d 000d d d d 11d d 124xyD x xz x yxz x yx x yx y x x y x y ∑∑∑∑∑∑-=+++=+++=--==--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由积分变元的轮换对称性可知.1d d dzd 24xy y z yz x ∑∑==⎰⎰⎰⎰因此.d d dyd d d 113248xz x y xy z yz z x∑++=⨯=⎰⎰(5)记Σ所围成的立体为Ω,由高斯公式有:277()()()()()()d d d d d d d d d 0d d d 0y z z x x yy z x y z x y z x y z x x y z x y z x y z ∑ΩΩ++---∂∂⎛⎫--∂-=++ ⎪∂∂∂⎝⎭==⎰⎰⎰⎰⎰⎰⎰⎰(6)记Σ所围的立方体为Ω,P =y (x -z ),Q =x 2,R =y 2+xz . 由高斯公式有()()()()()220000020204d d d d d d d d d d d d d d d d d d 2d 2a aa a a aa a y y z x z x x yy xz x z P Q Rx y z x y z x y z x y x y zx y x a yx y y a x xy a a x ax a∑ΩΩ+++-∂∂∂⎛⎫++=⎪∂∂∂⎝⎭=+=+=+⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰15.设某流体的流速V =(k ,y ,0),求单位时间内从球面x 2+y 2+z 2=4的内部流过球面的流量. 解:设球体为Ω,球面为Σ,则流量3d d d d d d d 432d d d π2π33k y z y z x P Qx y z x y x y z ∑ΩΩΦ=+∂∂⎛⎫+= ⎪∂∂⎝⎭==⋅=⎰⎰⎰⎰⎰⎰⎰⎰ (由高斯公式)16.利用高斯公式,计算下列曲面积分:(1)222d d d d d d x y z y z x z x y ∑++⎰⎰ ,其中Σ为平面x =0,y =0,z =0,x =a ,y =a ,z =a 所围成的立体的表面的外侧;(2)333d d d d d d x y z y z x z x y ∑++⎰⎰ ,其中Σ为球面x 2+y 2+z 2= a 2的外侧;(3)()()2232d d d d d d 2xz y z z x x y x y z xy y z ∑++-+⎰⎰ ,其中Σ为上半球体x 2+y 2≤a 2,0z ≤≤(4)d d d d d d x y z y z x z x y ∑++⎰⎰ ,其中Σ是界于z = 0和z = 3之间的圆柱体x 2+y 2 = 9的整个表面的外侧;278解:(1)由高斯公式()()2224d d d d d d d 2222d 6d 6d d d 3aaaxy z y z x z x yvx y z vx y z x vx x y za∑ΩΩΩ++=++=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 对称性(2)由高斯公式:()3332222ππ45d d d d d d d 3d 3d d sin d 12π5axy z y z x z x yP QR v x y z vx y zr ra∑ΩΩθϕϕ++∂∂∂⎛⎫++=⎪∂∂∂⎝⎭=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(3)由高斯公式得()()()2232222π2π2220024π05d d d d d d 2d d d d sin d 2πsin d d 2π5aaxzy z z x x yx y z xy y z P QR v x y z vz x yr r rr ra∑ΩΩθϕϕϕϕ++-+∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++=⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(4)由高斯公式得:2d d d d d d d 3d 3π3381πx y z y z x z x yP Q R v x y z v∑ΩΩ++∂∂∂⎛⎫++=⎪∂∂∂⎝⎭==⋅⋅⋅=⎰⎰⎰⎰⎰⎰⎰⎰17.利用斯托克斯公式,计算下列曲线积分: (1)d d d y x z y x z Γ++⎰ ,其中Γ为圆周x 2+y 2+z 2 = a 2,x +y +z = 0,若从x 轴的正向看去,这圆周是取逆时针的方向; (2)()()()222222d d d x y z y z x y z x Γ++---⎰,其中Γ是用平面32x y z ++=截立方体:2790≤x ≤1,0≤y ≤1,0≤z ≤1的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向;(3)23d d d y x xz y yz z Γ++⎰,其中Γ是圆周x 2+y 2= 2z ,z =2,若从z 轴正向看去,这圆周是取逆时针方向;(4)22d 3d d +-⎰ y x x y z z Γ,其中Γ是圆周x 2+y 2+z 2 = 9,z =0,若从z 轴正向看去,这圆周是取逆时针方向.解:(1)取Σ为平面x +y +z =0被Γ所围成部分的上侧,Σ的面积为πa 2(大圆面积),Σ的单位法向量为{}111cos ,cos ,cos n αβγ==. 由斯托克斯公式22d d d cos cos cos d d 3y x z y x zR Q Q P P Rs y z x y z x ss aaΓ∑∑∑αβγ++⎡∂∂∂∂⎤⎛⎫⎛⎫∂∂⎛⎫--=++- ⎪⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎣⎦=-=-=-=⎰⎰⎰⎰⎰(2)记为Σ为平面32x y z ++=被Γ所围成部分的上侧,可求得Σ的面积为4长为2的正六边形);Σ的单位法向量为{}cos ,cos ,cos αβγ==n . 由斯托克斯公式()()()(()()()222222d d d2222d22d3d2432492x y zy z x yz xy z x y sz xsx y zsΓ∑∑∑++---⎡+----=--⎢⎣=-++=-=-⋅=-⎰⎰⎰⎰⎰⎰⎰(3)取Σ:z=2,D xy:x2+y2≤4的上侧,由斯托克斯公式得:()()()2223d d dd d0d d d d3d d35d d5π220π-+=++--+=-+=-=-⨯⨯=-⎰⎰⎰⎰⎰⎰⎰xyDy x xz y yz zy z z x x yzz xx yzx yΓ∑∑(4)圆周x2+y2+z2=9,z=0实际就是xOy面上的圆x2+y2=9,z=0,取Σ:z=0,D xy:x2+y2≤9由斯托克斯公式得:()()()222d3d dd d d d d d000032d dd dπ39π+-=++---===⋅=⎰⎰⎰⎰⎰⎰⎰xyDy x x y z zy z z x x yx yx yΓ∑∑18.把对坐标的曲线积分()()d d,,LP x Q yx y x y+⎰化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0,0)到点(1,1);(2)沿抛物线y = x2从点(0,0)到点(1,1);(3)沿上半圆周x2+y2 = 2x从点(0,0)到点(1,1).解:(1)L的方向余弦πcos cos cos42αβ===,280281故()()d d ,,d ,,LLP x Q y x y x y P x Q x y x y s++=⎰⎰(2)曲线y =x 2上点(x ,y )处的切向量T={1,2x }.其方向余弦为cosα=cos β=故()()d d ,,d 2,,LLP x Q y x y x y P x xQ x y x y s++=⎰⎰(3)上半圆周上任一点处的切向量为1x-⎧⎨⎩其方向余弦为cos α=cos 1x β=-故()()()()()d d ,,d ,,1LLP x Q yx y x y s Q x y x y x +⎤=+-⎦⎰⎰19.设Γ为曲线x = t ,y = t 2,z = t 3上相应于t 从0变到1的曲线弧,把对坐标的曲线积分d d d P x Q y R z Γ++⎰化成对弧长的曲线积分.解:由x =t ,y =t 2,z =t 3得d x =d t ,d y =2t d t =2x d t ,d z =3t 2dt =3y d t ,d s t =.故d 1cos d d cos d d cos d x s y s z sαβγ======因而d d d P x Q x R x s ΓΓ++=⎰⎰20.把对坐标的曲面积分()()()d d d d d d ,,,,,,P y z Q z x R x y x y z x y z x y z ∑++⎰⎰化成对面积的曲面积分,其中:282(1) Σ是平面326x y ++=在第Ⅰ封限的部分的上侧; (2) Σ是抛物面z = 8-(x 2+y 2)在xOy 面上方的部分的上侧.解:(1)平面Σ:326x y ++=上侧的法向量为n ={3,2,,单位向量为n 0={35,25,5},即方向余弦为3cos 5α=,2cos 5β=,cos 5γ=.因此:()()()()d d d d d d ,,,,,,d cos cos cos 32d 555P y z Q z x R x y x y z x y z x y z sP Q R s P Q R ∑∑∑αβγ++=++⎛⎫=++⎪⎝⎭⎰⎰⎰⎰⎰⎰(2)Σ:F (x ,y ,z )=z +x 2+y 2-8=0,Σ上侧的法向量n ={ F x ,F y ,F z }={ 2x ,2y ,1}其方向余弦:cos α=,cos β=,cos γ=故()()()()d d d d d d ,,,,,,d cos cos cos P y z Q z x R x y x y z x y z x y z sP Q R s∑∑∑αβγ++=++=⎰⎰⎰⎰⎰⎰。