垂径定理典型例题及练习复习过程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂径定理典型例题及
练习
【基础知识回顾】
一、圆的定义及性质:
1、圆的定义:
⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做
⑵描述性定义:圆是到定点的距离等于的点的集合
【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的
2、直径是圆中的弦】
2、弦与弧:
弦:连接圆上任意两点的叫做弦
弧:圆上任意两点间的叫做弧,弧可分为、、三类
3、圆的对称性:
⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴
⑵中心对称性:圆是中心对称图形,对称中心是
【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】
二、垂径定理及推论:
1、垂径定理:垂直于弦的直径,并且平分弦所对的
2、推论:平分弦()的直径,并且平分弦所对的
【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用
2、圆中常作的辅助线是过圆心作弦的线
3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】
三、圆心角、弧、弦之间的关系:
1、圆心角定义:顶点在的角叫做圆心角
2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别
【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】
四、圆周角定理及其推论:
1、圆周角定义:顶点在并且两边都和圆的角叫圆周角
2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧
推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是
【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是
2、作直弦所对的圆周角是圆中常作的辅助线】
五、圆内接四边形:
定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做
性质:圆内接四边形的对角
【名师提醒:圆内接平行四边形是圆内接梯形是】
垂径定理典型例题分析:
例题1、基本概念
1.下面四个命题中正确的一个是()
A.平分一条直径的弦必垂直于这条直径 B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必过这条弦所在圆的圆心 D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心
2.下列命题中,正确的是().
A.过弦的中点的直线平分弦所对的弧B.过弦的中点的直线必过圆心
C.弦所对的两条弧的中点连线垂直平分弦,且过圆心D.弦的垂线平分弦所对的弧
例题2、垂径定理
1、在直径为52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油
的最大深度为16cm,那么油面宽度AB是________cm.
2、在直径为52cm的圆柱形油槽内装入一些油后,,如果油面宽度是48cm,那么油的最大深度为________cm.
3、如图,已知在⊙O中,弦CD
OF⊥于
OE⊥于E,CD
AB=,且CD
AB⊥,垂足为H,AB
F.
(1)求证:四边形OEHF是正方形.
(2)若3
DH,求圆心O到弦AB和CD的距离.
=
=
CH,9
4、已知:△ABC内接于⊙O,AB=AC,半径OB=5cm,圆心O到BC的距离为3cm,求AB的长.
5、如图,F是以O为圆心,BC为直径的半圆上任意一点,A是的中点,AD⊥BC于D,求证:AD=
2
1
BF.
例题3、度数问题
1、已知:在⊙O中,弦cm
12
=
AB,O点到AB的距离等于AB的一半,求:AOB
∠的度数和圆的半径.
2、已知:⊙O的半径1
=
OA,弦AB、AC的长分别是2、3.求BAC
∠的度数。
例题4、相交问题
如图,已知⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠BED=30°,求CD的长.
A B
D
C
E
O
O
A
E
F
例题5、平行问题
在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离.
例题6、同心圆问题
如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大
圆和小圆的半径分别为b a ,.求证:22b a BD AD -=⋅.
作 业:
一、 概念题
1.下列命题中错误的有()
(1)弦的垂直平分线经过圆心(2)平分弦的直径垂直于弦
(3)梯形的对角线互相平分(4)圆的对称轴是直径
A .1个
B .2个
C .3个
D .4个
2、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( )
(A )5OM 3≤≤ (B )5OM 4≤≤
(C )5OM 3<< (D )5OM 4<<
3.如图,如果AB 为⊙O 直径,弦AB CD ⊥,垂足为E ,那么下列结论中错误
的
是( )
A .DE CE =
B .
C .BA
D BAC ∠=∠
D .AD AC >
4.如图,AB 是⊙O 直径,CD 是⊙O 的弦,CD AB ⊥于E ,则图中不大于半
圆的相等弧有( )对。
A .1对
B .2对
C .3对
D .4对 二、垂径定理
1、过⊙O 内一点P 的最长弦为10cm ,最短的弦为6cm ,则OP 的长为 .
2.在⊙O 中,弦AB 长为cm 8,圆心到弦AB 的距离为cm 3,则⊙O 半径长为 cm
3.半径是5cm 的圆中,圆心到cm 8长的弦的距离是 cm
4.如图,有一圆弧形桥拱,拱形的半径m 10=OA ,桥拱的距度16=AB m ,
则拱高_____=CD m.
5.一水平放置的圆柱型水管的横截面如图所示,如果水管横截面的半径是
13cm ,水面宽24=AB ,则水管中水深是_______cm.
6.如图,⊙O 的直径⊥CD AB ,垂足为点E ,若8,2==ED CE ,则
=
AB ( )
A .2
B .4
C .8
D .16
7.过⊙O 内一点M 的最长的弦长为4cm ,最短的弦长为2cm ,
则OM 的长为( )