2021高三数学冲刺特色强化训练(打包下载 Word版 共20套170页)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学冲刺特色强化训练

(打包下载,Word 版 共20套170页)

专题01 构造函数的通法

一、单选题

1.(2020·福建省高三月考)函数()f x 的定义域为R ,其导函数为()f x '

()

01

f x x '>+,且(1)=-y f x 为偶函数,则( )

A .(2)(1)f f -<

B .(2)(1)f f -=

C .(2)(1)f f ->

D .|(2)||(1)|f f ->

2.(2020·河南省鹤壁高中高三)设奇函数()f x 的定义域为,22ππ⎛⎫

- ⎪⎝⎭

,且()f x 的图象是连

续不间断,,02x π⎛⎫∀∈- ⎪⎝⎭,有()()cos sin 0f x x f x x '+<,若()2cos 3f m f m π⎛⎫

< ⎪⎝⎭

,则m 的

取值范围是( ) A .,23ππ⎛⎫

- ⎪⎝⎭

B .0,3π⎛⎫ ⎪⎝⎭

C .,23ππ⎛⎫-- ⎪⎝⎭

D .,32ππ⎛⎫ ⎪⎝⎭

3.(2020·海原县第一中学高三期末)设函数

'()f x 是奇函数()f x (x ∈R )的导函数,

(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )

A .(,1)(0,1)-∞-

B .(1,0)(1

C .(,1)(1,0)-∞--

D .(0,1)(1,)⋃+∞

4.(2020·六盘山高级中学高三期末)函数()f x 的导函数()f x ',对x ∀∈R ,都有

()()f x f x '>成立,若()10f =,则满足不等式()0f x >的x 的范围是( )

A .01x <<

B .1x >

C .x e >

D .0x >

5.(2020·贵州省高三月考)已知()f x '是函数()f x 的导数,且满足()()0f x f x '+>对

[]0,1x ∈恒成立,A ,B 是锐角三角形的两个内角,则下列不等式一定成立的是( )

A .

()()sin sin sin sin e e B A

f A f B < B .

()()sin sin sin sin e e B A

f A f B > C .()()sin cos cos sin e e B A

f A f B < D .

()()sin cos cos sin e e B A

f A f B > 6.(2020·吉林省高三月考)已知定义域为R 的函数()f x 满足()()1f x xf x '+>(()f x '为函数()f x 的导函数),则不等式()(

)()2

111x f x f x x +->-+的解集为( )

A .()0,1

B .[)1,+∞

C .()

()0,11,+∞

D .()0,∞+

7.(2020·黑龙江省大庆实验中学高三期末)已知函数()2ln ,02,0

x

x f x x x x x ⎧>⎪

=⎨⎪+⎩,若函数

()(y f x a a =-为常数)有三个零点,则实数a 的取值范围为( )

A .1,e ⎛⎫

+∞ ⎪⎝⎭

B .11,e ⎛

⎫- ⎪⎝⎭

C .1{1}0,e ⎛⎫-⋃ ⎪⎝⎭

D .1(,1),e ⎛⎫-∞-⋃+∞ ⎪⎝⎭

8.(2020·四川省石室中学高三月考)已知函数()x

f x xe =,方程

()()2+1=0f x tf x +()t R ∈有四个实数根,则t 的取值范围为( )

A .21,e e ⎛⎫

++∞ ⎪⎝⎭

B .21,e e ⎛⎫

+-∞- ⎪⎝⎭

C .21,2e e ⎛⎫

+-- ⎪⎝⎭

D .212,e e ⎛⎫

+ ⎪⎝⎭

二、填空题

9.(2020·江苏省高三期末)已知定义在(0,)+∞上的函数()f x 的导函数为()f x '

,且

()()0xf x f x '+<,则

(1)(1)

(3)3

x f x f -->的解集为________.

10.(2020·湖南省常德市一中高三期末)设定义域为R 的函数()f x 满足()()f x f x '>,则不等式()()1

21x e

f x f x -<-的解集为__________.

11.(2020·河南省高三期末)已知函数()f x 的定义域为R ,导函数为()f x ',若

()()cos f x x f x =--,且()sin 02

x

f x '+

<,则满足()()0f x f x π++≤的x 的取值范围为______.

12.(2020·河南省高三)函数()f x 定义域是R ,其导函数为()f x '

,满足2

1

()f x x '>-

,且10(3)3f =

,则关于x 的不等式()

13x

x f e e

->的解集是______. 13.(2020·江苏省高三期末)已知函数1

3,1

()22ln ,1

x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在实数,m n ()m n <满

足()()f m f n =,则2n m -的取值范围为________. 三、解答题

14.(2020·河北省高三月考)已知函数()()2

1ln 2

f x x x ax a R =+

+∈,()2

32

x g x e x x =+

-. (1)讨论()f x 的单调性;

(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.

15.(2020·广西壮族自治区高三)已知函数()()1ln f x x x ax =+-,a 是实数.

相关文档
最新文档