SPSS学习笔记之重复测量的多因素方差分析
SPSS多因素方差分析

SPSS多因素方差分析莇蒂蒂薆袈肀蚄体育统计与SPSS读书笔记(八)—多因素方差分析(1)虿薅肆螆薁蒃莆具有两个或两个以上因素的方差分析称为多因素方差分析。
蒃薇衿肁莂螇蒀多因素是我们在试验中会经常遇到的,比如我们前面说的单因素方差分析的时候,如果做试验的不是一个年级,而是多个年纪,那就成了双因素了:不同教学方法的班级,不同年级。
如果再加上性别上的因素,那就成了三因素了。
如果我们把实验前和试验后的数据用一个时间的变量来表示,那又多了一个时间的因素。
如果每个年级都是不同的老师来上,那又多了一个老师的因素,等等等等,所以我们在设计试验的时候都要进行充分考虑,并确定自己只研究哪些因素。
螄螈蒂蒅肃芈膀下面用例子的形式来说说多因素方差分析的运用。
还是用前面说单因素的例子,前面的例子说了只在五年级抽三个班进行不同教学方法的试验,现在我们还要在初二和高二各抽三个班进行不同教学方法的试验。
形成年级和不同教学法班级双因素。
薇蝿莃蒄膇蚀节分析:芀膂羅羆肁莅芅1.根据实验方案我们划出双因素分析的表格,可以看出每个单元格都是有重复数据(也就是不只一个数据),肁蒆腿薂芄螅虿年级羆羇蝿肂芆薈蚀不同教学方法的班级袆艿羁螇莇膁膄定性班螀肄羄薀蚂肂蒇定量班羃蒄莈衿袁蚄罿定性定量班羅芇荿羄膅螈芁五年级莀袀袃蚅蚆螂螁(班级每个人)莁蚁膆蝿羈袄莆(班级每个人)袄蚇蚈葿螃袇腿(班级每个人)袄蒇羀蚁莇肇袂初中二年级蕿蒁螄薄羆肈蚃(班级每个人)羁薃肅聿蕿薂莄(班级每个人)蒂薆袈肀蚄袅蒈(班级每个人)肆螆薁蒃莆莇蒂高中二年级衿肁莂螇蒀虿薅(班级每个人)蒂蒅肃芈膀蒃薇(班级每个人)莃蒄膇蚀节螄螈(班级每个人)羅羆肁莅芅薇蝿2.因为有重复数据,所以存在在数据交互效应的可能。
我们来看看交效应的含义:如果在A因素的不同水平上,B因素对因变量的影响不同,则说明A、B两因素间存在交互作用。
交互作用是多因素实验分析的一个非常重要的内容。
如因素间存在交互作用而又被忽视,则常会掩盖因素的主效应的显著性,另一方面,如果对因变量Y,因素A与B之间存在交互作用,则已说明这两个因素都Y对有影响,而不管其主效应是否具有显著性。
SPSS重复测量的多因素方差分析报告

1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。
采集PS 组及对照组患儿0小时,治疗后24小时和72小时静脉血2ml,离心并提取上清液后保存备用并记录血清中VEGF的含量变化情况。
双因素重复测量方差分析spss

双因素重复测量方差分析spss
一、双因素重复测量方差分析(two-way repeated measures ANOVA)
双因素重复测量方差分析(Two-Way repeated measures ANOVA)可以用来检测一个
变量的变化在两个或多个独立变量的作用下是否发生变化。
在双因素重复测量方差分析中,变量1是因素1,因素1有若干水平,变量2是因素2,因素2也有若干水平。
双因素重
复测量方差分析可以检验两个因素是否共同影响变量1的变化,或者检测某个因素是否单
独地影响变量1的变化。
1、打开spss统计软件,点击文件、数据,从窗口中打开需要分析数据文件;
2、点击“分析”菜单,然后从子菜单中点击“多维分析”,再单击“双因素重复测
量方差分析”;
3、在弹出的窗口中,在“变量”框中选择需要分析的变量;
4、在“因素”框中,选择双因素,比如实验组和对照组;
5、点击“定义”按钮,设定因素的水平,比如实验组的水平为A,对照组的水平为B;
6、在“多重比较”框中,勾选“重复测量”框,并且可以设定多重比较的参数;
7、选择“显著性水平”框,设定检验的显著性,通常设定为0.05;
8、单击“OK”按钮,查看分析结果,该分析结果将显示两个因素及其交互作用对变
量1的影响情况。
SPSS数据分析—重复测量差分析

多因素方差分析中,每个被试者仅接受一种实验处理,通过随机分配的方式抵消个体间差异所带来的误差,但是这种误差并没有被排除。
而重复测量设计则是让每个被试接受所有的实验处理,这样我们就可以分离出个体差异所带来的误差,进而进一步细化因变量的变异来源,传统的方差分析只要分析处理因素对于因变量的影响,而重复测量方差分析需要分析处理因素、时间因素、处理和时间的交互作用三者对于因变量的影响。
具体而言就是传统方差分析的变异分解为:总变异=处理因素导致的变异(组间变异)+随机变异(组内变异)但是重复测量设计引入了重复测量因素,因此需要将这个因素的变异也考虑进去,调整为总变异=受试对象间变异+受试对象内变异=(处理因素导致的变异+个体间误差导致的变异)+(重复测量因素导致的变异+重复测量因素与处理因素的交互作用导致的变异+个体内误差导致的变异)关于重复测量资料,有以下两个特征1.处理因素g个水平,每个水平有n个试验对象,共有gn个试验对象2.时间因素m个水平,同一个试验对象在m个时间点获得的m个测量值,全部资料共有gnm个测量值由于分析因素的增多,重复测量方差分析的假设也增多,分别为1.对于处理因素而言H0:不同处理因素对于因变量的影响相同H1:不同处理因素对于因变量的影响相同2.对于时间因素而言H0:不同时间的因变量总体均值全相同H1:不同时间的因变量总体均值不全不同3.对于时间和处理因素的交互作用而言H0:处理因素和时间因素没有交互效应H1:处理因素和时间因素有交互效应重复测量方差分析和单因素方差分析这二者的区别我们结合数据资料的格式来看重复测量设计和完全随机区组设计的区别可以通过下图反映此外,单因素方差分析常将处理因素放在列,而个案放在行,重复测量方差分析常将重复测量因素放在列,而个案或者处理因素放在行,因此对于一些叫法,也有点区别,如下:从中我们可以看出几点区别1.单因素方差分析中,每个被试只接受一种处理,而重复测量方差分析每个被试要接受所有处理因素和不同处理因素水平下的重复测量因素。
SPSS学习笔记之——重复测量的多因素方差分析

SPSS学习笔记之——重复测量的多因素方差分析1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。
SPSS操作多因素方差分析

SPSS操作多因素方差分析
一、多因素方差分析简介
多因素方差分析(ANOVA)是一种统计学方法,利用它可以检验两个
或多个样本的总体均值是否相同。
它的基本假设是,多个样本取自同一总
体的正态分布,样本之间的差异是根据其中一种因素的变化而产生的,而
不是随机变化。
多因素方差分析一般用于检验不同变量的数据间的差异性。
二、多因素方差分析SPSS使用步骤
1、打开并登录SPSS:在Windows桌面找到SPSS图标,双击打开,
输入用户名和密码即可进入SPSS主界面。
2、导入数据:在SPSS主界面点击【文件】,再点击【导入数据】,
从计算机中找到需要导入的数据文件,打开,确定即可将数据文件导入到SPSS中。
3、运行多因素方差分析:在SPSS主界面点击【分析】,再点击【多
因素方差分析】,它会弹出一个多因素方差分析窗口,在窗口中配置多因
素方差分析的模型,一般情况下,前三步不需要修改,点击【下一步】;
第四步,需要在【变量】框中选择要分析的变量,点击【下一步】;第五步,需要在【因子】框中添加本次分析的因子,双击所选变量,添加到
【因子】框中,确定添加无误后,点击【下一步】;第六步,设定多因素
方差分析的显著性水平,点击【完成】,结束设置。
SPSS学习笔记之——重复测量的多因素方差分析说课讲解

S P S S学习笔记之——重复测量的多因素方差分析SPSS学习笔记之——重复测量的多因素方差分析1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
高等教育:方差分析(重复测量资料spss实现)

方差分析(2)重复测量设计A 方法:重复测量的方差分析A 目的:推断处理、时间、处理X 时间对 试验对象的试验指标的作用对象,共ng 个,g^1A 时间因素分m 个水平(m 个时点),每个对象有m 个时点上的测量值,共gnm 个,mM2A 特例:g=1,单组重复测量资料m=2,前后重复测量资料A 处理因素分gn 个试验实验操作方法A重复测量数据的两因素多水平设计,两因素包括一个干预因素(A因素)和测量时间因素(B 因素);厂多水平指干预(A因素)有g(A2)个水平,测量时间(B因素)有m (>2)个水平(测量时间点)。
A随机化分组采用完全随机设计的分组方式,将歹个观察对象随机分配到g个处理组中o>数据收集在加个时间点上进行, 每一个观察对象在完全相同的时间点上重复进行□次测量。
表12-2数据的统计学分析问题A计算前后测量数据的差值,上述数据即可转化为完全随机设计(两组)的资料形式。
A—般情况下,针对前后测量数据差值的成组亡检验方法是可取的,但应注意其应用条件,即方差齐性的问题。
例题:P271•将手术要求基本相同的15名患者随即分3 组,分别采用A、B、C三种麻醉诱导方法。
在T°、T I、T2、T3、T4五个时像测量患者收缩压数据如下:S 12-16不同麻醉诱导时相患者的收缩压(mmHg)对象间巧1 •建立假设1 > HO:j i・HI:[• •a=0.05 •卜选择统计方法:= 订•正态性处理因素的各处理水平的样本个体之间是相互i 1独立的随机样本,其总体均数服从正态分布1 3・方差齐性相互比较的各处理水平的总体方差相等,即i I具有方差齐同;I1 3.各时间点组成的协方差阵具有球形性特征。
:I Ii I ! *计算统计量(由计算机完成)! :•结论:按照a=0.05/0.01的检验水准,拒绝/尚不能拒绝' 〕H0,……差异有/无统计学意义(统计学结论),| i I重复测量设计资料的统计分析方法A更于重复测量数据(临床上常称纵向监测数据), 去质上每个受试对象的观察结果是多次重复测量簧果的连线,统计分析的目的是比较这些连线变化趋势的特征。
SPSS学习笔记之重复测量的多因素方差分析报告

SPSS学习笔记之重复测量的多因素方差分析报告学习笔记之重复测量的多因素方差分析报告SPSS(Statistical Package for the Social Sciences,社会科学统计软件包)是一款功能强大的数据分析工具,广泛应用于各个领域的研究。
在SPSS中,重复测量的多因素方差分析被视为一项重要的统计方法,用于研究相同参与者在不同条件下的测试结果。
本篇学习笔记以重复测量的多因素方差分析为主题,将介绍如何使用SPSS进行该项分析,并给出详细的分析报告。
1. 研究目的和问题描述2. 数据采集和处理3. 研究设计和假设4. 数据分析5. 结果解释与讨论1. 研究目的和问题描述本次研究的目的是考察不同刺激条件对参与者注意力的影响。
具体而言,我们想了解参与者在三种刺激条件下的注意力水平是否存在显著差异。
2. 数据采集和处理我们招募了40位参与者,并随机将其分为三组。
每组参与者分别接受三次测试,每次测试采用不同的刺激条件。
我们记录了每位参与者的测试结果,并进行数据整理和清洗。
3. 研究设计和假设本研究采用的是重复测量的多因素方差分析设计。
考察因素为刺激条件,对应的水平为A、B和C。
我们的研究假设如下:- H0(零假设):不同刺激条件下的注意力水平无显著差异。
- H1(备择假设):不同刺激条件下的注意力水平存在显著差异。
4. 数据分析为了进行重复测量的多因素方差分析,我们打开SPSS软件,并导入数据集。
接下来,我们按照以下步骤进行分析:步骤一:打开SPSS软件,点击“打开”按钮,导入数据集。
步骤二:选择“分析”菜单,然后选择“一般线性模型”和“重复测量”。
步骤三:将待分析的因子变量(刺激条件)拖动到“因子”框中,并设置不同刺激条件的水平。
步骤四:选择适当的因变量(注意力水平),并将其拖动到“依赖变量”框中。
步骤五:点击“选项”按钮,可以对分析进行更多设置,比如是否计算偏斜度和峰度等。
步骤六:点击“确定”按钮,SPSS将自动进行重复测量的多因素方差分析,并生成分析结果。
双因素重复测量方差分析spss

双因素重复测量方差分析spss双因素重复测量方差分析(RM-ANOVA)是一种统计分析方法,可以用来检验两个或多个因素(变量)对实验结果的影响。
它可以让研究者预测实验中的一些不确定性,以便确定自变量和因变量之间的关系。
本文将介绍如何使用SPSS软件来进行双因素重复测量方差分析,并通过几个具体示例来帮助读者更好地理解。
首先,在SPSS中,双因素重复测量方差分析(RM-ANOVA)可以通过选择“分析”>“常规模型”>“双因素重复测量方差分析”来实现。
在设置参数之前,首先要选择变量名称,需要使用自变量(可以是多个),控制变量(可以是多个),和因变量(可以是多个)。
接下来要填写双因素重复测量方差分析的参数。
在此参数部分,研究者首先要在“因子A”输入框中输入自变量的数目,然后选择自变量的命令类型,有两种情况,一种是定性的和定量的,如果是定性的自变量,那么对单独的分类变量,就会自动编号,但是如果是定量的自变量,则需要用户输入取值范围。
之后,需要在“因子B”输入框中输入控制变量的数目,并选择控制变量的类型。
设置完参数之后,单击确定按钮。
SPSS将开始运行双因素重复测量方差分析,并将分析结果以报表的形式显示出来。
具体来说,可以看到实验组和控制组的统计摘要,并进行多项假设检验。
接下来,我们来看一个具体的例子,比如假设有一个实验,其中有两个自变量:视力(定量)和性别(定性),以及一个因变量:行为。
这样,在SPSS中,设置参数时,可以将“因子A”设置为定量自变量,取值范围是1-20,并将“因子B”设置为定性自变量,取值分为男性和女性两种。
完成双因素重复测量方差分析之后,SPSS将显示几项统计结果,如计算出的F值,以及相应的p值,以及来自实验组和控制组的具体数据。
如果F值大于1或p值小于0.05,则表明两个自变量对实验结果有显著影响,而控制组与实验组之间存在统计学显著性差异。
本文介绍了如何使用SPSS软件来进行双因素重复测量方差分析,主要介绍了双因素重复测量方差分析的设置参数,以及双因素重复测量方差分析的结果分析。
SPSS学习笔记-图文

SPSS学习笔记---------------------------------------1. SPSS学习笔记之——常用统计方法的选择汇总2. SPSS学习笔记之——多因素方差分析3. SPSS学习笔记之——协方差分析4. SPSS学习笔记之——重复测量的多因素方差分析5.SPSS学习笔记之——二项Logistic回归分析6.SPSS学习笔记之——两配对样本的非参数检验(Wilcoxon符号秩检验)7.SPSS学习笔记之——两独立样本的非参数检验(Mann-Whitney U秩和检验)8.SPSS学习笔记之——多个独立样本的非参数检验(Cruskal-Wallis秩和检验)9.SPSS学习笔记之——生存分析的Cox回归模型(比例风险模型)10.SPSS学习笔记之——相关分析(Pearson、Spearman、卡方检验)11.SPSS学习笔记之——配对logistic回归分析12.SPSS学习笔记之——单样本非参数检验13.SPSS学习笔记之——ROC曲线14.SPSS学习笔记之——Kaplan-Meier生存分析15.SPSS学习笔记之——多相关样本的非参数检验(Friedman检验)16.R×C列联表(分类数据)的统计分析方法选择与SPSS实现17.SPSS学习笔记之——OR值与RR值----------------------------------------价SPSS学习笔记之——多因素方差分析问题:对小白鼠喂以三种不同的营养素,目的是了解不同营养素增重的效果。
采用随机区组设计方法,以窝别作为划分区组的特征,以消除遗传因素对体重增长的影响。
现将同品系同体重的24只小白鼠分为8个区组,每个区组3只小白鼠。
三周后体重增量结果(克)列于下表,问小白鼠经三种不同营养素喂养后所增体重有无差别?区组号营养素1营养素2营养素3150.1058.2064.50247.8048.5062.40353.1053.8058.60463.5064.2072.50571.2068.4079.30641.4045.7038.40761.9053.0051.20842.2039.8046.20SPSS软件版本:18.0中文版。
重复测量设计资料的方差分析SPSS操作

重复测量设计资料的方差分析SPSS操作重复测量方差分析的基本概述:被试对象在接受不同处理后,对同一因变量(测试指标)在不同时点上进行多次测量所得的资料,称为重复测量资料。
这里的重复并不是单一的反复,而是在多个时点上的测量。
这种资料的特点是其定量观测指标的数值会随着时间的变化而发生动态变化,并且各时点上的数值是不满足相互独立的假设的。
因此不能用方差分析的方法直接进行处理。
如果在期初、期中、期末分别测量学生的电脑能力,则这是单变量重复测量问题。
如果分别在三个时期测量学生的电脑和数学成绩,则是多变量重复测量的问题。
重复测量资料的方差分析需满足的前提条件:1、一般方差分析的正态性和方差齐性检验。
2、协方差矩阵的球形对称性或者复合对称性;需要进行球形检验,检验对称性。
原假设:协方差满足球形对称。
当拒绝球形假设时,结果中还有其他表可以检验,见例题中的分析。
被试对象处理测量时间1 2 3 4…………m1 1 ………………………………………….2 1 ………………………………………….. ………………………………………………………………………………………………………….N1 1 …………………………………………..N1+1 2 …………………………………………. …………………………………………………………………………………………………………N2 2 …………………………………………………….例:为研究新减肥药和现有减肥药的效果是否不同,以及肥胖者在服药后不同时间体重的变化情况,将40名体重指标BMIF27的肥胖者随机分为两组,一组用新药,另一组用现有减肥药;坚持服药6个月,期间禁止使用任何影响体重的药物,而且被试对象行为、饮食、运动与服药前平衡期保持一致;分别测得0周、8周、16周、24周的体重资料;试对其进行方差分析。
Spss数据格式片段如下:1、正态性和方差齐性检验对4个不同时点上的体重变量进行检验使用科莫格洛夫—斯米诺夫检验只要16周第二种处理不显著,其他都显著不为0.可认为正态性假设基本成立。
重复测量设计资料的方差分析SPSS操作

8.000 104.703 19.101
2.000 418.813 19.101
48
5.482
32. 577
8.077
48. 000
5.482
12. 000
21. 927
不同诱导时相之间收缩
Sig. .0ቤተ መጻሕፍቲ ባይዱ0
压存在差别,
.000
.000 F=106.558,P<0.01;
.000
.000
.000 诱导时相与诱导方法之
Corre cted
t ests
are
b.
满足了协方差矩阵
Design: Inte rcept+GROUP Within Subjects Design: FACTOR1
球对称的条件,不 需对结果进行校正;
Te sts of Within-Subje cts Effect s
Measure: MEASURE_1
患者序号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 0
T 1
麻醉诱导时相
T 2 T 3
120
108
112
120
118
109
115
126
119
112
119
124
121
112
119
126
127
121
127
133
121
120
118
131
122
121
119
129
128
129
126
Lower-bound
263. 120
df Mean Square F
重复测量方差分析spss

重复测量方差分析spss重复测量方差分析(RepeatedMeasuresAnalysisofVariance,简称RM ANOVA)是统计分析的一种重要方法,可以用来检验变量之间的关系,以及检查变量间的交互作用、顺序或临界影响。
它首先由英国心理学家 Ronald Fisher 于1935年提出,在统计学领域受到了广泛的引用和使用。
重复测量方差分析用于比较一个变量对另一个变量的效应,或者多个变量对另一变量的交互效应。
它可以用来检验一组连续性变量或一组分类变量与一个或多个因变量之间的关系,以及因变量之间的交互作用。
在实验中,它可以用来检测多次测量的结果是否有统计学意义。
此外,它还可以用来检验一组连续性变量或一组分类变量对一个或多个因变量的效应。
与其他类型的统计分析不同,重复测量方差分析只要求一组变量具有一致性,而不要求它们之间有固定的关系。
使用SPSS可以进行重复测量方差分析,通过该分析可以验证多次测量的结果是否具有统计学意义,进而判断变量之间的关系。
使用SPSS进行重复测量方差分析的步骤如下:第一步:打开SPSS软件,选择“分析”菜单,在其中选择“混合模型”。
第二步:在“混合模型”菜单中,选择“变量”子菜单,在其中选择“变量分解”,即可打开重复测量方差分析窗口。
第三步:在“变量分解”窗口中,首先将变量分别放入“因变量”、“自变量”和“重复测量”三个区域,然后选择“分析”按钮,即可开始重复测量方差分析。
第四步:重复测量方差分析完成后,SPSS会显示分析的结果,其中有统计量的计算结果,以及F值、概率值(p值)和其他辅助分析内容等。
重复测量方差分析是用来检验一组连续性变量或一组分类变量之间的关系的一种常用的统计分析方法。
它的使用只要求变量具有一致性,而不要求它们之间有固定的关系,因此它在实验中很常用。
使用SPSS可以很方便地完成重复测量方差分析,并获得统计学意义的结果。
本文详细介绍了如何使用SPSS进行重复测量方差分析的过程,为统计分析提供了有用的参考。
双因素重复测量方差分析spss

双因素重复测量方差分析spss双因素重复测量方差分析(RM-ANOVA)是一种有效的统计学方法,用于检验是否存在对不同受试者或者实验因素间的重复测量数据之间的差异。
然而,借助于统计软件SPSS,使用这种方法可以容易地进行分析,有利于更好地理解实验数据和达到更加准确的结论。
RM-ANOVA是一种重复测量分析方法,可以有效地测量和分析两个或更多的重复测量变量之间的差异。
它通常用于比较两个或多个变量在给定样本中的差异。
它通过比较几个因素或变量的值,来测量因素或变量之间的差异,从而为研究人员提供有关该差异的定量分析。
RM-ANOVA可以用来评估某种实验操作或干预对两个或多个变量间的影响,例如,一组受试者在不同处理条件下的反应是否一致。
这种分析可以帮助研究人员了解实验操作和干预是否对实验结果产生重要影响。
因此,双因素重复测量方差分析是从研究角度获取关于实验处理或干预效果的有效方法。
在进行RM-ANOVA分析时,必须考虑数据的粗糙性,以便准确地进行分析。
在SPSS上,可以将原始数据转换成连续变量,以便对原始数据进行计算,然后利用SPSS对数据进行处理,以便进行RM-ANOVA 分析。
在SPSS中,可以使用“双因素重复测量”工具进行RM-ANOVA分析。
它可以用于分析两个或多个重复测量变量之间的差异,并计算这些变量的方差组间差异,从而获得方差分析的统计结果。
此外,SPSS 还可以计算每个变量的标准差、平均值,以及R值,以说明两个变量之间的关系。
另外,SPSS中的双因素重复测量方差分析也有其他统计检验。
可以使用F检验来检验两个因素之间的差异是否显著,或者可以使用Kruskal-Wallis检验来检验多个变量之间的差异。
此外,SPSS还有通过拟合模型、多元回归,以及通过检验假设得出结论的方法。
通过使用SPSS,可以迅速地进行双因素重复测量方差分析。
它可以帮助研究者正确地解读实验数据,以更准确地分析和推理研究结果。
SPSS多因素重复测量资料的方差分析

中 低 PH=8 高 中
试剂浓度 0.1 0.2 0.3
中,蛋白质的提取量和温度
(高,中,低),试剂浓度 (0.1,0.2,0.3)及PH值 (6,8,12)的有关 三因素的各个水平相结合,
低
PH=12 高 中 低
共形成3×3×3=27种处理组
2019/1/30
Page14
析因设计资料的方差分析
练习2
为探讨甲乙两药是否有降低胆固醇的作用及两药在降血脂
时是否存在交互作用?现对12名高胆固醇血症患者采用以 下方案治疗,胆固醇降低值(mg%)见下表
表 四种不同处理下胆固醇降低值(mg%) 用甲药 不用甲药 用乙药 不用乙药 用乙药 不用乙药 64 78 80 56 44 42 28 31 23 16 25 18
2019/1/30
Page15
SPSS统计软件操作
析因设计资料的方差分析
2019/1/30
Page16
SPSS统计软件操作
析因设计资料的方差分析
练习1
研究者预研究煤焦油(因素A)以及作用时间(因素B)
对细胞毒性的作用,煤焦油的含量分别为3ug/ml和75ug/ml 两个水平,作用时间分别为6小时和8小时。将统一制备的 16盒已培养好的细胞随机分为四组,分别接受A、B不同 组合情况下的四种不同处理,测得处理液吸光光度的值,
现对12名高胆固醇血症患者采用以下方案治疗胆固醇降低值mg见下表不用乙药645628167844312580422318thankyouwwwhuaweicomspss统计软件操作page212020910析因设计资料的方差分析为探讨白血病患儿在不同缓解程度不同化疗期淋巴细胞转化率是否相同以及两者间有无交互作用32名白血病患儿的数据如下表所示四种不同处理下淋巴细胞转化率完全缓解未缓解化疗期化疗间期化疗期化疗间期4656395351362858414626663247335145633157525635644154374534395045thankyouwwwhuaweicomspss统计软件操作page222020910交叉设计资料的方差分析交叉设计thankyouwwwhuaweicomspss统计软件操作page232020910交叉设计资料的方差分析某医师研究ab两种药物对失眠患者改善睡眠的效果将12名患者按交叉设计方案随机分为两组观察两种药物两个阶段睡眠时间增加量小时每个阶段两周间隔两周
spss重复测量方差分析流程

spss重复测量方差分析流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!SPSS 重复测量方差分析是一种用于分析在不同时间点或条件下对同一组对象进行多次测量的数据的统计方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS学习笔记之——重复测量的多因素方差分析
1、概述
重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合
Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题
新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清
中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。
采集PS组及对照组患儿0小时,治疗后24小时和72小时静脉血2ml,离心并提取上清液后保存备用并记录血清中VEGF的含量变化情况。
结果如下:
3、统计分析建立数据文件变量视图:
数据视图:
菜单选择:
首先进入如下对话框,在“被试内因子名称”中输入“time”,“级别数”输入3,因为每个患者重复测量了3次。
后点击“添加”按钮。
此时下方“定义”按钮变为可用,点击进入下列对话框:
将“group”选入“因子列表”框,t1-t3分别选入“全体内变量(time)”框内,如下图所示:
点击右上角“模型”按钮,进入以下对话框,选择“设定”,将“time”选入“全体内模型”框,“group”选入“群体间模型”框,“构建项”选择“主效应”。
下方的平方和选“类型III”,这是对于平衡数据。
如果两组样本量不等,则选择“类型IV”。
点击“继续”返回,点击“绘制”按钮。
进入下面对话框:将“time”选入“水平轴”,group选入“单图”,然后点击“添加”按钮,下面框中会显示“time*group”。
点击“继续”返回,点击“两两比较”按钮,将group选入右侧“两两比较检验”框中,选中复选框“LSD”。
点击“继续”返回,点击“选项”按钮,进入下面对话框:将time选入“显示均值框”,选中“比较主效应”复选框,选中下方“描述统计”复选框。
下方显著性水平设为0.05。
点击“继续”返回,点击“确定”输出结果。
4、结果解读:
这是一个关于各个时间点的两组数据描述性统计。
这是球形检验结果,p=0.001<0.05,所以不满足球形分布假设,需要进行多变量方差分析或者自由度调整,SPSS接下来会给出以上两种结果。
这是进行多变量方差分析的结果,给出了4种统计量,它们的检验结果一致,time的P<0.001,说明各个时间点的数据的差异有统计学意义,time*group的P>0.05,说明时间和分组无交互作用,说明时间因素(即0小时、24小时、72小时)的作用不随分组(即治疗组和对照组)的不同而不同。
所谓“主体内”,即是重复测量的各个时间点。
上表是用各个时间点进行分组的方差分析表,给出4种统计量,第一种为满足球星假设的情况,后三种对自由度进行了校正,本题目中不满足球形分布假设,只能看下面的三种检验方法。
结果解释同上一个表。
这是对分组的方差分析,对变量进行如下的变换:y=(t1+t2+t3)/sqrt(3)。
P=0.043<0.05,说明有治疗组与对照组之间有统计学差异。
这个图可以直观地看出测量指标随时间的变化趋势。
治疗组与对照组两组资料随时间变化的趋势大致相同,治疗组血清中VEGF的含量较对照组呈下降趋势,说明治疗组的效果优于对照组。
我们还可以给出在每个时间点上两个分组之间的比较,需要用到多变量方差分析:操作步骤如下:跟之前操作类似,不赘述,看图就行。
结果输出
每个时间点上两组之间的比较(即分别比较0小时、24小时及72小时时对照组和治疗组的数据)结果显示0小时时P﹥0.05,治疗组和对照组之间没有统计学差异,而24小时和72小时时P﹤0.05,治疗组和对照组两组间有显著的统计学差异。