《离散型随机变量的分布列》教学设计
离散型随机变量的分布列教学设计
![离散型随机变量的分布列教学设计](https://img.taocdn.com/s3/m/7054811603d8ce2f006623f7.png)
教 法
理 科 教 学 探 秘 K 氍 . I A OX t 堰“ A , N MI
离散型 随机 变量 的分布列教 学设 计
◆ 甘肃省 崇信 县 第二 中学 谢 永林
【 中图分类号 】 G 【 文献标识码 】 B 【 文章编号 】 1 0 0 6 — 1 2 1 6( 2 0 1 5) 0 8 B 一 0 0 7 5 — 0 1
一 P ( 重点 ,难点 ) ( 3)列成表格 2 . 给 出上面练 习题 的正确解答
( 1 )P ( 1 < X< 3 )=P ( X = 2)=
①理解离散 型随机变 量的分布 列概念与性质 ;
②会求简单 的离散 型随机 变量 的分 布列 ;
于 4个杯子 中恰有 1 个放 2个球 P : : 9 于 4个杯子 中恰有 1 个放 3个球 P : c l :丽 1 列成表格
X 1 2
①求 P( 1< X < 3)
②求 P( x ≥ 4)
( 四 )展 示与点拔
’ 一
3
1. 教师个别提 问 , 明确求离散型随机变量分布列的步骤 :
( 二 )自学 效 果检 查
另 x= l 为 “ 摸 出红球 ” ,x: 0为 “ 摸出 白球” ,求 x的分 为
●
别
一 8
1 . 师生共 同完成上面 5个问题 2 . 某一射击手射击所得环数 x的分布列如下
X 6 7 8 9 1 0
布列 。
3— 8 3— 8
例题
例 :口袋 中装有 5只 同样 大 小 的球 ,编号 为 l , 2 , 3 , 4 , 5 , 现从 口袋 中任取 3只球 ,用 x表示取 出的 3只球中的最大号
离散型随机变量的分布列优秀教学设计
![离散型随机变量的分布列优秀教学设计](https://img.taocdn.com/s3/m/d5857e411711cc7931b716ce.png)
离散型随机变量的分布列【教学目标】1.理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列; 2.掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题。
3.了解二项分布的概念,能举出一些服从二项分布的随机变量的例子 。
【教学重难点】教学重点:离散型随机变量的分布列的概念 教学难点:求简单的离散型随机变量的分布列【授课类型】新授课【课时安排】2课时【教学准备】多媒体、实物投影仪【教学过程】一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出若是随机变量,b a b a ,,+=ξη是常数,则也是随机变量并且不改变其属性(离散型、连续型) 二、讲解新课:1. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x i ,…,ξηξ取每一个值xi (i=1,2,…)的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列2. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1。
由此你可以得出离散型随机变量的分布列都具有下面两个性质:(1)Pi ≥0,i =1,2,…; (2)P 1+P 2+…=1对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即⋅⋅⋅+=+==≥+)()()(1k k k x P x P x P ξξξ3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量。
离散型随机变量的分布列优秀教学设计
![离散型随机变量的分布列优秀教学设计](https://img.taocdn.com/s3/m/5be04deb240c844769eaeebb.png)
离散型随机变量的分布列一.教学目标:1.理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列. 2.掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题. 3.了解二项分布的概念,能举出一些服从二项分布的随机变量的例子. 二.教学重点:离散型变量的分布列及其求法. 教学难点:理解随机变量分布列的性质. 三.教学用具:投影仪 四.教学过程: 1.复习提问(1)可问:随机变量、离散型随机变量、连续型随机变量的概念. (2)点评上节课学生做的课外作业. 2.提出教科书中关于抛掷一枚骰子的例子 可问:你能举出类似这样的例子吗?精选1~2个学生举的例子,加以分析和研究.3.提出随机变量ξ的分布列的概念,总结任一离散型随机变量的分布列具有的两个简单性质在分析和研究上述例子的基础上,概括出:一般地,设离散型随机变量ξ可能取的值为,,,,,21 i x x xξ取每一个值),2,1( =i x i 的概率为i i P x P ==)(ξ,则称表ξ 1x 2x (i)x…P1P2P…iP…为随机变量ξ的概率分布,简称ξ的分布列.引导学生回顾概率的基本性质,归纳总结出任一离散型随机变量的分布列的两个简单性质:(1) ,2,1,0=≥i P i ; (2).121=++ P P4.讲解例1、例2例1 一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球的一半,现从该盒中随机取出一个球.若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中随机取出一球所得分数ξ的分布列.解:设黄球的个数为n ,依题意知道绿球个数为2n ,红球个数为4n ,盒中球的总数为7n .∴.717)0(,7272)1(,7474)1(=====-====n n P n n P n n P ξξξ ∴从该盒中随机取出一球所得分数ξ的分布列为ξ 1 -1 0P7472 71例2 一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是),3,2,1(21=n n .记ξ为原物体在分裂终止后所生成的子块数目.求)10(≤ξP .解:依题意,原物体在分裂终止后所生成的子块数目ξ的分布列为ξ 2 4 8 16 …n 2 …P214181 161 … n 21…∴)8()4()2()10(=+====≤ξξξξP P P P .87814121=++=通过例2及教科书中的例子,归纳总结出: 一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.5.提出离散型随机变量服从二项分布的概念引导学生回顾n 次独立重复试验中事件A 恰好发生k 次的概率公式.然后提出离散型随机变量ξ服从二项分布的概念.可问:你能举出离散型随机变量服从二项分布的例子吗? 根据学生举的例子,教师引导他们对此加以简单分析. 6.讲解例3、例4例3 某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.解:依题意,随机变量%)5,2(~B ξ.所以,.0025.0%)5()2(,095.0%)95%)(5()1(,9025.0%)95()0(22212202=========C P C P C P ξξξ因此,次品数ξ的概率分布是ξ 0 1 2P0.9025 0.095 0.0025例4 重复抛掷一枚骰子5次,得到点数为6的次数记为ξ,求)3(>ξP . 解:依题意,随机变量)61,5(~B ξ.∴.77761)61()5(,77762565)61()4(555445====⋅==C P C P ξξ ∴.388813)5()4()3(==+==>ξξξP P P7.课堂练习教科书中的“练习”. 8.归纳总结(1)对离散型随机变量ξ的分布列及其性质和二项分布的概念作一次小结. (2)对本课的4道例题的解题思路进行总结. 五.布置作业:教科书习题第3、5、6题。
离散型随机变量的分布列教学设计(何娟)
![离散型随机变量的分布列教学设计(何娟)](https://img.taocdn.com/s3/m/7b0432b5680203d8cf2f241a.png)
《离散型随机变量的分布列》教学设计山东省实验中学何娟一、教学内容分析概率是对随机现象统计规律演绎的研究,而统计是对随机现象统计规律归纳的研究,两者是相互渗透、相互联系的。
离散型随机变量的分布列是普通高中课程标准实验教科书数学(选修2-3)人民教育出版社B版第二章《概率》的第二节,它是一个必然事件分解成有限个互斥事件的概率的另一种表现形式,整体地反映了离散型随机变量所有可能的取值及其相应值的概率, 全面描述了随机变量的统计规律,并为定义随机变量两种最重要的特征数即数学期望和方差奠定了基础。
因此,“离散型随机变量的分布列”作为概率与统计的桥梁与纽带,它既是必修3概率知识的延伸,也是统计学的理论基础,能起到承上启下的作用。
同时,它是培养学生学会用数学思维来解决问题的好的素材,能够提升学生数学抽象、数学建模和数据分析的核心素养。
二、教学目标分析本节课依据教材分析和课标要求, 可确定如下的三维教学目标:【知识与技能】理解离散型随机变量的分布列及二点分布模型, 掌握分布列的性质, 会求简单的离散型随机变量的分布列。
【过程与方法】在对具体问题的分析中, 经历数学建模过程, 理解离散型随机变量的分布列及其性质的导出,启发引导学生思考、讨论、表述,展现思维过程;让学生体会由具体到抽象的思想方法,感知从特殊到一般的认知过程。
【情感态度与价值观】在具体情境中, 认识分布列对于刻画随机现象的重要性, 体会数学来源于生活, 又应用于生活的事实; 设计抽奖活动,外化数学学习的兴趣,体会学习的成功与喜悦,培养严谨的科学态度。
根据以上目标的确定,教学上力求体现:两个意识(创新意识、应用意识)和四种能力(探究能力、建模能力、交流能力、实践能力)。
三、学生学情分析根据本人以往的教学经验和学生思维的最近发展区理论,从以下两方面对学生学习本节课内容的情况加以分析,便于找到学生的认知规律,帮助学生跨越学习障碍。
1、认知基础:学生在必修3概率初步中已学习过随机事件和简单的概率模型,会用古典概型、几何概型求解随机事件的概率;在选修2-3第一章计数原理中学习了利用排列组合知识求某些随机事件的概率,具备一定的知识基础。
离散型随机变量及其分布列教案
![离散型随机变量及其分布列教案](https://img.taocdn.com/s3/m/46313ac805a1b0717fd5360cba1aa81145318f45.png)
离散型随机变量及其分布列教案一、教学目标1.了解离散型随机变量的基本概念和特点;2.掌握离散型随机变量的概率分布列的计算方法;3.熟练掌握二项分布、泊松分布等离散型随机变量的概率分布列及其应用。
二、教学重点1.离散型随机变量的基本概念和特点;2.离散型随机变量的概率分布列的计算方法;3.二项分布、泊松分布等离散型随机变量的概率分布列及其应用。
三、教学内容及步骤1. 离散型随机变量的定义和特点(10分钟)1)定义:若取值只能是有限个或可数个,且每个取值发生的概率都已知,则称该随机变量为离散型随机变量。
2)特点:① 取值只能是有限个或可数个;② 每个取值发生的概率都已知。
2. 离散型随机变量的分布列(15分钟)1)定义:对于一个离散型随机变量X,它所有可能取到的值x1,x2,……,xn,每个值发生的概率分别为p1,p2,……,pn,则称这些概率值所组成的表格为X的概率分布列或简称分布列。
2)计算方法:对于离散型随机变量X,其概率分布列可以通过观察问题得到,也可以通过统计样本得到。
对于某一取值xi,其概率pi可以通过以下公式计算:pi=P(X=xi)3. 二项分布(20分钟)1)定义:当试验只有两种可能结果时(成功或失败),在n次独立重复试验中,成功的次数X服从二项分布。
2)公式:X~B(n,p),其中n表示试验次数,p表示每次试验成功的概率。
3)概率分布列:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)其中C(n,k)表示从n个元素中取k个元素的组合数。
4)应用:二项分布常用于伯努利实验、抽样调查、质量控制等方面的问题。
4. 泊松分布(20分钟)1)定义:当一个事件在一段时间内发生的次数服从泊松分布时,称该事件服从泊松过程。
2)公式:X~P(λ),其中λ表示单位时间内该事件平均发生的次数。
3)概率分布列:P(X=k)=e^(-λ)*λ^k/k!4)应用:泊松分布常用于描述单位时间内某一事件发生的次数,如电话交换机接到呼叫的次数、邮局收到信件的数量等。
离散型随机变量的分布列教学设计
![离散型随机变量的分布列教学设计](https://img.taocdn.com/s3/m/6e45e3e3050876323012121a.png)
2.1离散型随机变量的分布列一、【教材的地位和作用】概率是对随机现象统计规律演绎的研究,而统计是对随机现象统计规律归纳的研究,两者虽有明显的不同,但它们都是相互渗透、相互联系的。
“离散型随机变量的分布列”作为概率与统计的桥梁与纽带,它既是概率的延伸,也是学习统计学的理论基础,能起到承上启下的作用,是本章的关键知识之一。
随机变量是将随机现象的结果数量化,把对随机事件及概率的研究转化为对随机变量及概率的研究;离散型随机变量的分布列反映了随机变量的概率分布,将实验的各个孤立事件联系起来,从整体上研究随机现象。
并为定义离散型随机变量的数学期望和方差奠定基础,揭示了离散型随机变量的统计规律。
二、【教学目标】知识技能目标:了解离散型随机变量的分布列,会求某些简单的离散型随机变量的分布列;过程方法目标:发展学生的抽象、概括能力;情感态度目标:通过引导学生对解决问题的过程的参与,使学生进一步感受数学表示的简洁,从而激发学生学习数学的热情.三、【重点、难点】教学重点:会求离散型随机变量的分布列, 会应用离散型随机变量的分布列的性质.教学难点:求离散型随机变量的分布列.四、【学情分析】知识结构方面,学生已学习了排列、组合、二项式定理、概率和随机变量,已具备了本节课所需的预备知识。
能力方面,经过两年学习,学生具有了一定的发现、分析、解决问题的能力,抽象、概括能力,逻辑思维能力.五、【教学策略及方法】主动建构式的教学方式——在教师的正确引导下,由学生已学过的有关知识,如离散型随机变量ξ的取值及所取的值对应的概率,让学生积极主动地建构出离散型随机变量的分布列.六、【教具准备】多媒体课件.七、【教学过程】1、新课导入(1)随机变量:我们将随机试验中的每一个可能的结果都对应于一个数,这种对应称为一个随机变量.随机变量常用字母X 、Y 、ξ、η等表示.(2)两类随机变量若随机变量的取值能够一一列举出来,这样的随机变量叫做离散型随机变量. 若随机变量的取值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 今天先来学习离散型随机变量的分布列.2、探究问题抛掷一枚骰子,所得的点数X 有哪些值?X 取每个值的概率是多少?3、新课讲授(1)离散型随机变量的分布列的定义设离散型随机变量X 可能取的值为12,,a a ,随机变量X 取i a 的概率为(1,2,,)i P i n = ,记作:()()1,2,3,i iP X a p i === (1)或把上式列成表2-2:表2-2或(1)式称为离散型随机变量X 的分布列.(2)根据随机变量的意义与概率的性质,你能发现分布列有什么性质? ①0,12,,i p i >= ②121p p ++=4、典例探究例1 一袋中装有6个同样大小的小球,编号为1、2、3、4、5、6,现从中随机取出3个小球,用X 表示取出球的最大号码,求X 的分布列.思考:(1)取出球的最大号码小于5的概率是多少?(2)结合X 的分布列你能给同学提一个问题吗?例2 随机变量X 的分布列为(1)求常数a ;(2)求(14)P X <<5、随堂练习(1)下列A 、B 、C 四个表,其中能成为随机变量X 的分布列的是( )(2)设随机变量X 的分布列为(),2i P X i a ==1,2,3.i = 则(2)P X ==__________.(3) 一袋中装有6个同样大小的小球,编号为1、2、3、4、5、6,现从中随机取出3个小球,用X 表示取出球的最小号码,求X 的分布列.6、课堂总结(1)分布列的定义.(2)分布列的性质:①0,12,,i p i >= ②121p p ++= (3)求分布列的步骤:①确定随机变量X 的所有可能的值;②求出各取值对应的概率;③画出表格.八、【板书设计】。
高中数学离散型随机变量的分布列教案新人教A版选修
![高中数学离散型随机变量的分布列教案新人教A版选修](https://img.taocdn.com/s3/m/27b2a14011a6f524ccbff121dd36a32d7375c7e0.png)
一、教案简介本教案为人教A版高中数学选修课程《离散型随机变量的分布列》的教学设计,主要针对高中学生,旨在帮助学生理解离散型随机变量的概念,掌握分布列的性质及其计算方法,培养学生的数学思维能力和实际应用能力。
二、教学目标1. 理解离散型随机变量的定义及其性质。
2. 掌握离散型随机变量的分布列的概念及其计算方法。
3. 能够运用分布列解决实际问题,提高数学建模能力。
三、教学内容1. 离散型随机变量的定义及其性质。
2. 分布列的概念及其计算方法。
3. 常用离散型随机变量的分布列(如伯努利分布、二项分布、几何分布等)。
4. 离散型随机变量分布列的应用。
四、教学过程1. 引入新课:通过实例介绍离散型随机变量的概念,引导学生思考其分布规律。
2. 讲解离散型随机变量的定义及其性质,让学生理解并掌握基本概念。
3. 讲解分布列的概念及其计算方法,让学生能够自行求解离散型随机变量的分布列。
4. 通过例题讲解常用离散型随机变量的分布列及其应用,让学生能够解决实际问题。
5. 课堂练习:让学生运用所学知识解决实际问题,巩固课堂所学。
五、教学评价1. 课堂问答:检查学生对离散型随机变量及其分布列的基本概念的理解。
2. 课堂练习:评估学生运用分布列解决实际问题的能力。
3. 课后作业:巩固学生对离散型随机变量分布列的知识,提高学生的数学应用能力。
六、教学策略1. 实例引入:通过生活中的实际例子,激发学生的学习兴趣,引导学生思考离散型随机变量的分布规律。
2. 互动教学:在讲解过程中,鼓励学生积极参与,提问解答,增强课堂的互动性。
3. 分层教学:针对学生的不同层次,给予适当的引导和辅导,使所有学生都能跟上教学进度。
4. 实践操作:通过大量的例题和练习,让学生在实践中掌握离散型随机变量的分布列的计算方法及其应用。
七、教学资源1. PPT课件:制作精美的PPT课件,直观展示离散型随机变量的分布列的性质和计算方法。
2. 教学案例:收集与离散型随机变量分布列相关的实际案例,用于引导学生思考和巩固所学知识。
离散型随机变量其分布列教案
![离散型随机变量其分布列教案](https://img.taocdn.com/s3/m/0b66a67f30126edb6f1aff00bed5b9f3f90f72ea.png)
离散型随机变量其分布列教案一、教学目标1.知识与技能:掌握离散型随机变量的概念;了解离散型随机变量的分布列的概念与相关性质;能够根据问题给出离散型随机变量的分布列。
2.过程与方法:通过讲解、示例分析和实际问题解答等方式培养学生的分析问题和解决问题的能力;通过课堂练习、小组合作等方式培养学生的合作精神和团队意识。
3.情感、态度和价值观:培养学生对离散型随机变量的兴趣;培养学生的逻辑思维和分析问题的能力;培养学生的合作意识和团队合作能力。
二、教学重点与难点1.教学重点2.教学难点三、教学过程1.导入新知识引入离散型随机变量的概念,与连续型随机变量进行对比,引出离散型随机变量的分布列的概念,并讲解分布列的性质。
2.学习新知识2.1引入概念解释离散型随机变量的概念,并给出几个常见的离散型随机变量的例子,如二项分布、泊松分布等。
2.2分布列的概念详细讲解分布列的概念,即离散型随机变量的取值及其对应的概率,并通过示例进行说明。
2.3分布列的性质讲解分布列的性质,包括非负性、和为1等。
3.巩固与拓展通过例题进行分布列的计算练习,同时讲解分布列的期望值和方差的计算方法。
4.拓展应用结合实际问题,如掷硬币、扔骰子等,引导学生找出问题中的离散型随机变量,并计算其分布列。
四、教学设置1.教具准备黑板、彩笔、教案、习题册等。
2.师生活动教师以讲解为主,学生以听讲、思考、举手发言为主。
3.学生活动主要是听讲、思考、讨论、合作等。
五、教学反思离散型随机变量的分布列是基础内容,是理解和应用概率论中的重要概念。
通过本节课的学习,学生对离散型随机变量的概念和分布列的性质有了初步的了解,并能够通过例题进行分布列的计算。
教学过程中需要注意让学生进行思考和灵活运用,培养学生的分析问题和解决问题的能力,同时注重实际问题的应用,提高学生的理论与实践结合的能力。
离散型随机变量及其分布列教案
![离散型随机变量及其分布列教案](https://img.taocdn.com/s3/m/7dc7a15754270722192e453610661ed9ac515553.png)
离散型随机变量及其分布列教案离散型随机变量及其分布列教案一、引言1.1 概念介绍离散型随机变量是统计学中的一个重要概念,它描述了在一次实验中可能取到的离散数值,如扔一枚硬币可以取到正面和反面两个离散数值。
本文将介绍离散型随机变量的基本概念及其分布列。
1.2 学习目标通过本教案的学习,你将能够:- 理解离散型随机变量的基本概念;- 了解离散型随机变量的分布列及其性质;- 掌握计算离散型随机变量概率的方法。
二、离散型随机变量的定义2.1 随机变量的概念在概率论中,随机变量是指定义在某个概率空间上的实值函数,它的取值是由实验结果决定的。
随机变量可以分为离散型和连续型两种类型,本文主要关注离散型随机变量。
2.2 离散型随机变量的定义离散型随机变量是指其取值是有限个或可数个的随机变量。
扔一枚硬币的实验可以定义一个离散型随机变量X,它的取值为1(正面)和-1(反面)。
三、离散型随机变量的分布列3.1 定义离散型随机变量的分布列,也称为概率质量函数(Probability Mass Function,简称PMF),描述了随机变量取各个值的概率。
3.2 示意图我们可以通过绘制柱状图来直观地表示离散型随机变量的分布列。
横轴表示随机变量的取值,纵轴表示对应取值的概率。
3.3 性质离散型随机变量的分布列具有以下性质:- 非负性:概率质量函数的取值非负;- 总和为1:所有可能取值的概率之和等于1。
四、计算概率4.1 概念介绍在实际问题中,我们常常需要计算离散型随机变量的概率。
概率计算可以基于分布列进行。
4.2 计算方法计算离散型随机变量概率的基本方法是通过分布列查找对应取值的概率。
具体而言,对于随机变量X和某个取值x,我们可以通过查找分布列找到对应的概率P(X=x)。
五、总结与回顾5.1 概括概念通过本教案的学习,我们了解了离散型随机变量的基本概念及其分布列。
离散型随机变量的分布列描述了随机变量取各个值的概率。
5.2 理解计算方法我们学会了通过分布列计算离散型随机变量的概率的方法。
离散型随机变量分布列教学案
![离散型随机变量分布列教学案](https://img.taocdn.com/s3/m/2077b32b2379168884868762caaedd3383c4b5b0.png)
离散型随机变量分布列教学案一、知识目标1.能够定义离散型随机变量;2.了解离散型随机变量分布的概念;3.能够构造离散型随机变量分布列,了解分布列的意义及其特点;4.能够求离散型随机变量分布的期望和方差。
二、教学重点四、教学方法讲授、举例、讨论。
五、教学过程1.引入现实生活中经常碰到的事件有可能是某种情况的多次发生,每次事件的结果都是不确定的,这样的现象叫做随机事件。
而随机变量则是随机事件的结果所标示的数值。
本节课将着重介绍离散型随机变量的概念、分布列的构造及相关计算方法。
2.概念解释(1)离散型随机变量:若随机变量取值只能是由有限个或无限个可数的数值所构成的集合中的一个,则该随机变量称为离散型随机变量。
3.分布列的构造及意义离散型随机变量的分布列是对离散型随机变量分布的一种简洁的表达方式,它由随机变量的可能取值和对应的概率构成。
(1)列出随机变量可能取的所有值;(2)确定每个值出现的概率;(3)将每个值及其对应的概率填入表格。
例如,某种硬币正面朝上的概率为0.4,反面朝上的概率为0.6,则构造硬币正面朝上的次数的分布列如下:正面朝上的次数 x 概率 P(x)0 0.64.分布列的特点(1)每个值的概率都非负,即P(x)≥0。
5.分布的期望和方差(1)期望离散型随机变量的期望定义为E[X]=∑xP(x),其中x为随机变量的取值,P(x)为x取某一特定值的概率。
(2)方差离散型随机变量的方差定义为Var[X]=E[X^2]-(E[X])^2,其中E[X^2]表示随机变量的二次方的期望。
6.范例讲解某小组4名同学和参加模拟考试,假设每位同学的通过率为0.8,未通过率为0.2。
求小组中通过数的概率分布。
解:构造通过数的分布列如下:其中,P(0)=0.2^4=0.0016,P(1)=C(4,1)×0.8×0.2^3=0.0256,P(2)=C(4,2)×0.8^2×0.2^2=0.1536,P(3)=C(4,3)×0.8^3×0.2=0.4096,P(4)=0.8^4=0.4096。
离散型随机变量及其分布列教案
![离散型随机变量及其分布列教案](https://img.taocdn.com/s3/m/481cc87cef06eff9aef8941ea76e58fafbb04574.png)
离散型随机变量及其分布列教案离散型随机变量是指在其中一区间内取值有限或可列无限个的随机变量。
离散型随机变量通常用来描述一些试验的结果,例如抛硬币的结果,掷骰子的结果等。
在教学过程中,可以通过引入离散型随机变量教授概率论的基本概念和计算方法。
以下是一个关于离散型随机变量及其分布列的教案:教学目标:1.了解离散型随机变量的定义和特点;2.掌握计算离散型随机变量的分布列;3.学会使用分布列计算期望值和方差。
教学内容:1.离散型随机变量的定义和特点:-定义:离散型随机变量是指在其中一区间内取值有限或可列无限个的随机变量。
-特点:离散型随机变量的取值是可以数清的,不能取到区间之外的值。
2.离散型随机变量的分布列:-分布列是用来描述离散型随机变量各个取值的概率的表格或公式。
-分布列的特点:各个取值的概率之和为13.离散型随机变量的期望值和方差:-期望值是离散型随机变量各个取值与其相应概率的乘积之和。
表示为E(X)。
E(X) = x1*p1 + x2*p2 + ... + xn*pn- 方差是离散型随机变量各个取值与其相应概率的乘积减去期望值的平方之和。
表示为Var(X)。
Var(X) = (x1-E(X))^2*p1 + (x2-E(X))^2*p2 + ... + (xn-E(X))^2*pn教学步骤:Step 1:引入离散型随机变量的概念通过实际例子引入离散型随机变量的概念,例如掷骰子的结果就是一个离散型随机变量。
Step 2:介绍离散型随机变量的定义和特点详细介绍离散型随机变量的定义和特点,并与连续型随机变量进行对比。
Step 3:讲解离散型随机变量的分布列解释离散型随机变量分布列的含义,给出分布列的例子,并教授计算分布列的方法。
Step 4:演示如何计算离散型随机变量的期望值和方差从分布列的角度出发,演示如何计算离散型随机变量的期望值和方差。
Step 5:练习和巩固提供一些练习题,让学生通过计算离散型随机变量的分布列、期望值和方差来巩固所学知识。
离散型随机变量分布列教学案
![离散型随机变量分布列教学案](https://img.taocdn.com/s3/m/5632842e7e21af45b307a8b9.png)
高二数学(理科)离散型随机变量及分布列教学案一、课标研读课程标准:在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性。
课标研读:分布列描述了离散型随机变量取值的概率规律,教学中,应引导学生利用所学知识解决一些实际问题。
二、教材分析:1.在教材中的地位、作用:本部分内容主要包括随机变量的概念及其分布列,是离散性随机变量的均值和方差的基础,从近几年的高考观察,这部分内容有加强命题的趋势。
一般以实际情景为主,建立合适的分布列,通过均值和方差解释实际问题。
2、学习目标:(1)知识与技能:理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题;(2)过程与方法:初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题;(3)情感态度与价值观:进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识。
3、重点、难点教学重点:会求某些简单的离散型随机变量的分布列;难点:求解随机变量的概率分布三、学情分析:学生将在必修3学习概率的基础上,利用计数原理与排列组合知识求古典概型的概率,这是本节的难点,主要是分清概率类型,计算 取得每一个值时的概率:取球、抽取产品等问题还要注意是放回抽样还是不放回抽样。
四、教学策略采用师生互动的方式,通过让学生动脑思考、动口议论、小组合作,充分发挥学生的积极性和主动性,教师合理引导学生归纳总结。
教学环节:创设情境——概念形成——概念深化——知识应用——总结反思—达标检测五、教学计划课时划分:3课时:第一课时离散型随机变量;第二课时为离散型随机变量分布列;第三课时为超几何分布。
六、教学设计第二课时高二数学理科离散型随机变量分布列导学案一、温故知新(大约2分钟)1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。
高中数学离散型随机变量的分布列教案新人教A版选修
![高中数学离散型随机变量的分布列教案新人教A版选修](https://img.taocdn.com/s3/m/1eebb1b95ff7ba0d4a7302768e9951e79b89699f.png)
高中数学离散型随机变量的分布列教案新人教A版选修一、教学目标:1. 理解离散型随机变量的概念,掌握其分布列的定义和性质。
2. 学会如何计算离散型随机变量的分布列,并能应用于实际问题。
3. 培养学生的逻辑思维能力和数学解决问题的能力。
二、教学内容:1. 离散型随机变量的定义和性质。
2. 分布列的概念和性质。
3. 离散型随机变量分布列的计算方法。
4. 离散型随机变量分布列的应用。
三、教学重点与难点:1. 教学重点:离散型随机变量的分布列的定义和性质,计算方法及应用。
2. 教学难点:离散型随机变量分布列的计算方法和应用。
四、教学方法:1. 采用讲授法,系统地讲解离散型随机变量的分布列的概念、性质和计算方法。
2. 利用例题解析,让学生掌握离散型随机变量分布列的计算过程。
3. 开展小组讨论,让学生探讨离散型随机变量分布列在实际问题中的应用。
4. 利用课后习题,巩固所学知识。
五、教学过程:1. 引入新课:通过介绍离散型随机变量的概念,引导学生了解离散型随机变量的分布列。
2. 讲解离散型随机变量的分布列的定义和性质,让学生掌握其基本概念。
3. 讲解离散型随机变量分布列的计算方法,并通过例题解析,让学生熟悉计算过程。
4. 开展小组讨论,让学生探讨离散型随机变量分布列在实际问题中的应用。
6. 布置课后习题,巩固所学知识。
六、教学目标:1. 学会如何求解离散型随机变量的数学期望。
2. 理解离散型随机变量方差的概念,并掌握其计算方法。
3. 通过对离散型随机变量的数学期望和方差的分析,培养学生对随机现象的量化描述能力。
七、教学内容:1. 离散型随机变量的数学期望的定义和计算方法。
2. 离散型随机变量方差的概念和计算方法。
3. 离散型随机变量标准差的计算方法。
4. 离散型随机变量期望和方差在实际问题中的应用。
八、教学重点与难点:1. 教学重点:离散型随机变量的数学期望和方差的计算方法,以及它们在实际问题中的应用。
2. 教学难点:离散型随机变量方差的计算方法和实际应用。
《离散型随机变量的分布列》教学设计
![《离散型随机变量的分布列》教学设计](https://img.taocdn.com/s3/m/da2db3b3d1f34693daef3ed9.png)
《离散型随机变量的分布列》教学设计该课设计是新课程标准实验教材选修2-3第二章随机变量及其分布列的第一节2.1离散型随机变量及其分布列,第二课时。
年级高二1、设计构思:1、1 设计理念:本节课的设计理念是贯彻新课程标准,出发点是通过教学使学生理解概率分布列的概念,掌握离散型随机变量性质,体会研究概率分布列的必要性。
在教学过程中坚持从知识与技能、过程与方法、情感态度价值观等几个方面体现以学生为主体,以教师为主导的教学指导思想。
使学生的智力因素得到发展,非智力因素得到充分发挥。
1、2 教材的地位作用:统计是新的课程标准相对于旧大纲新增加的内容,具有非常强的应用价值。
概率分布列是概率统计中的重要内容。
本节课是概率分布列的第二节,前一节已经讲了随机变量的概念。
这节课不单纯是前一节课的继续,更是后面进一步研究数学期望、方差、标准差的基础,不但在本章、本节教材中起承前启后的基础性作用,更是用统计的思想、知识解决实际问题不可缺少的基础知识。
1、3 教学目标及重难点的确定教学目标:知识与技能:理解取有限个值的离散型随机变量及其分布列的概念,掌握离散型随机变量的分布列的表示方法和基本性质,在具体问题中能写出随机变量的取值,能列出概率分布列,理解两点分布。
培养学生独立思考问题的能力。
过程与方法:通过生活中的实例说明引入概率分布列的必要性。
概念的建立主要以教师讲解为主,并通过师生互动、例题处理达到让学生加深对概率分布列及其性质的的理解,和基本技能的掌握,以及能力的训练的目的。
情感态度与价值观:加强师生情感交流,营造和谐课堂。
在教学过程中让学生体会数学在生活的应用。
充分发挥非智力因素在教学中的作用,增强学生对数学学习的兴趣。
教学重点:1. 离散型随机变量概率分布列的概念。
2. 离散型随机变量分布列的表示方法和性质。
教学难点:1. 确定离散型随机变量的取值、随机变量所对应的概率2. 随机变量在某个范围内取值的概率的计算1、4 教学方法、教学手段的选择教学方法:讲授、启发引导、师生互动讲练结合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国教育学会中学数学教学专业委员会
2016年高中青年数学教师优秀课展示与研讨活动
《离散型随机变量的分布列》教学设计
一、教材分析
《离散型随机变量的分布列》是人教A版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第二课时,主要内容是学习分布列的定义、性质、应用和两点分布模型。
离散型随机变量的分布列是高中阶段的重点内容,它作为概率与统计的桥梁与纽带,既是概率的延伸,也是学习统计学的理论基础,起到承上启下的作用,是本章的关键知识之一,也是后续第三节离散型随机变量的均值和方差的基础。
从近几年的高考观察,这部分内容有加强命题的趋势。
一般以实际情境为主,需要学生具备一定的建模能力,建立合适的分布列,通过均值和方差解释实际问题。
二、学情分析
在必修三的教材中,学生已经学习了有关统计概率的基本知识,在本书的第一章中也全面学习了排列组合的有关内容,有了知识上的准备; 并且通过古典概率的学习,基本掌握了离散型随机变量取某些值时对应的概率, 有了方法上的准备, 但并未系统化。
处于这一阶段的学生,思维活跃,已初步具备自主探究的能力,动手能力运算能力尚佳,但基础薄弱,对数学图形、符号、文字三种语言的相互转化,以及处理抽象问题的能力,还有待于提高。
三、教学策略分析
学生是教学的主体,本节课要给学生提供各种参与机会。
本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。
注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,通过设计抽奖方案,让学生感受“从特殊到一般,再从一般到特殊”的抽象思维过程,应用类比、归纳、转化的思想方法,得到分布列的三种表示方法及分布列的性质,培养学生分析问题、解决问题的能力。
四、目标分析
1.理解核心概念——离散型随机变量分布列及两点分布模型,掌握分布列的性质,会求离散型随机变量的分布列,并能解决实际问题;
2. 在对抽奖问题的分析中经历数学建模过程,通过与函数的类比使学生理解离散型随机变量的分布列的函数属性,通过对抽奖方案的分析得出特殊的离散型随机变量的分布列,再从特殊的离散型随机变量的分布列归纳出一般的离散型随机变量的分布列,再通过对例题的抽奖方案的分析得出两点分布模型,让学生感知从特殊到一般再从一般到特殊的认知过程;
3. 通过情境导入使学生在具体情境中认识分布列对于刻画随机现象的重要性,体会数学来源于生活,又应用于生活的本质。
通过策划抽奖活动,培养学生对数学学习的兴趣,体会学习的成功感。
五、教学重点与难点
教学重点离散型随机变量的分布列的概念,表示方法及性质,两点分布的模型;
教学难点离散型随机变量的分布列的概念和两点分布模型。
六、教学过程设计分析:
师:将以
上方案中随机变量X 的取值与取值对应的概率P 建立的表格称为离散型随机变量X 的概率分布列。
解析法:P(X=i )=6
1,i=1,2, (6)
图象法:
思考:分组讨论三种表示方法的优劣? 解析法:精确不直观; 图象法:直观不精确;
列表法:直观且精确,但X 的取值较多时比较繁琐。
方案二:随机变量X 的取值为1,2,3;对应的概率为
.
21
)3(,31)2(,61)1(======X P X P X P
分布列:
从列表法的角度,如何给任意的一个离散型随机变量的分布列下一个一般地定义呢? 由学生口头表述,师给出严格定义:
(三)抽象概括,形成概念
X 1
2
3
4
5
6
P
6
1
6
1 6
1 6
1 6
1 6
1 X 1 2
3
P
6
1 3
1 2
1
分布列定义:
如果离散型随机变量X 的所有可能取得值为1x ,2x ,…
n
x ; X 取每一个值x i (i=1,2,…,n )的概率为p 1,p 2,…,
p n ,则称表
X 1x 2x … n x P
1
p
2
p
…
n
p
为离散型随机变量X 的概率分布列,简称为X 的分布列。
思考:根据方案中离散型随机变量X 的三种表示方法,思考一般离散型随机变量有几种表示方法?
列表法: X 1x 2x … n x P 1
p
2
p
…
n
p
解析式:P(X=i x )=i p ,i=1,2,…,n. 图像法:
(四)概念深化, 性质归纳
思考:结合方案中的表格和概率的性质,分小组讨论分布列具有什么样的性质?
七、教学反思
本课就新课程理念下概念教学课的课堂模式,做了一些探索。
突现数学核心概念,紧抓数学学习的本质。
通过设计抽奖活动方案将整堂课串联起来,从实际情境引入,以抽奖活动结束。
以问题解决为中心,通过提出问题,完善问题,解决问题,拓展问题,采用小组合作、自主学习的研究性学习方式,重点放在离散型随机变量的分布列的知识生成上,采用了从特殊到一般,再从一般到特殊的认知过程,充分体现了学生的主体地位。
如果在本堂课中设计的活动再多一些,学生可能会更积极,课堂气氛也会更活跃。
附板书设计:。