数学建模 年的公交车调度问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三篇公交车调度方案的优化模型
2001年 B题公交车调度
公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城
市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国
一座特大城市某条公交线路的客流调查和运营资料。
该条公交线路上行方向共14站,下行方向共13站,表3-1给出的是
典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配
给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。
试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。
如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。
公交车调度方案的优化模型*
摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。
在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解。对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。
关键词:公交调度;模糊优化法;层次分析;满意度
§1 问题的重述
一、问题的基本背景
公交公司制定公交车调度方案,要考虑公交车、车站和乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车的乘客数量统计见表3-1。
二、运营及调度要求
1.公交线路上行方向共14站,下行方向共13站;
2.公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运营的平均速度为20公里/小时。车辆满载率不应超过120%,一般也不低于50%;
3.乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。
三、要求的具体问题
1.试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益,等等;
2.如何将这个调度问题抽象成一个明确完整的数学模型,并指出求解方法;
3.据实际问题的要求,如果要设计好更好的调度方案,应如何采集运营数据。
3.2 问题的分析
本问题的难点是同时考虑到完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益等诸多因素。如果仅考虑提高公交公司的经济效益,则只要提高公交车的满载率,运用数据分析法可方便地给出它的最佳调度方案;如果仅考虑方便乘客出行,只要增加车辆数的次数,运用统计方法同样可以方便地给出它的最佳调度方案,显然这两种方案是对立的。于是我们将此题分成两个方面,分别考虑到:⑴公交公司的经济效
益,记为公司的满意度;⑵乘客的等待时间和乘车的舒适度,记为乘客的满意度。
显然公交公司的满意度取决于每一趟车的满载率,且满载率越高,公交公司的满意度越高;乘客的满意度取决于乘客等待的时间和乘车的舒适度,而乘客等待时间取决于车辆的班次,班次越多等待时间越少,满意度越高;乘客的舒适度取决于是否超载,超载人数越少,乘客越满意。很明显可以知道公交公司的满意度与乘客的满意度相互矛盾,所以我们需要在这两个因素中找出一个合理的匹配关系,使得双方的满意度达到最好。
3.3 模型的假设
1.道路:交通情况、路面状况良好,无交通堵塞和车辆损坏等意外情况;
2.公交车:发车间隔取整分钟,行进中彼此赶不上且不超车,到达终点站后调头变为始发车; 3.乘客:在每时段内到达车站的人数可看作是负指数分布,乘客乘车是按照排队的先后有序原则乘车,且不用在两辆车的间隔内等待太久;
4.数据:“人数统计表”中的数据来源准确、可信、稳定、科学; 5.票价:乘车票价为定值,不因乘车远近而改变。
3.4 定义与符号说明
注:(表示上行运动(),表示下行运动(),18,3,2,1Λ,=j 。
3.5 模型的建立与求解
3.5.1 模型Ⅰ:相关量及车辆数的确定模型
对问题1为设计便于操作的公交车调度方案,根据表3-1给出的一个工作日两个运营方向各个站上下车的乘客数量统计,假设各时段车辆平均足够载完在相等时间内到达的乘客,乘客也只能乘坐该路车而没有太大的不满,我们要设计两个起点站的发车时刻表,计算需要的车辆数,首先可建立以下各模型来求相关量。
1.相关量
⑴上下行各时间段内最大客容量:建立模型如下
运用模型和表3-1中的上下车乘客数,算出上下行各时间段内最大客容量如下:
上行:716,2943,5018,2705,1528,1193,1355,1200,1040,881,871,2133,2722,897,464,410,275,19; 下行:7,1039,2752,3223,1822,1093,986,830,891,1017,1302,2196,361,2417,1091,781,774,337.
*本文获
2001年全国一等奖。队员:叶云,周迎春,齐欢,指导教师:朱家明等。