第五章--金属的塑性与变形抗力
13.4影响塑性和变形抗力的因素
7,其它元素:主要是降低钢的塑性,提高变形抗力
合金元素对铁素体伸长率和韧性的影响
(二)组织状态对金属塑性的影响
晶格类型的影响 面心立方——12个滑移系,同一滑移面上3个滑移方向, 塑性最好,如铝,铜和镍等. 体心立方——12个滑移系,同一滑移面上2个滑移方向, 塑性较好,如钒,钨,钼等. 密排六方——3个滑移系,塑性最差,如镁,锌,钙等. 晶粒度的影响 晶粒度越小,越均匀,塑性越高.
第四节影响塑性和变形抗力的因素
一,塑性,塑性指标和塑性图 塑性:金属在外力作用下发生永久变形而不破坏其完整性的 能力. 1,塑性反映了材料产生塑性变形的能力; 2,塑性不是固定不变的,同一种材料,在不同的变形条件 下,会表现出不同的塑性. 3,影响金属塑性的因素主要有两方面: 1)内因:金属本身的晶格类型,化学成分和金相组织等; 2)外因:变形时外部条件,如变形温度和受力状况等.
A0 ,Ak
塑性指标还可以用镦粗实验和扭转试验测定. 镦粗试验(试样的高度为直径的1.5倍)中,以出现 第一条裂纹时的变形程度为塑性指标:
εc
,
H0 Hk = H0
×
100%
试样原始高度和表面出现第一条裂纹 时的高度
注:只有相同的指标才能相互比较
原始样
出现裂纹后的试样
镦粗试验
塑性图: 在不同的变形速度下,以不同温度下的各 种塑性指标( , , , ,ak等)为纵坐标, 以温度为横坐标绘制成的函数曲线.
碳钢的塑性随温度的变化曲线
(四)应变速率对塑性的影响
一方面,随变形速率的增大,金属的塑性降低:没有足 够的时间进行回复或再结晶,软化过程进行得不充分. 另一方面,随着变形速率的增加,在一定程度上使金属 的温度升高,温度效应显著,从而提高金属的塑性.但 对于有脆性转变的金属,则应变速率的增加可能引起塑 性的下降.
第五章 金属的塑性
§5.3.1 影响塑性的内部因素
(2)合金元素 取决于加入元素的特性, 加入数量、元素之间的相互 作用。 当加入的合金元素与基体 作用使在加工温度范围内形 成单相固溶体时,则有较好 塑性;如形成过剩相(尤其是 脆性相),或使在加工温度范 围内两相共存,则塑性降低。
2.组织结构
外加应力低于原子间结合力极限
正应力使晶格沿应力方向伸长,切应力使晶格沿某晶面和晶向相对移动, 外力去除后晶格恢复原状
外加应力大于原子间结合力极限
正应力使晶体发生断裂,切应力使晶体的原子沿某晶面和晶向迁移到新 的平衡位置,外力去除原子停留在新的平衡位置
为什么金属晶体能够产生相对移动而不发生破坏呢?
金属原子之间特殊的结合方式 — 金属键
第三篇 塑性变形材料学基础
第5章 金属的塑性
§5.1 金属的塑性 §5.2 金属多晶体塑性变形的主要机制
§5.3 影响金属塑性的因素
§5.4 金属的超塑性
§5.1 金属的塑性
§5.1.1 塑性的基本概念 §5.1.2 塑性指标及其测量方法
§5.1.3 塑性状态图及其应用
§5.1.1 塑性的基本概念
(4)滑移的临界分切应力
F 横截面积 A
某一滑移系上的分切应力
F cos A / cos
滑 移 方 向
M
滑 移 面 法 向
F cos cos A
cos cos
滑移面
取向因子
F 分切应力计算分析图
cos cos
其中任何一个角度为90°时,分切应力为零,晶体不可能 滑移 当两个角度都为45°时,取向因子最大(为0.5),该滑 移系处于最有利取向 只有当分切应力τ≥临界分切应力τk时,滑移才能开始
第五章 金属的塑性变形及再结晶
四、金属的热加工
1.热变形加工与冷变形加工的区别
从金属学的观点来看,热加工和冷加工的区别是以再结晶温 度为界限。在再结晶温度之下进行的变形加工,在变形的同时没 有发生再结晶,这种变形加工称之为冷变形加工。而金属在再结 晶温度以上进行塑性变形就称为热加工。
2.热变形加工对金属组织与性能的影响
(1)改善铸态组织 热变形加工可以使金属铸锭中的组织缺陷显 著减少,如气孔、显微裂纹等,从而提高材料的致密度,使金属 的力学性能得到提高。
在工业上常利用回复现象将冷变形金属低温加热既消除应为去应力退火力稳定组织同时又保留了加工硬化性能这种热处理方法称1再结晶过程变形后的金属在较高温度加热时原子活动能力较强时会在变形随着原子的扩散移动新晶核的边界面不断向变形的原晶粒中推进使新晶核不断消耗原晶粒而长大
金属材料及热处理
第五章 金属的塑性变形及再结晶
二、冷塑性变形对金属组织和性能的影响
2.冷塑性变形对组织结构的影响 1)产生“纤维组织”
塑性变形使金属的晶粒形状发生了变化,即随着金属外形的 压扁或拉长。当变形量较大时,各晶粒将被拉长成细条状或纤维 状,晶界变得模糊不清,形成所谓的“纤维组织”。
2)产生变形织构
由于在滑移过程中晶体的转动和旋转,当塑性变形量很大时, 各晶粒某一位向,大体上趋于一致了,这种现象称择优取向。 这种由于塑性变形引起的各个晶粒的晶格位向趋于一致的晶粒 结构称为变形织构。
二、冷塑性变形对金属组织和性能的影响
3.产生残余内应力
经过塑性变形,外力对金属所做的功,约90%以上在使金属变 形的过程中变成了热,使金属的温度升高,随后散掉;部分功转 化为内应力残留于金属中,使金属的内能增加。残余的内应力就 是指平衡于金属内部的应力,它主要是金属在外力的作用下所产 生的内部变形不均匀而引起的。 第一类内应力,又称宏观内应力。它是由于金属材料各部分变形 不均匀而造成的宏观范围内的残余应力。 第二类内应力,又称微观残余应力。它是平衡于晶粒之间的内应 力或亚晶粒之间的内应力。 第三类内应力,又称晶格畸变内应力。其作用范围很小,只是在 晶界、滑移面等附近不多的原子群范围内维持平衡。
课件塑性加工原理塑性与变形总课件参考.ppt
1.镦粗时组合件的变形特点 2.基本应力的分布特点 3.第一类附加应力的分布特点
*
上课课件
3. 4. 2 平辊轧制时金属的应力及变形特点
1.基本应力特点 2.变形区内金属质点流动特点 3.平辊轧制时,第一类附加应力的分布特点
*
上课课件
3. 4. 3 棒材挤压时的应力及变形特点
1.棒材挤压时的基本应力状态 2 .棒材挤压时的金属流动规律 3 .棒材挤压时的附加应力
变形程度ε
应力σ
σsb
σsn
图3-25 拉伸时真应力与变形程度的关系 1)无缺口试样拉伸时的真应力的曲线 2)有缺口样拉伸的真应力曲线
*
上课课件
3. 3. 4 残余应力
1.残余应力的来源 2.变形条件对残余应力的影响 3.残余应力所引起的后果 4.减小或消除残余应力的措施 5.研究残余应力的主要方法
*
上课课件
2.最大摩擦条件 当接触表面没有相对滑动,完全处于粘合状 态时,单位摩擦力( )等于变形金属流动 时的临界切应力k,即: = k 3.摩擦力不变条件 认为接触面间的摩擦力,不随正压力大小而变。其单位摩擦力是常数,即常摩擦力定律,其表达式为: =m·k 式中,m为摩擦因子
第3章 金属塑性加工的宏观规律
§3. 1 塑性流动规律(最小阻力定律) §3. 2 影响金属塑性流动和变形的因素 §3. 3 不均匀变形、附加应力和残余应力 §3. 4 金属塑性加工诸方法的应力与变形特点 §3. 5 塑性加工过程的断裂与可加工性
*
上课课件
§3.1 塑性流动规律(最小阻力定律)
上课课件
3. 2. 2 变形区的几何因素的影响
变形区的几何因子(如H/D、H/L、H/B等)是影响变形和应力分布很重要的因素。
第5章 金属的塑性变形
塑性变形及随后的加热,对金属材料组织和性能有 显著的影响。了解塑性变形的本质、塑性变形及加 热时组织的变化,有助于发挥金属的性能潜力,正 确确定加工工艺
单晶体的塑性变形 多晶体的塑性变形 变形后金属的回复与再结晶 金属的热塑性变形
1
第一节 单晶体的塑性变形 一、单晶体纯金属的塑性变形
T再与ε的关系
如Fe:T再=(1538+273)×0.4–273=451℃
39
2)、金属的纯度 金属中的微量杂质或合金元素,尤其高熔点元素, 起阻碍扩散和晶界迁移作用,使再结晶温度显著 提高。
40
3)、再结晶加热速度和加热时间 提高加热速度会使再结晶推迟到较高温度发生;
延长加热时间,使原子扩散充分,再结晶温度降低。
3、产生织构:金属中的晶粒的取向一般是无规则的随机排列,尽管每个 晶粒是各向异性的,宏观性能表现出各向同性。当金属经受大量(70% 以上)的一定方向的变形之后,由于晶粒的转动造成晶粒取向趋于一致, 形成了“择优取向”,即某一晶面 (晶向)在某个方向出现的几率明 显高于其他方向。金属大变形后形成的这种有序化结构叫做变形织构, 它使金属材料表现出明显的各向异性。 24
在应力低于弹性极限σ e时, 材料发生的变形为弹性变形; 应力在σ e到σ b之间将发生的变 形为均匀塑性变形;在σ b之后 将发生颈缩;在K点发生断裂。
s e
弹性变形的实质是:在应力的作用下,材料内部的原子偏离了平衡位 置,但未超过其原子间的结合力。晶格发生了伸长(缩短)或歪扭。 原子的相邻关系未发生改变,故外力去除后,原子间结合力便可 2 以使变形的塑性:fcc>bcc>chp
8
哪个滑移系先滑移?
当作用于滑移面上滑移方向的切应力分量c(分切应力)大于等于一定的 临界值(临界切应力,决定于原子间结合力),才可进行。
5金属的塑性与变形抗力-新解析
1区——位于100~200℃之间,塑性增加是由于在 冷变形时原子动能增加的原因〔热振动〕。
2区——位于700~800℃之间,由于有再结晶和集 中过程发生,这两个过程对塑性都有好的作用。
3区——位于950~1250℃的范围内,在此区域中没有相变 ,钢的组织是均匀全都的奥氏体。
热轧时应尽可能地使变形在3区温度范围内进展,而冷加工 的温度则应为1区。
2、变形速度的影响
变形速度对塑性的影响
Ⅰ区,即变形速度小于临界变形速度,该区随变 形速度的增加,塑性是随之下降的。
Ⅱ区,是在大于临界变形速度的状况下,随变形速度的增 加,塑性是增加的。
三、 变形力学条件对塑性的影响
1、 应力状态的影响
钢的变形抗力和温度的关系如下:
如1200℃时
变形抗力为1.0
则1100℃时
变形抗力为2.7
1000℃时
变形抗力为4.0
800℃时
变形抗力为6.7
常温时
变形抗力为20
温度上升,金属变形抗力降低的缘由有以下几个方 面: 〔1〕发生了回复与再结晶 ,
〔2〕临界剪应力降低 ,
〔3〕金属的组织构造发生变化,
〔2〕单相组织比多相组织的变形抗力要低;
〔3〕晶粒体积一样时,晶粒瘦长者较等轴晶粒构造的变 形抗力为大;
〔4〕晶粒尺寸不均匀时,又较均匀晶粒构造时为大;
〔5〕金属中的夹杂物对变形抗力也有影响,在一般状况 下,夹杂物会使变形抗力上升;钢中有其次相时,变形抗力也 会相应提高。
二、变形温度的影响
在加热及轧制过程中,温度对钢的变形抗力影响特 别大。随着钢的加热温度的上升,变形抗力降低。
材料科学与工程基础完美版教案第五章__材料的变形
孪生
在金属的塑性变形中,另一种较常见的形变方式为孪生, 它常作为滑移不易进行时的补充。一些具有密排六方结构的 金属,如镉、锌、镁、铍等,塑性变形常常部分的以孪生的 方式进行;而铋、锑金属的塑性变形几乎完全以孪生的方式 进行。对于有体心立方及面心立方结构的金属,当变形温度 很低,形变速度极快,或由于其它原因使滑移过程难以进行 时,也会通过孪生的方式进行塑性变形。孪生就是在切应力 作用下晶体的一部分相对于另一部分沿一定的晶面与晶向产 生的一种均匀切变过程。在孪生变形中,已发生均匀切变的 那部分晶体称为孪晶;均匀切变区与未切变区的分界面称为 孪晶界;发生均匀切变的那个晶面称为孪生面;孪生面切动 的方向则为孪生方向。
但破坏性很强。
(2)第二类内应力(微观内应力)
因不同晶粒间变形不协调形成,占形变储能的10~20%,有 一定破坏性。
(3)第三类内应力(晶格畸变)
因晶体缺陷增殖而形成,占形变储能的80~90%,是加工硬 化的主要原因。
第二节 金属及合金的回复与再结晶
金属经冷塑性变形后,组织和性能都发生了明显变化。金属晶体
冷塑性变形引起的加工硬化,可以通过加热发生再结晶来加 以消除。如果钢在再结晶温度以上进行加工,塑性变形引起的加 工硬化便可以立即被再结晶过程所消除。因此,在再结晶温度以 上的加工称为热加工。反之,在再结晶温度以下的加工称为冷加 工。
金属在高温下强度降低而塑性提高,所以热加工的主要优点 是容易变形,且变形量大,能量消耗少,即使是脆性材料也较容 易加工。但由于金属在表面要发生氧化,所以热加工比冷加工产 品表面的粗糙度和尺寸精度都要差。一般的,冷加工适合于厚度 较小,而且尺寸精度和粗糙度要求较高的场合。厚度较大和变形 量较大的工件则需要进行热加工。在热加工工程中,金属内部同 时发生着加工硬化和再结晶软化,这种再结晶过程和加工硬化同 时进行的过程称为动态再结晶。
第五章金属的塑性和变形抗力
第五章 金属的塑性和变形抗力从金属成形工艺的角度出发,我们总希望变形的金属或合金具有高的塑性和低的变形抗力。
随着生产的发展,出现了许多低塑性、高强度的新材料,需要采取相应的新工艺进行加工。
因此研究金属的塑性和变形抗力,是一个十分重要的问题。
本章的目的在于阐明金属塑性和变形抗力的概念,讨论各种因素对它们的影响。
§5.1 塑性、塑性指标、塑性图和变形抗力的概念所谓塑性,是指固体材料在外力作用下发生永久变形而又不破坏其完整性的能力。
人们常常容易把金属的塑性和硬度看作成反比的关系,即认为凡是硬度高的金属其塑性就差。
当然,有些金属是这样的,但并非都是如此,例如下列金属的情况: Fe HB =80 ψ=80%Ni HB =60 ψ=60%Mg HB =8 ψ=3%Sb HB =30 ψ=0%可见Fe 、Ni 不但硬度高,塑性也很好;而Mg 、Sb 虽然硬度低,但塑性也很差。
塑性是和硬度无关的一种性能。
同样,人们也常把塑性和材料的变形抗力对立起来,认为变形抗力高塑性就低,变形抗力低塑性就高,这也是和事实不符合的。
例如奥氏体不锈钢在室温下可以经受很大的变形而不破坏,既这种钢具有很高的塑性,但是使它变形却需要很大的压力,即同时它有很高的变形抗力。
可见,塑性和变形抗力是两个独立的指标。
为了衡量金属塑性的高低,需要一种数量上的指标来表示,称塑性指标。
塑性指标是以金属材料开始破坏时的塑性变形量来表示。
常用的塑性指标是拉伸试验时的延伸率δ和断面缩小率ψ,δ和ψ由下式确定: %100l l l 00k ×−=δ (5.1) %100F F F 0K 0×−=ψ (5.2) 式中l 0、F 0——试样的原始标距长度和原始横截面积;l K 、F K ——试样断裂后标距长度和试样断裂处最小横截面积。
实际上,这两个指标只能表示材料在单向拉伸条件下的塑性变形能力。
金属的塑性指标除了用拉伸试验之外,还可以用镦粗试验、扭转试验等来测定。
第五章--金属的塑性与变形抗力
金属的塑性变形抗力摘要:塑性加工时,使金属发生塑性变形的外力,称为变形力。
金属抵抗变形之力,称为变形抗力。
变形抗力和变形力数值相等,方向相反,一般用平均单位面积变形力表示其大小。
当压缩变形时,变形抗力即是作用于施压工具表面的单位面积压力,故亦称单位流动压力。
关键字:塑性变形抗力1、金属塑性的概念所谓塑性,是指金属在外力作用下,能稳定地产生永久变形而不破坏其完整性的能力。
金属塑性的大小,可用金属在断裂前产生的最大变形程度来表示。
一般通常称压力加工时金属塑性变形的限度,或“塑性极限”为塑性指标2、塑性和柔软性应当指出,不能把塑性和柔软性混淆起来。
不能认为金属比较软,在塑性加工过程中就不易破裂。
柔软性反映金属的软硬程度,它用变形抗力的大小来衡量,表示变形的难易。
不要认为变形抗力小的金属塑性就好,或是变形抗力大的金属塑性就差。
3、塑性指标表示金属与合金塑性变形性能的主要指标有:(1)拉伸试验0;的延伸率(0)与断面收缩率(中)。
— % 干=/%F(2)冲击试验时的冲击韧性a k。
(3)扭转试验的扭转周数n。
(4)锻造及轧制时刚出现裂纹瞬间的相对压下量。
(5)深冲试验时的压进深度,损坏前的弯折次数。
4、一些因素对塑性的影响规律A化学成分的影响(1)碳随着含碳量的增加,渗碳体的数量也增加,塑性的降低(2)磷磷一般说来是钢中有害杂质,磷能溶于铁素体中,使钢的强度、硬度增加,但塑性、韧性则显著降低。
这种脆化现象在低温时更为严重,故称为冷脆。
(3)硫硫是钢中有害杂质,它在钢中几乎不溶解,而与铁形成FeS,FeS与Fe的共晶体其熔点很低,呈网状分布于晶界上。
当钢在800〜1200°C范围内进行塑性加工时,由于晶界处的硫化铁共晶体塑性低或发生熔化而导致加工件开裂,这种现象称为热脆(或红脆)。
另外,硫化物夹杂促使钢中带状组织形成,恶化冷轧板的深冲性能,降低钢的塑性。
(4)氮590C时,氮在铁素体中的溶解度最大,约为0.42%;但在室温时则降至0.01%以下。
金 属 塑 性 和 变 形 抗 力 的测 定
σ-
1
此时所测得的平均单位压力p 即为平面变形抗力K 值。
实际上,即使润滑良好,还是存在轻微摩擦,所以应对上面的K 值加以修正,即 1
fl h
p fl K h
e =
⨯
-
式中,f 为摩擦系数。
考虑轻微摩擦时,f = 0.02~0.04。
三、实验设备和材料
(1) 材料试验机。
(2)刻线打点机。
(3)平面变形压缩装置 (4)千分尺、游标卡尺
(5)Q235标准试样各一个,100mmx4Ommx6mm 铝试样4块。
四、实验方法和步骤
(1) 用卡尺和千分尺测定好标准试样尺寸,并标好计算长度。
(2) 在刻线打点机上将标准试样计算长度分距划线。
(3)准备好材料试验机,将记录纸和笔装好备用。
(4)夹好标准试样,进行拉申实验,注意分段加载,并记录载荷值。
(5)根据拉伸曲线计算出相应试样0.2σ的,及伸长率已填人表1内。
材料成形工艺基础最新精品课件第五章金属塑性成形理论基础
2. 多晶体的塑性变形
多晶体的塑性变形是由于晶界的存在和 各晶粒晶格位向的不同,其塑性变形过程比 单晶体的塑性变形复杂得多。在外力作用下, 多晶体的塑性变形首先在晶格方向有利于滑 移的晶粒A内开始,然后,才在晶格方向较 为不利的晶粒B、C内滑移。由于多晶体中 各晶粒的晶格位向不同,滑移方向不一致, 各晶粒间势必相互牵制阻扰。为了协调相邻 晶粒之间的变形,使滑移得以继续进行,便 图5-4 多晶体塑性变形过程示意图 会出现晶粒彼此间相对的移动和转动。因此, 多晶体的塑性变形,除晶粒内部的滑移和转 动外,晶粒与晶粒之间也存在滑移和转动。
图5-6 回复和再结晶示意图
(3)晶粒长大 在结晶退火后的金属组织一般为细小均匀的等 轴晶。如果温度继续升高,或延长保温时间,则在结晶后的晶粒 又会长大而形成粗大晶粒,从而使金属的强度、硬度和塑性降低。 所以要正确选择再结晶温度和加热时间的长短。
5.2.2 冷变形和热变形后金属的组织与性能
金属在再结晶温度以下进行的塑性变形称为冷变形,在再结晶以 上进行的塑性变形称为热变形。
图5-7 冲压件的制耳
(4)残余内应力 残余内应力是指去除外力后,残留在金属内 部的应力,它主要是由于金属在外力作用下变形不均匀而造成的。 残余内应力的存在,使金属原子处于一种高能状态,具有自发恢 复到平衡状态的倾向。在低温下,原子活动能力较低,这种恢复 现象难以觉察,但是,当温度升高到某一程度后,金属原子获得 热能而加剧运动。金属组织和性能将会发生一系列变化。
1. 锻造比 锻造比是锻造生产中代表金属变形程度大小的一个参数,一 般是用锻造过程中的典型工序的变形程度来表示(Y)。如拔长时, 锻造比Y拔=F0/F;镦粗时,锻造比Y镦=H0/H。(式中,H0、F0分别为坯 料变形前的高度和横截面积,H、F分别为坯料变形后的高度和横截面 积)。
材料工程基础-第五章 金属的塑性加工
已知铅的熔点为327℃,钨的熔点为3380℃。问:铅在 20℃、钨在1000℃时变形各属哪种变形?为什么?
T 钨再= 0.4 T熔 = 0.4(3380+273) =1461 K = 1188℃>1000℃
T 钨回 =(0.25~0.3)T熔 = (913~1096)K =(640~823) ℃ < 1000℃
• 轧制的目的? 成形 改质、提高性能
• 轧制得到广泛应用,大部分金属以轧态使用。 钢材 90% 铝及合金 35~45% 铜及合金 60~70%
以简单理想轧制过程为例,阐述轧制过程 的基本概念。
简单理想轧制过程:两轧辊均被驱动,直径 相等,转速相同,轧件的机械性质及运动 均匀,无外加推力或拉力作用,靠轧辊力 实现轧制的过程。
大,使金属力学性能下降。
3、冷变形、热变形和温变 形
(1) 冷变形及其影响
金属在再结晶温度以下的变形称为冷变形,具
有加工硬化组织。
冷变形特点:冷变形可以使工件获得较高的精
度和表面质量。冷变形也是强化金属的一种重要手
段。但变形抗力大。
(2) 热变形及其影响
变形温度在再结晶温度以上时,变形产生的加工硬化被随 即发生的再结晶所抵消,变形后金属具有再结晶的等轴晶粒组 织,而无任何加工硬化痕迹,这种变形称为热变形。
2. 多晶体的塑性变形
多晶体塑性变形的实质:
晶粒内部发生滑移;同时晶粒之间发生滑移和转动。
晶内变形 滑移 滑动
晶间变形 转动
二、塑性变形后金属的组织和性能
1、加工硬化
金属在室温下进行塑性变形时,随着变形程度的增加, 强度和硬度不断提高,塑性和冲击韧性不断降低,这种现象 称为加工硬化。 加工硬化的金属内部组织变化特点。 (1)各晶粒沿变形最大的方向伸长, (2)位错密度增加,晶格严重扭曲,产生内应力; (3)滑移面和晶粒间产生碎晶。
工程材料知识点总结(全)
工程材料知识点总结(全)第二章材料的性能1、布氏硬度布氏硬度的优点:测量误差小,数据稳定。
缺点:压痕大,不能用于太薄件、成品件及比压头还硬的材料。
适于测量退火、正火、调质钢,铸铁及有色金属的硬度(硬度少于450HB)。
2、洛氏硬度HRA用于测量高硬度材料, 如硬质合金、表淬层和渗碳层。
HRB用于测量低硬度材料, 如有色金属和退火、正火钢等。
HRC用于测量中等硬度材料,如调质钢、淬火钢等。
洛氏硬度的优点:操作简便,压痕小,适用范围广。
缺点:测量结果分散度大。
3、维氏硬度维氏硬度所用载荷小,压痕浅,适用于测量零件表面的薄硬化层、镀层及薄片材料的硬度,载荷可调范围大,对软硬材料都适用。
4、耐磨性是材料抵抗磨损的性能,用磨损量来表示。
分类有黏着磨损(咬合磨损)、磨粒磨损、腐蚀磨损。
5、接触疲劳:(滚动轴承、齿轮)经接触压应力的反复长期作用后引起的一种表面疲劳剥落损坏的现象。
6、蠕变:恒温、恒应力下,随着时间的延长,材料发生缓慢塑变的现象。
7、应力强度因子:描述裂纹尖端附近应力场强度的指标。
第三章金属的结构与结晶1、晶体中原子(分子或离子)在空间的规则排列的方式为晶体结构。
为便于描述晶体结构,把每个原子抽象成一个点,把这些点用假想直线连接起来,构成空间格架,称为晶格。
晶格中每个点称为结点,由一系列原子所组成的平面成为晶面。
由任意两个原子之间连线所指的方向称为晶向。
组成晶格的最小几何组成单元称为晶胞。
晶胞的棱边长度、棱边夹角称为晶格常数。
①体心立方晶格晶格常数用边长a表示,原子半径为√3a/4,每个晶胞包含的原子数为1/8×8+1=2(个)。
属于体心立方晶格的金属有铁、钼、铬等。
②面心立方晶格原子半径为√2a/4,每个面心立方晶胞中包含原子数为1/8×8+1/2×6=4(个)典型金属(金、银、铝、铜等)。
③密排六方晶格每个面心立方晶胞中包含原子数为为12×1/6+2*1/2+3=6(个)。
第5章_金属及合金的形变(5-6-7)
第五章金属及合金的形变(第五、六、七节)第五章金属及合金的形变U第一节应力与应变U第二节弹性形变U第三节范性形变的表象U第四节单晶体的滑移ª第五节孪生及扭折ª第六节多晶体的范性形变ª第七节范性形变后金属的结构、组织和性能第五节孪生及扭折滑移是形变的主要形式,孪生及扭折也是形变的不同形式。
一、孪生孪生━晶体受力后,以产生孪晶的方式而进行的切变过程,称为孪生。
孪晶━以共格界面相联结,晶体学取向成镜面对称关系的这样一对晶体(或晶粒)的合称。
孪生前后晶体的形变晶体受到切应力后,沿着一定的晶面(孪生面) 和一定的晶向(孪生方向) 在一个区域内发生连续的顺序的切变。
滑移≠孪生滑移时晶体两部分相对滑移面的(整体) 切变量是原子间距的整数倍。
孪生时各晶面相对于孪生面的切变量与该晶面和孪生面的距离成正比,是原子间距的分数值。
第五节孪生及扭折孪生也是通过位错运动来实现的。
产生孪生的位错的柏氏矢量必须小于一个原子间距━部分位错。
每层原子都有一个不相等的部分位错。
逐层横扫、形成孪晶。
孪生比滑移困难:n晶体学条件必须满足孪生后取向关系,只能沿确定的晶面和晶向进行切变;o孪生所需切应力往往比滑移大许多倍。
孪生核心大多产生于晶体内的局部高应力、高应变区,即在滑移已进行到相当程度、并受到严重阻碍的区域。
对于一些滑移系较多,而孪生与滑移的临界分切应力又相差很大的晶体来说,要使晶体不发生滑移而进行孪生,是相当困难的。
Z HCP金属(Mg、Zn) 是最常见出现孪晶的。
六方晶系的滑移系很少,滑移困难,容易出现孪晶。
FCC 金属很少进行孪生,只有很少金属(Cu、Ag)在极低温度下滑移很困难时才发生孪生。
BCC 金属(αFe)在室温时,只有在冲击载荷下,才进行孪生。
第五节孪生及扭折二、扭折扭折是在滑移受阻、孪生也不利的条件下,晶体所作的不均匀局部塑性变形来适应外力的作用,是位错汇集引起协调性的形变。
和孪生不同,扭折区晶体的取向发生了不对称的变化,扭折带大多是由折曲(ABCD)和弯曲(左右两侧)两部分组成。
金属材料的弹性变形与塑性变形
3. 加工硬化指数n的实际意义
反映了材料开始屈服以后,继续变形时材料的 应变硬化情况,它决定了材料开始发生颈缩时 的最大应力。(σb或Sb) 1)金属的加工硬化指数(能力),对冷加工成型 很重要(n决定开始颈缩时的最大应力和最大 均匀变形量,n=0材料能否冷加工?) 。低碳 钢有较高的n,n约为0.2。 汽车身板铝合金 化 ,其n值较低,冷加工或冲压性能差。 2)对于工作中的零件,也要求材料有一定的加工 硬化能力,是零件安全使用的可靠保证。 3)形变强化是提高材料强度的重要手段。
δ(塑性变形)=均匀塑性变形+集中塑性变形 Δ5:l0=5d0(小试样) δ1 0:l0=10d0(大试样) (试样长度对δ有影响?) δgt:最大力下的总伸长率表示材料塑性,最大力
理论上:由于它是金属变形时长程内应力的度
量(可用X光方法测定) ,所以,包辛格效应可用 来研究材料加工硬化的机制.
工程上:
材料加工工艺时,需要注意或考虑包辛格效应. 输油管UOE工艺 包辛格效应大的材料,内应力较大。 包辛格效应和材料的疲劳强度也有密切关系
清除包辛格效应的方法
预先进行较大的塑性变形,或 在第二次反向受力前先使金属材 料于回复或再结晶温度下退火,如 钢在400-500℃以上.
明显。
机械设计中,刚度是第一位的,它保证精度,曲轴 的结构和尺寸常常由刚度决定,然后强度校核。
不同类型的材料,其弹性模量差别很大。
材料弹性模量主要取决于结合键的本性和原子间的 结合力,而材料的成分和组织对它的影响不大,可 以说它是一个对组织不敏感的性能指标(对金属材 料),而对高分子和陶瓷E对结构和组织敏感。
⑵规定残留伸长应力(σγ) σr0.2
⑶规定总伸长应力(σt)
σt0.5
《金属塑性成型原理》(俞汉清主编)课后习题及答案
第一章1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点?塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。
Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。
可分为一次成型和二次加工。
一次加工:①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。
分纵轧、横轧、斜轧;用于生产型材、板材和管材。
②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。
分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。
③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。
生产棒材、管材和线材。
二次加工:①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形状和尺寸的加工方法。
精度低,生产率不高,用于单件小批量或大锻件。
②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。
分开式模锻和闭式模锻。
2)板料成型一般称为冲压。
分为分离工序和成形工序。
分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属的塑性变形抗力摘要:塑性加工时,使金属发生塑性变形的外力,称为变形力。
金属抵抗变形之力,称为变形抗力。
变形抗力和变形力数值相等,方向相反,一般用平均单位面积变形力表示其大小。
当压缩变形时,变形抗力即是作用于施压工具表面的单位面积压力,故亦称单位流动压力。
关键字:塑性 变形抗力1、金属塑性的概念所谓塑性,是指金属在外力作用下,能稳定地产生永久变形而不破坏其完整性的能力。
金属塑性的大小,可用金属在断裂前产生的最大变形程度来表示。
一般通常称压力加工时金属塑性变形的限度,或“塑性极限”为塑性指标2、塑性和柔软性应当指出,不能把塑性和柔软性混淆起来。
不能认为金属比较软,在塑性加工过程中就不易破裂。
柔软性反映金属的软硬程度,它用变形抗力的大小来衡量,表示变形的难易。
不要认为变形抗力小的金属塑性就好,或是变形抗力大的金属塑性就差。
3、塑性指标表示金属与合金塑性变形性能的主要指标有:(1)拉伸试验时的延伸率(δ)与断面收缩率(ψ)。
(2)冲击试验时的冲击韧性αk 。
(3)扭转试验的扭转周数n 。
(4)锻造及轧制时刚出现裂纹瞬间的相对压下量。
(5)深冲试验时的压进深度,损坏前的弯折次数。
4、一些因素对塑性的影响规律A 化学成分的影响(1)碳%L L l -=δ%00F F F -=ψ随着含碳量的增加,渗碳体的数量也增加,塑性的降低(2)磷磷一般说来是钢中有害杂质,磷能溶于铁素体中,使钢的强度、硬度增加,但塑性、韧性则显著降低。
这种脆化现象在低温时更为严重,故称为冷脆。
(3)硫硫是钢中有害杂质,它在钢中几乎不溶解,而与铁形成FeS,FeS与Fe的共晶体其熔点很低,呈网状分布于晶界上。
当钢在800~1200℃范围内进行塑性加工时,由于晶界处的硫化铁共晶体塑性低或发生熔化而导致加工件开裂,这种现象称为热脆(或红脆)。
另外,硫化物夹杂促使钢中带状组织形成,恶化冷轧板的深冲性能,降低钢的塑性。
(4)氮590℃时,氮在铁素体中的溶解度最大,约为0.42%;但在室温时则降至0.01%以下。
若将含氮量较高的钢自高温较快地冷却时,会使铁素体中的氮过饱和,并在室温或稍高温度下,氮将逐渐以Fe4N形式析出,造成钢的强度、硬度提高,塑性、韧性大大降低,使钢变脆,这种现象称为时效脆性。
(5)氢对于某些含氢量较多的钢种(即每100克钢中含氢达2毫升时就能降低钢的塑性),热加工后又较快冷却,会使从固溶体析出的氢原子来不及向钢表面扩散,而集中在晶界、缺陷和显微空隙等处而形成氢分子(在室温下原子氢变为分子氢,这些分子氢不能扩散)并产生相当大的应力。
在组织应力、温度应力和氢析出所造成的内应力的共同作用下会出现微细裂纹,即所谓白点,该现象在中合金钢中尤为严重。
(6)铜实践表明,钢中含铜量达到0.15%~0.30%时,钢表面会在热加工中龟裂。
(7)硅含硅量在0.5%以上时,由于加强了形成铁素体的趋势,对塑性产生不良影响。
在硅钢中,当含硅量大于2.0%时,使钢的塑性降低。
当含硅量达到4.5%时,在冷状态下钢已变的很脆,如果加热到100℃左右,塑性就有显著改善。
一般冷轧硅钢片的含硅量都限定在3.5%左右。
(8)铝铝对钢及低合金钢的塑性起有害作用。
这可能是由于在晶界处形成氮化铝所致。
铝作为合金元素加入钢中是为了得到特殊性能。
含铝量较高的铬铝合金,在冷状态下塑性较低。
B 组织的影响(1)单相组织(纯金属或固溶体)比多相组织塑性好(2)晶粒细化有利于提高金属的塑性(3)化合物杂质呈球状分布对塑性较好;呈片状、网状分布在晶界上时,使金属的塑性下降。
(4)经过热加工后的金属比铸态金属的塑性高。
C 变形温度对不同的钢种塑性的影响(1)温度对合金钢塑性的影响将温度对典型合金钢塑性的影响归纳成五种基本规律,如图5-9所示。
图5-9 温度对合金钢塑性的影响曲线1 表示金属塑性随温度升高而增加,温度超过1200℃以后,其塑性直线下降。
大多数工业用钢诸如各种碳素钢与合金结构钢都属于这一类型。
曲线2 表示金属的塑性随温度升高而降低,温度超过900℃以后,下降趋势更加显著。
这一曲线只适用于少数高合金钢,如1Cr25Ni20Si2不锈钢属于这一类。
显然对这种合金钢加工非常困难。
曲线3 表示随温度升高塑性很少变化,滚动轴承钢GCr15就属于这种类型。
曲线4 表示在某一中间温度金属的塑性下降,而温度更高些或较低时都有较好的塑性,工业纯铁属于这一类。
曲线5 表示温度升高至某—中间温度时塑性较高,继续升高温度时塑性降低,如1Cr18Ni9 Ti不锈钢就属于这种类型。
图5-9 温度对合金钢塑性的影(2)温度对碳素钢塑性的影响规律总的趋势是随温度的升高,塑性是增加的。
但是,在温度升高的全过程中,在某一温度范围内,塑性则是下降的,如图5-10所示。
为了便于分析说明,用Ⅰ、Ⅱ、Ⅲ、Ⅳ表示塑性降低区,1、2、3表示塑性增高区。
图5-10 温度对碳素钢塑性的影响在塑性降低区中:Ⅰ区——钢的塑性很低,在零下200℃时塑性几乎完全丧失,这大概是由于原子热运动能力极低所致。
Ⅱ区——位于200~400℃之间,此区域亦称为兰脆区,即在钢材的断裂部分呈现兰色的氧化色,因此称为“兰脆”。
Ⅲ区——位于800~950℃之间,称为热脆区。
此区与相变发生有关。
Ⅳ区——接近于金属的熔化温度,此时晶粒迅速长大,晶间强度逐渐削弱,继续加热有可能使金属产生过热或过烧现象。
在塑性增加区:1区——位于100~200℃之间,塑性增加是由于在冷加工时原子动能增加的缘故(热振动)。
2区——位于700~800℃之间,由于有再结晶和扩散过程发生,这两个过程对塑性都有好的作用。
3区——位于950~1250℃的范围内,在此区域中没有相变,钢的组织是均匀一致的奥氏体。
由图5-10以定性的关系说明了由低温至高温碳素钢塑性变化的过程,这对我们来说是很有参考价值的。
例如热轧时我们应尽可能地使变形在3区温度范围内进行,而冷加工的温度则应为1区。
D 变形速度的影响变形速度(表示变形的快慢程度)对塑性的影响可用图5-11所示的曲线概括之。
一般认为在目前所能达到的变形速度,即变形速度不大时,随变形速度的提高塑性降低,如图中的实线部分所示。
如果在很高速度下,随着变形速度的提高塑性增加,如图中的虚线部分所示。
E 应力状态的影响在进行压力加工的应力状态中,压应力个数越多,数值越大,金属塑性越高。
反之拉应力个数愈多、数值愈大,金属塑性愈低。
F 变形状态的影响因为压缩变形有利于塑性的发挥,而延伸变形则相反。
所以主变形图中压缩分量越多,对充分发挥金属的塑性越有利。
G 不连续变形的影响实验结果表明,在不连续变形(或多次变形)的情况下,可以提高金属的塑性。
这是由于不连续的变形,每次的变形量小,产生的应力小,不容易超过金属的塑性极限;同时,在各次变形的间隙时间内,可以发生软化过程,使得金属的塑性在一定程度上得到恢复。
H 尺寸(体积)因素的影响实践证明,随着金属体积的增大,金属的塑性有所降低。
I 变形不均匀的影响由于接触面上摩擦作用,被加工金属性能的不均匀、工具形状和坯料形状的不一致等原因造成的变形不均匀,使得在金属内部产生附加应力,其中的附加拉应力会促使裂纹产生,降低金属的塑性。
5、提高塑性的途径(1)控制金属的化学成分,即将对塑性有害的元素含量降到最下限,加入适量有利于塑性提高的元素。
(2)控制金属的组织结构。
尽可能在单相区内进行压力加工,采取适当工艺措施,使组织结构均匀,形成细小晶粒,对铸态组织的成分偏析、组织不均匀应采用合适的工艺来加以改善。
(3)采用合适的变形温度-速度制度。
其原则是使塑性变形在高塑性区内进行,对热加工来说应保证在加工过程中再结晶得以充分进行。
当然,对某些特殊的加工过程,如控制轧制,有的要在未再结晶区进行轧制。
(4)选择合适的变形力学状态。
在生产过程中,对某些塑性较低的金属,应选用具有强烈三向压应力状态的加工方式,并限制附加拉应力的出现。
(5)降低接触面上的摩擦,减小变形的不均匀性,减小金属内部产生的附加拉应力提高金属的塑性。
金属变形抗力(1)静变形抗力:度量物体这种抵抗变形能力的力学指标称为变形抗力,通常以单向拉伸实验时的屈服极限值 来表示,因此又称为静变形抗力。
(2)真实变形抗力:在一定变形温度、变形速度和变形程度下的变形抗力指标,称为真实变形抗力,用 表示。
2、金属硬度的概念硬度实际上反映了金属材料的塑性变形抗力大小。
3、一些因素对钢变形抗力的影响规律A 化学成分的影响sσϕσ(1)碳钢中的碳和磷的影响随着含碳量的增加,渗碳体的数量也就增加,变形抗力提高更大。
磷能溶于铁素体中,使得钢的强度、硬度显著提高,钢的变形抗力增加。
(2)合金元素的影响合金元素加入钢中使变形抗力提高。
B 显微组织的影响一般情况时,晶粒越细小,变形抗力越大;单相组织比多相组织的变形抗力要低;晶粒体积相同时,晶粒细长者较等轴晶粒结构的变形抗力为大;晶粒尺寸不均匀时,又较均匀晶粒结构时为大;金属中的夹杂物对变形抗力也有影响,在一般情况下,夹杂物会使变形抗力升高;钢中有第二相时,变形抗力也会相应提高。
C变形温度的影响钢的变形抗力和温度的关系如下:如1200℃时变形抗力为1.0则1100℃时变形抗力为2.71000℃时变形抗力为4.0800℃时变形抗力为6.7常温时变形抗力为20D 变形速度对变形抗力的影响热变形时变形速度增加,变形抗力增加显著;而冷变形时变形速度增加,变形抗力增加不大。
E 变形程度对变形抗力的影响冷状态时,随变形程度的增加,变形抗力显著提高。
在热状态下变形抗力与变形程度具有如下关系:变形程度在20%~30%以下,随变形程度的增加,变形抗力增加比较显著,当变形程度较高时,随变形程度增加,变形抗力增加缓慢。
F 应力状态对变形抗力的影响同号应力图示比异号应力图示的变形抗力大。
4、热轧时真实变形抗力的确定热轧时的真实变形抗力根据变形时的温度、平均变形速度和变形程度的值,由实验方法得到的变形抗力曲线来确定。
图5-15为不锈钢1Cr18Ni9Ti 的变形抗力曲线。
图中的各条曲线是在不同变形温度下,压下率为30%时的变形抗力随平均变形速度变化的曲线。
在知道某个轧制道次的平均变形速度和轧制温度后,可由曲线找出ε=30%时的变形抗力 ,对于其他的变形程度可按图5-15中左上角的修正曲线,由实际变形程度找出修正系数C 。
这样该道次的变形抗力为式中 ——压下率为30%时的变形抗力; C ——与实际压下率有关的修正系数。
图5-15 不锈钢1Cr18Ni9Ti 的变形温度、变形速度对变形抗力的影响ε=30%)5、冷轧时的真实变形抗力的确定冷轧时的真实变形抗力由各个钢种的加工硬化曲线,根据该道次的平均总压下率来确定。
冷轧时以退火带坯为原料,要在一个轧程内轧制几道后才退火。