生物化学 第十二章 核酸代谢
生物化学-核酸的代谢

感谢您的观看
THANKS
RNA的合成和降解
RNA合成
RNA的合成是指以DNA的一条链为模板,合成RNA的过程。在RNA聚合酶的作用下,按照碱基互补配对原则, 逐个添加核糖核苷酸形成RNA链。
RNA降解
RNA降解是指RNA在细胞内的分解过程。RNA降解由多种酶催化,包括核糖核酸酶和脱氨酶等。这些酶能够将 RNA分解成单核苷酸或更小的片段,以便重新利用或排出体外。
核酸具有紫外吸收特性,最大吸收峰 在260nm处,可用于核酸的定量分析。
核酸分子具有变性和复性的特点,在 一定条件下可以发生解旋和复性过程。
核酸分子具有黏性,可以形成DNA双 螺旋结构,这种黏性与DNA的长度和 浓度有关。
02
核酸的合成
DNA的复制
01
02
03
复制的起始
DNA复制起始于特定的起 始点,称为复制子或复制 起始点。
通过研究DNA损伤修复机制 的异常,可以更好地了解癌 症的发病机制,并开发出更 有效的预防和早期诊断方法 。此外,这种机制的研究也 有助于发现新的治疗靶点, 为癌症治疗提供新的思路。
病毒感染与RNA复制
要点一
总结词
RNA复制是病毒生命周期的重要环节,也是抗病毒药物的 主要作用靶点。
要点二
详细描述
病毒是一种非细胞生物,它们必须寄生在宿主细胞内才能 进行复制和繁殖。RNA复制是病毒生命周期中的关键步骤 之一,它涉及到病毒RNA的合成和转录。这个过程是由病 毒自身的酶催化完成的,而这些酶也成为抗病毒药物的主 要作用靶点。通过抑制病毒RNA复制酶的活性,可以有效 地阻止病毒的复制和传播,从而达到治疗疾病的目的。
05
核酸代谢异常与疾病
基因突变与疾病
基础生物化学 第十二章(1-3节)-核酸的合成与分解

+ H2 O
尿囊素
尿囊酸酶
+ H2 O
尿囊酸 4NH3
2CO2
尿酶
+2H2O
尿素
乙醛酸
二、嘧啶核苷酸的代谢1
1,尿嘧啶与胸腺嘧啶在哺乳动物体内分解时,先
还原成对应的二氢衍生物。
2,破开环状结构分别产生β-丙氨酸及β-氨基异
丁酸。
3,最后成为CO2和NH3
胞嘧啶具有氨基,所以要先在胞嘧啶脱氨酶的作
通过用同位素标记的化合物实验来 确定,即用标有同位素的各种营养物喂 鸽子,然后将其排出的尿酸进行分析。
(一)嘌呤环的元素来源2(图示)
天冬氨酸
N1
6C
CO2
甲酰FH4
C2
5C
N7
甘氨酸
C8 甲酰FH4 N3
谷氨酰胺
4C
N9
谷氨酰胺
(二)合成过程(总)
从头合成嘌呤的途径已于50年代被
Greenberg等基本搞清,此途径是在核糖- 5-磷酸的第一碳原子上逐步增加原子生 成次黄苷酸(肌苷酸) ,然后再由次黄 苷酸转变为腺苷酸和鸟苷酸。 反应分为两个阶段: 1,次黄苷酸的合成(11步反应) 2,腺苷、鸟苷的生成 (南大P480,图12-2)
途径称为补救途径。通过补救途径可以重新 利用核酸分解产生的嘌呤和嘧啶或它们的衍 生物。
从胸腺嘧啶或胸苷转变成胸苷酸的补救途径,
除真菌外,对所有细胞都是一样的,故常利 用放射性同位素标记胸腺嘧啶或胸苷参入DNA 的实验作为检查DNA合成的手段。
三、核苷酸合成的补救途径2
核苷 核糖-1-磷酸
激酶
核糖-5-磷酸
1.鸟嘌呤的分解
动物组织中广泛含有鸟嘌呤酶,可以催化 鸟嘌呤水解脱氨产生黄嘌呤,然后黄嘌呤在黄 嘌呤氧化酶的作用下氧化成尿酸。
生物化学第十二章细胞代谢和基因表达调节

大肠杆菌培养基中没有乳糖,则细胞内参与乳糖分解代
谢的3种酶很少( β -半乳糖苷酶 0.5-5个/cell );一旦 加入乳糖或其类似物,则几分钟内酶分子数骤增( β -半 乳糖苷酶 5000 个/cell ,其它两种酶也大量增加)。
为什么加入底物,相应的分解代谢的酶才会合成?
管家基因较少受环境因素影响,在个体各个生长阶段
的大多数或几乎全部组织中持续表达,或变化很小,这类 基 因 表 达 被 视 为 组 成 型 表 达 (constitutive gene expression)。
可诱导和可阻遏表达(可调基因)
( 1 )可诱导 在特定环境信号刺激下,相应的基因被激活,基因表达产 物增加,这种基因称为可诱导基因。可诱导基因在特定环境中
表达增强的过程,称为诱导 (induction)。如分解乳糖的基因。
( 2 )可阻遏 如果基因对环境信号应答是被抑制,这种基因是可阻遏
基因 。 可 阻 遏基因 表达 产 物 水 平降 低的过 程称为阻 遏 (repression) 。如合成 Trp的基因。
在一定机制控制下,功能上相关的一组基因,无论其 为何种表达方式,均需协调一致、共同表达,即为协调表达
胞的某一区域或亚细胞结构 。 1.控制跨膜离子浓度梯度和电位梯度;
2. 控制物质运输
3.膜与酶可逆结合 ——双关酶( HK ,PFK 等)
P631
真核细胞内某些酶的区域化分布
酶或酶系
所在区域
酶或酶系
所在区域
糖酵解酶系 TCA 酶系 磷酸戊糖途径酶系
脂肪酸β氧化酶系
脂肪酸合成酶系 尿素合成酶系
胞浆 线粒体 胞浆
磷酸二酯酶
ATP
生物化学-核苷酸代谢(共41张PPT)

尿嘧啶磷酸核糖转移酶
尿嘧啶+PRPP
UMP+PPi
1-磷酸核糖
Pi
尿嘧啶核苷
尿苷激酶 Mg2+
UMP
ATP
ADP
胸苷激酶 脱氧胸苷
Mg2+
dTMP
ATP
ADP
x-染色体连锁隐性遗传 缺乏的酶:次黄嘌呤鸟嘌呤磷酸核糖基转移酶(HGPRT) 免疫缺陷症,
(ribonucleotide) ADA缺乏症患者体内腺苷酸分解代谢严重障碍,T、B淋巴细胞受损,引起反复感染等症状。
痛 风(GOUT)
痛风原因:高嘌呤饮食、体内核 酸分解增强、肾脏疾病
表现:尿酸盐沉积造成损害
别嘌呤醇治疗痛风:机制是别嘌 呤醇在结构上与次黄嘌呤相似 ,抑制黄嘌呤氧化酶
腺苷脱氨酶(ADA)基因位于20q13-qter,编码一条含363个氨 基酸残基的多肽链。
腺苷脱氨酶(ADA)缺乏引起重症免疫缺陷症,即ADA缺乏症。ADA缺乏 症患者体内腺苷酸分解代谢严重障碍,T、B淋巴细胞受损,引起反 复感染等症状。
硫氧还蛋白
S S
谷氧还蛋白还原酶
硫氧还蛋白还原酶
G SSG
2G SH
谷胱甘肽还原酶
NADPH +H +
N A D P+
FAD
FA D H 2
硫氧还蛋白还原酶
NADPH +H +
NADP+
脱氧胸苷酸(dTMP)的生成
尿苷一磷酸激酶
尿苷二磷酸激酶
UMP
UDP
UTP
ATP合酶
CTP
ATP
ADP
ATP
ADP 谷氨酰胺
鸟苷一磷酸 (GMP) 鸟苷二磷酸 (GDP) 鸟苷三磷酸 (GTP)
生物化学中的核酸代谢

生物化学中的核酸代谢是一个复杂而精密的过程,它涉及到DNA和RNA的合成、修复、降解等多个方面。
核酸代谢的研究对于我们了解细胞基因表达以及疾病的发生与发展都具有重要的意义。
下面我们就来介绍一下核酸代谢的几个关键过程。
一、DNA合成DNA合成是细胞生长和分裂的基础,也是生物体遗传信息传递的重要环节。
DNA合成是通过DNA聚合酶进行的,在DNA合成的过程中,利用一条模板链合成对应的互补链。
DNA的合成是由5'到3'方向进行的,新合成的链按照碱基序列与模板链完全互补。
DNA合成的第一步是由DNA聚合酶进行DNA链伸长,这个过程需要三种成分:一个模板DNA,DNA聚合酶和核苷酸三磷酸(NTP)。
聚合酶将DNA聚合成一条新链,新链与模板链按照碱基序列完全互补。
DNA合成的第二步是在进行DNA链合成的同时,进行DNA链的校对,这个过程由DNA聚合酶和DNA连接酶完成。
它们一起构成了在链合成过程中及时检验和更正错误碱基的复杂系统。
DNA合成的最终结果是两条完全一样的DNA分子。
二、DNA修复DNA修复是指在DNA分子受到损伤后通过各种生物化学修复机制,在细胞体内进行基因组的复制和表达,以维持细胞的正常生理状态。
DNA的修复过程可以分成两个大类:直接修复和间接修复。
直接修复是指在DNA分子受到损伤后,直接通过酶催化、电子转移等化学反应将DNA分子修复到原始状态。
而间接修复则需要依靠一系列的酶和蛋白质,通过割断损坏链之后,重新合成互补的新链以达到修复的效果。
三、RNA合成RNA合成是指在细胞核内,在一段 DNA模板上,由RNA聚合酶合成RNA的过程。
RNA合成分为三个阶段:启动,加速和终止。
在RNA合成的过程中,RNA聚合酶需要结合到DNA模板上,并寻找信号序列和启动子。
这个过程是由不同的辅助蛋白质来完成的。
当RNA聚合酶找到启动子后,它会开始合成RNA链,这个过程称为加速期。
RNA合成的速率受到许多因素的影响,如激素、细胞因子等物质的影响。
第十二章 核酸代谢

点
IMP 3. 在IMP基础上完成
AMP和GMP的合成
3. 以UMP为基础, 完 成CTP, dTMP的合成
5'-P-R PRPP
IMP
CO2+Gln H2N-CO-P
OMP
总结
AMP dAMP dGMP GMPUMP dUMP CMP dCMP dTMP
ADP dADP dGDP GDP UDP dUDP CDP dCDP dTDP
腺苷+Pi
腺苷+ATP
腺苷激酶
腺苷酸+ADP
生理意义
●节省: 减少从头合成时能量和原料的消耗 ● 作为某些器官(脑,骨髓和脾)合成核苷酸的途径
二、嘧啶核苷酸的合成代谢
(一)、从头合成途径
先合成嘧啶环,然后再与磷酸核糖连接生
成嘧啶核苷酸.
谷氨酰胺
C
N
C
天冬氨酸
CO2 C
C
N
(一) 从头合成途径的反应过程
CDP 核糖核苷酸还原酶
dNDP dADP dGDP dUDP dCDP
TDP
dTDP
dNDP+ATP dADP+ATP dGDP+ATP dUDP+ATP
dCDP+ATP
激酶 激酶 激酶 激酶 激酶
dNTP+ADP dATP +ADP dGTP+ADP dUTP+ADP
dCTP+ADP
dUDP O
(1) 嘌呤碱与PRPP直接合成嘌呤核苷酸
次黄嘌呤
次黄嘌呤核苷酸
90%
次黄嘌呤-鸟嘌呤
嘌呤碱 PRPP磷酸(H核G糖P转R移T酶) PPi
生物化学简明教程第五版课后习题答案12 核苷酸代谢

生物化学简明教程第五版课后习题答案12 核苷酸代谢1.你如何解释以下现象:细菌调节嘧啶核苷酸合成的酶是天冬氨酸-氨基甲酰转移酶,而人类调节嘧啶核苷酸合成的酶主要是氨基甲酰磷酸合成酶。
解答:氨基甲酰磷酸合成酶参与两种物质的合成,嘧啶核苷酸的合成和精氨酸的合成。
在细菌体内,这两种物质的合成发生在相同的部位(细菌无细胞器的分化),如果调节嘧啶核苷酸合成的酶是此酶的话,对嘧啶核苷酸合成的控制将会影响到精氨酸的正常合成。
而人体细胞内有两种氨基甲酰磷酸合成酶,即定位于线粒体内的氨基甲酰磷酸合成酶Ⅰ和定位于细胞质内的氨基甲酰磷酸合成酶Ⅱ,它们分别参与尿素循环(精氨酸合成),嘧啶核苷酸的合成。
2.假如细胞中存在合成核苷酸的全部前体物质,①从核糖-5-磷酸合成1mol腺苷酸需要消耗多少摩尔ATP?②如果用补救途径合成1mol腺苷酸,细胞可节省多少摩尔ATP?解答:①从核糖-5-磷酸合成磷酸核糖焦磷酸(PRPP)时,需要将1mol焦磷酸基团从ATP转移到核糖-5-磷酸分子上去,在合成IMP途径的后续步骤中,该焦磷酸被释放并迅速水解生成2mol Pi,相当于消耗2mol ATP。
随后在生成甘氨酰胺核苷酸、甲酰甘氨咪唑核苷酸、5-氨基咪唑核苷酸和甲酰胺核苷酸四步反应中,各有1mol ATP的消耗,生成了IMP。
在IMP转化成腺苷酸时,由腺苷琥珀酸合成酶催化的反应又另外消耗1mol GTP。
所以,从核糖-5-磷酸合成1mol腺苷酸需要消耗7mol ATP。
②补救途径合成腺苷酸反应为:腺嘌呤+ 核糖-5-磷酸→腺苷+Pi ,腺苷 + ATP → AMP + ADP ,可见从腺嘌呤补救途径合成1mol 腺苷酸只消耗1mol ATP,比从头合成核糖-5-磷酸节省6mol ATP 。
3.使用放射性标记的尿苷酸可标记DNA分子中所有的嘧啶碱基,而使用次黄苷酸可标记DNA分子中所有的嘌呤碱基,试解释以上的结果。
解答:使用放射性标记尿苷酸后,尿苷酸(UMP)→UDP→CTP→CDP→dCDP→dCTP;UDP →dUDP→dUMP→dTMP→dTDP→dTTP。
生物化学期末复习(简答、名词解释)

⽣物化学期末复习(简答、名词解释)⽣物化学期末复习(简答、名词解释)1. 什么是物质代谢?什么是能量代谢?⼆者之间的关系如何?答:物质代谢:研究各种⽣理活性物质(如糖、蛋⽩质、脂类、核酸等)在细胞内发⽣酶促反应的途径及调控机理,包含旧分⼦的分解和新分⼦的合成;能量代谢:研究光能或化学能在细胞内向⽣物能(ATP)转化的原理和过程,以及⽣命活动对能量的利⽤。
能量代谢和物质代谢是同⼀过程的两个⽅⾯,能量转化寓于物质转化过程之中,物质转化必然伴有能量转化。
2. 中间代谢:消化吸收的营养物质和体内原有的物质在⼀切组织和细胞中进⾏的各种化学变化称为中间代谢。
3. 呼吸商(respiratory quotient 简称RQ):指⽣物体在同⼀时间内,释放⼆氧化碳与吸收氧⽓的体积之⽐或摩尔数之⽐,即指呼吸作⽤所释放的CO2 和吸收的O2 的分⼦⽐。
4. ⾃养型⽣物:为能够利⽤⽆机物合成有机物的类型,⼜分为光合⾃养——绿⾊植物,和化能⾃养——硝化细菌等。
5. 异养型⽣物:不能⾃⼰合成有机物,必须依靠⾃养⽣物制造的有机物⽣存。
6. 简述活体内实验及其意义。
答:1)⽤整体⽣物材料或⾼等动物离体器官或微⽣物细胞群体进⾏中间代谢实验研究称为活体内实验,⽤“in vivo”表⽰。
2)活体内实验结果代表⽣物体在正常⽣理条件下,在神经、体液等调节机制下的整体代谢情况,⽐较接近⽣物体的实际。
7. 活体外实验:⽤从⽣物体分离出来的组织切⽚,组织匀浆或体外培养的细胞、细胞器及细胞抽提物进⾏中间代谢实验研究称为活体外实验,⽤“in vitro”表⽰。
8. 简述代谢途径的探讨⽅法答:1)代谢平衡实验;2)代谢障碍实验(代谢途径阻断实验);3)使⽤抗代谢物;4)代谢物标记追踪实验;5)测定特征性酶;6)核磁共振波谱法。
9. 简述糖的⽣理功能答:1)作为⽣物体的结构成分;2)作为⽣物体内的主要能源物质;3)在体内转变为其他物质;4)作为细胞识别的信息分⼦。
生物化学合工大第十二章核酸的酶促降解和核苷酸代谢ppt课件

核糖核苷酸的生物合成
1、嘌呤核苷酸的生物合成
(1) 从头合成途径 (2) 补救途径(自学)
2、嘧啶核苷酸的生物合成
(1) 从头合成途径 (2) 补救合成途径(自学)
嘌呤环上各原子的来源
来自CO2 来自天冬氨酸
来自甘氨酸
来自“甲酸盐”
来自“甲酸盐”
来自谷氨酰胺的酰胺氮
5-磷酸核糖焦磷酸
甘氨酸
5-磷酸 核糖胺
HCHLeabharlann CH2N5N,5-NC1H0-OC-HF2H-F4 H4
一碳基团的 S-腺苷蛋氨酸 来源与转变
参与 甲基化反应
N5-CH2-FH4
丝氨酸 FH4
NAD+
NDAH+H+ N5 , N10 -CH2-FH4还原酶
N5 N10 - CH2-FH4
为胸腺嘧啶合 成提供甲基
NAD+ NDAH+H+
N5 , N10 -CH2-FH4脱氢酶
1、核酸酶的分类
(1)根据对底物的 专一性分为
核糖核酸酶(RNase) 脱氧核糖核酸酶(DNase)
非特异性核酸酶
核酸内切酶 (2)根据切割位点分为 核酸外切酶
2、核酸酶的作用特点
外切核酸酶对核酸的水解位点
BBBBBBBB
5´ p
p
p
p
p
p
p
p
OH 3´
牛脾磷酸二酯酶
( 5´端外切5得3)
蛇毒磷酸二酯酶
组氨酸 苷氨酸
FH4
N5, N10 = CH-FH4
参与嘌呤合成
HCOOH FH4
H2O 环水化酶
H+
N10 -CHO-FH4
生物化学第十二章代谢调节

精氨酸 谷氨酰胺 组氨酸 脯氨酸
氨基酸、糖及脂肪代谢的联系 糖
葡萄糖或糖原 磷酸丙糖 磷酸烯醇型丙酮酸
丙氨酸 半胱氨酸 甘氨酸 丝氨酸 苏氨酸 色氨酸
脂肪
甘油三酯 3-磷酸甘油 脂肪酸
丙酮酸
亮氨酸 异亮氨酸 色氨酸
乳酸 乙酰CoA 乙酰乙酰CoA 酮体
亮氨酸 赖氨酸 苯丙氨酸 酪氨酸 色氨酸
天冬氨酸 天冬酰胺
mRNA
阻遏蛋白(无活性)
酶蛋白 阻遏蛋白不能跟操纵基因结合, 结构基因可以表达
D.无活性阻遏蛋白加辅阻遏剂
代谢产物与阻遏蛋白结合,从而使阻遏蛋 白能够阻挡操纵基因,结构基因不表达
代谢产物
原核生物乳糖操纵子
原核生物乳糖操纵子(诱导型操纵子)
•其控制区包括:启动子(P) 和操纵基因。
•结构基因:由β -半乳糖苷酶基因(lacZ),通透 酶基因(lacY)和乙酰化酶基因(lacA)串联在 一起构成。
有色氨酸时,阻遏蛋白与色氨酸结合后才 能与操纵基因结合,从而阻止色氨酸合成 酶类的转录。
trpR P1O trpEtrpD 结合
阻遏物 色氨酸
P2
不转录
trpC trpBtrpA
用于表达载体的trp启动子一般只包含 启动基因、操纵基因、和部分trpE基 因。 目的基因 P1O trpE
大肠杆菌色氨酸操纵子的衰减作用的可能机制
[NADH]/[NAD+]对代谢的调节 金属离子浓度对代谢的调节
酶的含量
合成调节 降解调节
第三节
基因表达的调控
操纵子学说—转录水平的调控 操纵子——由结构基因与上游的启动子、操纵基 因共同构成的原核基因表达的协同单位。
结构基因(编码蛋白质,S)
华中农业大学生物化学本科试题库 第12章 核酸的降解和核苷酸代谢

8. A
9. B
10.B
11.D 12. B。
2. 对
3. 对
4. 对
5.错
6. 对
7. 对
8. 对
9. 错
10. 对
(五) 简答题 1. 稀碱的作用下,RNA 在碱(OH-)的作用下生成 2ˊ,3ˊ-环核苷酸的中间物,然后由于 H2O 的参入生成 2′-和 3′-核苷酸的混合物。进一步水解生成核苷。DNA 的核糖 2 位上没有羟基,在碱(OH-)的作用下不能生成 2ˊ,3ˊ-环核 苷酸的中间物。DNA 不能被碱水解。 2. 嘌呤核苷酸分解的过程如下: 腺嘌呤核苷酸→腺嘌呤核苷→次黄嘌呤核苷→次黄嘌呤 *║ 鸟嘌呤核苷酸→ 鸟嘌呤核苷→ 黄嘌呤核苷→ 黄嘌呤→ 尿酸→尿囊素→尿囊酸→尿素+乙醛酸。 (*黄嘌噙氧化酶催化 的反应。 ) 人、猿类、鸟类、爬虫类和大多数的昆虫以尿酸作为嘌呤碱的最终代谢产物;其它多种生物还可进一步降解尿酸,形 成不同的代谢产物,除上述提及的哺乳动物,其它哺乳动物体中嘌呤的降解产物为尿囊素。某些硬骨鱼可将尿囊素进一步分 解形成尿囊酸;大多数鱼类、两栖类中尿囊酸可再分解为尿素和乙醛酸;某些低等动物可将尿素分解为氨和二氧化碳。 其它原因导致体内过多的尿酸积累特别是在关节组织中积累可产生痛风症。 别嘌呤醇通过抑制黄嘌呤氧化酶, 减少尿 酸的生成可缓解痛风症。 3. 嘌呤和嘧啶核苷酸的合成,通过完全不同的途径进行。嘌呤核苷酸合成的第一步是 5-磷酸核糖-1-焦磷酸(PRPP) 与谷氨酰胺生成 5-磷酸核糖胺(PRA) 。最后合成的产物是次黄嘌呤核苷酸,然后再转变为鸟嘌呤和腺嘌呤核苷酸。嘧啶核 苷酸的合成一开始没有核糖参加,合成的产物是嘧啶碱的前体乳清酸,然后再与 5-磷酸核糖-1-焦磷酸(PRPP)生成乳清酸 核苷酸,再进一步转变为尿嘧啶核苷酸。 在嘌呤核苷酸合成过程中有:谷氨酰胺、甘氨酸和天冬氨酸参加。 在嘧啶核苷酸全成过程中有:谷氨酰胺和天冬氨酸参加。 4. 嘌呤核苷酸合成的调节: (1)催化合成途径第一步反应的磷酸核糖焦磷酸转酰胺酶是别构酶,受 AMP 和 GMP 的反馈抑制。 (2)次黄嘌呤核苷酸氧化成黄嘌呤是由次黄嘌呤核苷酸氧化酶催化,过量的 GMP 抑制该酶的活性。 (3)次黄嘌呤核苷酸在 GTP 供能的条件下,与天冬氨酸生成腺苷酸琥珀酸,催化该反应的腺苷酸琥珀酸合成酶,受 过量 AMP 的抑制。 嘧啶核苷酸合成的调节: (1)氨甲酰磷酸合成酶Ⅱ受 UMP 的反馈抑制。 (2)天冬氨酸转氨甲酰酶(ATCase)是别构酶,ATP 是正效应物,GTP 是负效应物。 (3)CTP 合成酶受 CTP 的抑制。 5. 羽田杀菌素(N-羟-N-甲酰甘氨酸)与天冬氨酸结构相似,可强烈抑制腺苷酸琥珀酸合成酶的活性,该酶催化:次黄 嘌呤+天冬氨酸+GTP→腺苷酸琥珀酸,然后由腺苷酸琥珀酸裂解为腺苷酸和延胡索酸。羽田杀菌素阻止腺苷酸琥珀酸生成, 减少腺苷酸的合成量,是一种具有抗癌作用的抗菌素。 6. 标记氨基氮的腺嘌呤进入人、小鼠和鸽子体内,分解后标记物出现在 NH3 上排出体外。标记 N7 的腺嘌呤进入人和鸽 子体内分解后,标记物出现在尿酸分子中,进入小鼠体内分解后,标记物出现在尿囊酸分子中。 7. 将标记 14C4 的腺嘌呤在含有鱼的腺嘌呤分解酶系统中, 14C4 出现在腺嘌呤分解的最终产物乙醛酸分子上。 H — 14 C4OCOOH 3Cp 8. (1)该寡核苷酸为十二个单核苷酸所组成,各种单核苷酸的分子比例为 A:C:G:U = 2:4:4:2。 ApUp (2) 胰核糖核酸酶处理得到的多核苷酸碎片的 3 端均含有嘧啶(U 或 C)核苷酸:
考研专业课:生物化学备考知识点总结

考研专业课:生物化学备考知识点总结凯程考研集训营,为学生引路,为学员服务!21世纪被称为生物世纪,可见生物学技术对人类的影响是巨大的。
生物学技术渗透于社会生活的众多领域,食品生产中的转基因大豆、啤酒用于制衣的优质棉料和动物皮革,医学上疫苗、药品的生产和开发以及试管婴儿技术的应用,逐渐流行推广起来的生物能源如沼气、乙醇等,都包含生物学技术的应用。
生物学的最新研究成果都会引起世人的注意,如此新兴和前景广阔的专业自然吸引了广大同学的考研兴趣。
第一章糖类化学学习指导:糖的概念、分类以及单糖、二糖和多糖的化学结构和性质。
重点掌握典型单糖(葡萄糖和果糖)的结构与构型:链状结构、环状结构、椅适合船式构象;d-型及l-型;α-及β-型;单糖的物理和化学性质。
以及二糖和多糖的结构和性质,包括淀粉、糖原、细菌多糖、复合糖等,以及多糖的提取、纯化和鉴定。
第二章脂类化学学习指导:一、重要概念水解和皂化、氢化和卤化、氧化和酸败、乙酰化、磷脂酰胆碱二、单脂和复脂的组分、结构和性质。
磷脂,糖脂和固醇彼此间的异同。
第三章蛋白质化学学习指导:蛋白质的化学组成,20种氨基酸的简写符号、氨基酸的理化性质及化学反应、蛋白质分子的结构(一级、二级、高级结构的概念及形式)、蛋白质的理化性质及分离纯化和纯度鉴定的方法、了解氨基酸、肽的分类、掌握氨基酸与蛋白质的物理性质和化学性质、掌握蛋白质一级结构的测定方法、理解氨基酸的通式与结构、理解蛋白质二级和三级结构的类型及特点,四级结构的概念及亚基、掌握肽键的特点、掌握蛋白质的变性作用、掌握蛋白质结构与功能的关系第四章核酸化学学习指导:核酸的基本化学组成及分类、核苷酸的结构、dna和rna一级结构的概念和二级结构特点;dna的三级结构、rna的分类及各类rna的生物学功能、核酸的主要理化特性、核酸的研究方法;全面了解核酸的组成、结构、结构单位以及掌握核酸的性质;全面了解核苷酸组成、结构、结构单位以及掌握核苷酸的性质;掌握dna的二级结构模型和核酸杂交技术。
生物化学12代谢调节

约50%临床药物的靶点是G蛋白偶联受体
tangbinghua@
2.三聚体G蛋白(trimeric G protein)
参与信号转导的两类G蛋白之一,GPCR的效应蛋白 三聚体G蛋白有两种结构状态:无活性的Gαβγ•GDP和
tangbinghua@
第一节 代谢的相互联系
一.物质代谢的相互联系 二.能量代谢的相互协作
关系
tangbinghua@
一、物质代谢的相互联系
(一)糖和脂质的转化 (二)糖和氨基酸的转化 (三)氨基酸和脂质的转化 (四)糖、脂质、氨基酸与核苷酸代谢的联系
《生物化学》
第十二章 代谢调节
唐炳华(北京中医药大学) 中国中医药出版社
教学大纲
掌握:细胞水平的代谢调节代谢途径的区域化分布, 关键酶,关键酶的变构调节、化学修饰调节的机制、 特点和意义;激素水平的代谢调节蛋白激酶A途径, 糖皮质激素作用机制
熟悉:激素水平的代谢调节激素与受体,蛋白激酶C 途径,甲状腺激素作用机制
tangbinghua@
6.转导效应
(1)短期效应 又称核外效应 (2)长期效应 又称核内效应
tangbinghua@
四、蛋白激酶C途径
tangbinghua@
四、蛋白激酶C途径
tangbinghua@
四、蛋白激酶C途径
腺苷酸环化酶是变构酶,被Gs激活后催化合成cAMP
tangbinghua@
4.cAMP
第二信使 cAMP cGMP IP3 DAG Ca2+
效应蛋白 蛋白激酶A 蛋白激酶G IP3门控钙通道 蛋白激酶C 钙调蛋白激酶
tangbinghua@
生物化学第12章 核酸代谢与蛋白质的生物合成

课外练习题一、名词解释1、嘌呤核苷酸的从头合成途径;2、嘧啶核苷酸的补救合成途径;3、半保留复制;4、冈崎片段;5、逆转录;6、复制;7、转录;8、外显子;9、内含子;10、翻译;11、反密码子;12、密码的简并性。
二、符号辨识1、IMP;2、PRPP;3、SSB;4、cDNA;三、填空1、核苷酸的合成包括()和()两条途径。
2、脱氧核苷酸是由()还原而来。
3、DNA的复制方向是从()端到()端展开。
4、体内DNA复制主要使用()作为引物,而在体外进行PCR扩增时使用人工合成的()作为引物。
5、DNA损伤可分为()损伤和()损伤两种类型,造成DNA损伤的因素有()因素和()因素。
6、基因转录的方向是从()端到()端。
7、第一个被转录的核苷酸一般是()核苷酸。
8、蛋白质的生物合成是以()作为模板,以()作为运输氨基酸的工具,以()作为合成的场所。
9、细胞内多肽链合成的方向是从()端到()端,而阅读mRNA的方向是从()端到()端。
10、某一tRNA的反密码子是GGC,它可识别的密码子为()和()。
11、原核生物蛋白质合成中第一个被掺入的氨基酸是()。
12、DNA拓补异构酶()能够切开DNA的1条链,而DNA拓补异构酶()能同时切开DNA的2条链。
13、大肠杆菌在DNA复制过程中切除RNA引物的酶是()。
14、从IMP合成GMP需要消耗(),而从IMP合成AMP需要消耗()作为能源物质。
15、在大多数DNA修复中,牵涉到四步序列反应,它们的次序是()、()、()和()。
四、判别正误1、嘌呤核苷酸是从磷酸核糖焦磷酸开始合成的。
()2、核苷酸生物合成中的甲基一碳单位供体是S-腺苷蛋氨酸。
()3、所有核酸的复制过程中,新链的形成都必须遵循碱基配对的原则。
()4、所有核酸合成时,新链的延长方向都是从5`→3`。
()5、生物体中遗传信息的流动方向只能由DNA→ RNA,决不能由RNA→DNA。
()6、DNA复制时,先导链是连续合成,而后随链是不连续合成的。
核酸代谢ppt课件

第一节
一 概述
核苷酸降解
食物核蛋白 蛋白质
胃酸
核酸(RNA及DNA)
胰核酸酶
核苷酸
胰、肠核苷酸酶
核苷 碱基
核苷磷酸化酶
磷酸 戊糖-1膦酸
3
二 核苷酸的生理功能
• 核酸合成的原料
• 生理调节介质:cAMP、cGMP
• 辅酶成分:FAD、NADP+ • 活化中间代谢物:UDPG是糖原合成的活 性中间物质,CDP—甘油二酯是甘油磷 酸酯合成的中间活性物质,SAM。 • 酶变构调节剂:ATP、ADP、AMP等
17
(1)胞嘧啶和尿嘧啶的降解
胞嘧啶
胞嘧啶脱氨酶
尿嘧啶
H2O NH3
二氢尿嘧啶脱氢酶
二氢尿嘧啶
H2O
二 氢 嘧 啶 酶
NADPH+H+ NADP+
H2O
-脲基丙酸酶
NH3 + CO2 -丙氨酸
-脲基丙酸
18
(2)胸腺嘧啶的降解
二氢胸腺嘧啶脱氢酶
胸腺嘧啶
二氢胸腺嘧啶 H 2O H 2O
二 氢 嘧 啶 酶
四
核苷酸的分解
核苷酸酶
1 核苷酸的分解
核苷酸 + H2O 核苷 + H2O 核苷+ H3PO4 核苷+Pi 嘌呤/嘧啶 +戊糖 嘌呤/嘧啶 +1-磷酸戊糖
核苷水解酶 核苷磷酸化酶
核苷水解酶主要存在于植物和微生物体内, 只对核糖核苷起作用,对脱氧核糖核苷不起作用。 核苷磷酸化酶存在广泛,催化的反应可逆。
10
2 嘌呤核苷酸的分解
嘌呤核苷酸的分解是氧化降解过程, 不同生物降解的产物不同 嘌呤 黄嘌呤 尿酸 尿囊素和CO2
华中农业大学生物化学考研试题库附答案核酸的降解和核苷酸代谢

第12章核酸的降解和核苷酸代谢一、教学大纲基本要求核酸的酶促降解,水解核酸的有关酶(核酶外切酶、核酶内切酶、限制性内切酶),核苷酸、嘌呤碱、嘧啶碱的分解代谢,嘌呤核苷酸的合成,嘧啶核苷酸的合成,脱氧核糖核苷酸的合成,辅酶核苷酸的合成。
二、本章知识要点(一)核酸的酶促降解核酸酶(nucleases):是指所有可以水解核酸的酶,在细胞内催化核酸的降解,以维持核酸(尤其是RNA)的水平与细胞功能相适应。
食物中的核酸也需要在核酸酶的作用下被消化。
核酸酶按照作用底物可分为:DNA酶(DNase)、RNA酶(Rnase)。
按照作用的方式可分为:核酸外切酶和核酸内切酶,前者指作用于核酸链的5‘或3’端,有5’末端外切酶和3’末端外切酶两种;后者作用于链的内部,其中一部分具有严格的序列依赖性(4~8 bp),称为限制性内切酶。
核酸酶在DNA重组技术中是不可缺少的重要工具,尤其是限制性核酸内切酶更是所有基因人工改造的基础。
(二)核苷酸代谢1.核苷酸的生物学功能①作为核酸合成的原料,这是核苷酸最主要的功能;②体内能量的利用形式;③参与代谢和生理调节;④组成辅酶。
核苷酸最主要的功能是作为核酸合成的原料,体内核苷酸的合成有两条途径,一条是从头合成途径,一条是补救合成途径。
肝组织进行从头合成途径,脑、骨髓等则只能进行补救合成,前者是合成的主要途径。
核苷酸合成代谢中有一些嘌呤、嘧啶、氨基酸或叶酸等的类似物,可以干扰或阻断核苷酸的合成过程,故可作为核苷酸的抗代谢物。
不同生物嘌呤核苷酸的分解终产物不同,人体内核苷酸的分解代谢类似于食物中核苷酸的消化过程,嘌呤核苷酸的分解终产物是尿酸。
嘧啶核苷酸的分解终产物是β-丙氨酸或β-氨基异丁酸。
核苷酸的合成代谢受多种因素的调节。
(1)嘌呤核苷酸代谢①嘌呤核苷酸的合成代谢:体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。
嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。
生物化学_核苷酸代谢

生物化学_核苷酸代谢核苷酸是生物体内重要的代谢产物和信号分子,参与了细胞的许多生理活动。
核苷酸代谢是指从核苷酸的合成到降解的过程。
核苷酸合成主要发生在细胞的核糖体内,而降解则发生在细胞质中。
核苷酸代谢是一个复杂的过程,涉及许多酶的参与和调节。
核苷酸的合成一般分为两个部分:碱基合成和糖磷酸合成。
碱基合成是指通过一系列酶催化反应将无机盐和二氧化碳转化为核苷酸中的碱基。
碱基合成的过程中需要ATP提供能量,并且还需要其他物质作为辅助因子。
例如,嘌呤核苷酸的合成需要甲硫氨酸、腺苷酸、尿苷酸和腺苷酸等物质参与。
嘌呤核苷酸的合成主要发生在细胞核中,具体包括腺苷酸合成、纯化核苷酸合成和底物识别。
嘌呤核苷酸的合成是一个反应级联,涉及多个酶的参与和调控。
嘌呤核苷酸的合成过程是一个调控复杂的过程,它受到多种酶的调控以及许多物质的调节。
糖磷酸合成是指通过一系列酶催化反应将碱基与糖磷酸结合形成核苷酸。
例如,嘧啶核苷酸的合成主要发生在细胞质中,主要包括嘧啶核苷酸合成和底物识别。
嘧啶核苷酸合成是一个反应级联,也涉及多个酶的参与和调控。
嘧啶核苷酸的合成过程也受到多种酶的调控以及许多物质的调节。
核苷酸的降解主要发生在细胞质中。
核苷酸的降解是一个逆反应,通过一系列酶催化反应将核苷酸转化为底物,最终分解为无机盐和二氧化碳。
例如,嘌呤核苷酸的降解主要发生在肝脏和肾脏中,主要包括核苷酸降解和底物识别。
嘌呤核苷酸的降解是一个反应级联,涉及多个酶的参与和调控。
嘌呤核苷酸的降解过程也受到多种酶的调控以及许多物质的调节。
核苷酸代谢是一个复杂的过程,涉及多个酶的参与和调控。
核苷酸的合成和降解过程需要消耗能量,并且还需要其他物质作为辅助因子。
核苷酸代谢酶的异常表达或活性异常都可能导致核苷酸代谢紊乱,进而影响细胞的生理活动。
核苷酸代谢异常与许多疾病有关,如肿瘤、免疫系统疾病和遗传代谢病等。
因此,研究核苷酸代谢的调控机制和相关疾病的发生机制对于疾病的预防和治疗具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
COOH P
脱 氢酶
二氢乳清酸
乳清酸
乳清酸核苷酸
四川省精品课程 生物化学
氨基甲酰磷酸合成酶的比较
分 布 氮 源 变构激活剂 功 能
氨基甲酰磷酸合成酶-Ⅰ 线粒体(肝) 氨 N- 乙酰谷氨酸 尿素合成
氨基甲酰磷酸合成酶-Ⅱ 胞液(所有细胞) 谷氨酰胺 无 嘧啶的合成
ATP
UMP
UDP、UTP
(氨基化 GLn)
ADP GDP
H2
dADP
酶1
ATP
酶2
dATP dGTP
dGDP
CDP
H2O
ADP
dCDP
dCTP
酶2:激酶
酶1:核糖核苷酸还原酶
2 dTTP的生成 UDP
H2 H2O Pi
dUDP
dUMP
甲基化
dTMP dTDP dTTP
(主要)
脱氨基
dCMP
N5,N10-甲烯四氢叶酸
四川省精品课程 生物化学
基本途径
(CO2/NH3/AA/戊糖)
半合成(补救合成)
分解的现成嘌呤、嘧啶
(一) 嘌呤核苷酸的合成
嘌呤环中各原子的来源
四川省精品课程 生物化学
1、主要合成途径
5—P核糖焦磷酸(PRPP) → → → 次黄嘌呤核苷酸(IMP) → → → → 其他嘌呤核苷酸
P
O CH 2 O H H H H
P ATP Mg
CH O
H2 N COOH
合成酶
H2 N
羧化酶
H2 N
AIR合成酶
5-氨基咪唑-4-(N-琥珀酸) -甲酰胺核苷酸(SAICAR) 裂解酶
O C H2 N H2 N C C N CH N R -5'-P
R -5'-P
5-氨基咪唑-4-羧 酸核苷酸(CAIR)
5-氨基咪唑 核苷酸(AIR)
甲酰甘氨脒 核苷酸(FGAM)
四川省精品课程 生物化学
(一)DNA聚合酶:
(1)以四种脱氧核苷酸三磷酸为底物; (2)反应需要有模板的指导; (3)反应需要有3-OH存在; 5 (4)DNA链的合成方向为53; 3 (5)需要引物。
5
3
四川省精品课程 生物化学
1.原核生物中的DNA聚合酶(大肠杆菌): DNA聚合酶Ⅰ 亚基数目 单体酶 DNA聚合酶Ⅱ 单体酶 DNA聚合酶Ⅲ 22多亚基酶
四川省精品课程 生物化学
一、核苷酸分解代谢
核酸
核酸酶
核苷酸
核苷酸酶
核苷
核苷磷酸化酶
碱基+戊糖-1P
磷酸
核苷水解酶
碱基+戊糖
四川省精品课程 生物化学
(一) 核酸酶
(1)根据对底物的 专一性分为 核糖核酸酶(RNase) 脱氧核糖核酸酶(DNase) 非特异性核酸酶 (2)根据切割位点分为 核酸内切酶 (DNase, RNase ) 核酸外切酶 (蛇毒磷酸二
β
4
36-38 核
γ
4
160-300 线粒体
δ
2
170 核
ε
5
256 核
4
>250 核
分子量( KD)
细胞内定位
3′→5′外切 活性
-
引物合成
-
修复
+
复制
+
复制
+
修复
功能
四川省精品课程 生物化学
二)、DNA连接酶:
3‘ 5`
5‘ 3` OH P
四川省精品课程 生物化学
三)、与解除DNA高级结构有关的酶及蛋白因子
延胡索酸 N -甲酰 FH 4
K
+
10
O
O C C N CH N R -5'-P H2 O HN C C C N HC N CH N R -5'-P
FH 4
H2 N H O C
C
转甲酰基酶
环水解酶
N H
5-氨基咪唑-4-甲酰 胺核苷酸(AICAR)
5-甲酰胺基咪唑4-甲酰胺核苷酸 (FAICAR)
次黄嘌呤核苷酸 (IMP)
6.有些核苷酸如ATP、GTP、UTP、CTP是许 多磷酸激酶的辅酶。
四川省精品课程 生物化学
第十二章
核酸代谢
第一节、核苷酸代谢 第二节、DNA的生物合成 第三节、RNA的生物合成
四川省精品课程 生物化学
第一节
核苷酸代谢
• 一、核苷酸的分解代谢 • 二、核苷酸的合成代谢 • 三、脱氧核糖核苷酸的合成
4 3
C
氨基甲酰 磷酸
2
N C
1
5
C
天冬氨酸
6
C
N
dR-5-P
嘧啶碱(UMP)合成的元素来源
谷氨酰胺+C O 2
2ATP 氨基甲酰磷酸合成酶 -Ⅱ Glu 2ADP+Pi
1、嘧啶核苷酸的主要合成过程
O
HOOC CH2 CH COOH NH2
Pi
O
O-
H N O C
C N R
CH CH
5
H2N C O P OH 氨基甲酰磷酸O
四川省精品课程 生物化学
第十二章
核酸代谢
四川省精品课程 生物化学
1.核苷酸是合成DNA和RNA所必需的前体。
2.ATP是生物体内能量代谢中通用的高能化 合物,是联系产能反应和需能反应的主要 物质。
3.核苷酸的衍生物是糖类、脂类等合成中前 体的活化形式。
四川省精品课程 生物化学
4.腺苷酸是许多辅酶如NAD+、NADP+、FAD和 CoASH的组成成分。 5.cAMP、cGMP等是代谢调节物质。
CTP
由UTP生成CTP的反应发生 在三磷酸核苷的水平上。
四川省精品课程 生物化学
2、嘧啶核苷酸的补救合成途径
嘧啶磷酸核糖转移酶
嘧啶+PRPP
嘧啶核苷酸+PPi
(嘧啶:尿嘧啶,胸腺嘧啶,乳清酸,不包括胞嘧啶)
尿嘧啶核苷+ATP
尿苷激酶
UMP+ADP
三、脱氧核糖核苷酸的合成
体内脱氧核糖核苷酸由核糖核苷二磷酸水平还原而成 (脱氧胸腺嘧啶核苷酸除外) 1.在NDP(核苷二磷酸)水平上:
IMP的合成要点:
• (1)在磷酸核糖分子上逐步合成嘌呤环;
• (2)PRPP(磷酸核糖焦磷酸)是重要的中间代谢物,
它不仅参与嘌呤核苷酸的从头合成,而且参与嘧啶核
苷酸的从头合成及两类核苷酸的补救合成。 • (3)PRPP合成酶和酰胺转移酶为关键酶。
HOOC CH CH2 COOH
IMP是AMP和 GMP的前体。
(3)嘌呤的各个原子是在PRPP的C1上逐渐 加上去的。由Asp、Gln、 Gly、甲酸、CO2 提供N和C . (4)四氢叶酸(FH4)是一碳单位的载体
四川省精品课程 生物化学
2、补救合成
腺嘌呤磷酸核糖转移酶
腺嘌呤+PRPP
APRT
次黄嘌呤-鸟嘌呤 磷酸核糖转移酶(HGPRT)
AMP+PPi
鸟嘌呤+PRPP
GMP+PPi
腺苷激酶
腺嘌呤核苷
ATP ADP
AMP
四川省精品课程 生物化学 补救合成的生理意义
• (1)节省能量及一些氨
基酸的消耗 ;
• (2)体内某些组织器官
(如脑、骨髓等)只
能进行嘌呤核苷酸补
救合成。
四川省精品课程 生物化学
(二) 嘧啶核苷酸的合成
小分子化合物→嘧啶环,再与核糖磷 酸结合UMP,关键的中间化合物是乳 清酸,其他嘧啶核苷酸则由尿苷酸转 变而来。
酶、牛脾磷酸二酯酶 )
四川省精品课程 生物化学
(二) 限制性内切酶
原核生物中存在着一类能识别外源DNA双螺旋中4-8个
碱基对所组成的特异的具有二重旋转对称性的回文序
列,并在此序列的某位点水解DNA双螺旋链,产生粘
性末端或平末端,这类酶称为限制性内切酶。
四川省精品课程 生物化学
四川省精品课程 生物化学
四川省精品课程 生物化学
(二)半保留复制的实验验证
四川省精品课程 生物化学
(三)DNA的半保留复制的生物学意义:
• DNA的半保留复制表明DNA在代谢 上的稳定性,保证亲代的遗传信 息稳定地传递给后代。
四川省精品课程 生物化学
三、冈崎片段与半不连续复制
四川省精品课程 生物化学
同位素实验(短期脉冲标记)
四川省精品课程 生物化学
第二节
DNA的生物合成
在DNA合成时,决定其结构特异性的遗传信息只能 来于自身,因此必须由原来的DNA作为模板合成新 的DNA分子。新合成的DNA分子是模板DNA分子的 复制品,故DNA的生物合成亦称DNA的复制。
四川省精品课程 生物化学
一、参与DNA复制的酶及蛋白因子
(一)DNA聚合酶 (二)DNA连接酶 (三)与解除DNA高级结构有关的酶及 蛋白因子
5’ 3’聚合活性 + 中 3‘ 5’外切活性 + 5‘ 3’外切活性 +
主要是对DNA损伤的修 复;以及在DNA复制时 切除RNA引物并填补其 留下的空隙。
+ 很低 +
修复紫外光 引起的DNA损 伤
+ 很高 +
DNA 复制的主要聚合 酶.
2.真核细胞DNA聚合酶:
四川省精品课程 生物化学
α
亚基数
四川省精品课程 生物化学
3.单链结合蛋白(SSB)
稳定已被解开的DNA单 链,阻止复性和保护 单链不被核酸酶降解。
四川省精品课程 生物化学
二、DNA的半保留复制