常微分方程常见形式及解法ppt课件

合集下载

《常微分方程》全套课件(完整版)

《常微分方程》全套课件(完整版)
捕捉到这种联系,而这种联系,用数学语言表达出来,其结 果往往形成一个微分方程.一旦求出这个方程的解,其运动规 律将一目了然.下面的例子,将会使你看到微分方程是表达自 然规律的一种最为自然的数学语言.
例1 物体下落问题 设质量为m的物体,在时间t=0时,在距
地面高度为H处以初始速度v(0) = v0垂直地面 下落,求ss此物体下落时距离与时间的关系.
有恒等式
因此,令
,则有
因此,所谓齐次方程,实际上就是方程(1.9)的右端函数 是一个关于变元x,y的零次齐次式.
如果我们把齐次方程称为第一类可化为变量分离的方程,那么我们 下面要介绍第二类这种方程.
1.3.2 第二类可化为变量可分离的方程 形如 (1.30) 的方程是第二类可化为变量可分离的方程.其中, 显然,方程(1.30)的右端函数,对于x,y并不
是方程(1.5)在区间(-1,+1)
上的解,其中C是任意常数.又方程(1.5)有两个明显
的常数解y =±1,这两个解不包含在上述解中.
3. 函数
是方程(1.6)在区间(-∞,
+∞)上的解,其中和是独立的任意常数.
4. 函数
是方程(1.7)在区间(-
∞,+∞)上的解,其中和是独立的任意常数.
这里,我们仅验证3,其余留给读者完成.事实上,
(1.13)
显然,方程(1.4)是一阶线性方程;方程(1.5)是一阶非线性方程;方程 (1.6)是二阶线性方程;方程(1.7)是二阶非线性方程.
通解与特解
微分方程的解就是满足方程的函数,可定义如下.
定义1.1 设函数 在区间I上连续,且有直
到n阶的导数.如果把
代入方程(1.11),得到在
区间I上关于x的恒等式,

高等数学 常微分方程PPT课件

高等数学 常微分方程PPT课件
第12页/共35页
【解法】需经过变量代换化为一阶线性微分方程.
除方程两边 , 得
yn d y P( x) y1n Q( x) dx
令 z y1n , 则 dz (1 n) yn d y
dx
dx
dz (1 n) P( x) z (1 n)Q( x) (关于z , x的一阶线性方程) dx
特征方程法
待 定
特征方程的根 及其对应项


法 f(x)的形式及其
特解形式
高阶方程 可降阶方程
线性方程 解的结构
定理1;定理2 定理3;定理4
欧拉方程
第4页/共35页
微分方程解题思路
一阶方程
作 变 换
降 阶
高阶方程
分离变量法 全微分方程 常数变易法
作变换 积分因子
非非 变全 量微 可分
分方 离程
特征方程法
[提示](1)
原方程化为
令u=xy,得 (2) 将方程改写为
d u u ln u (分离变量方程) dx x
d y 1 y y3 (贝努里方程) d x 2x ln x 2x
令 z y2
第17页/共35页
【例3】 识别下列一阶微分方程的类型,并求解
1)
【解】
y y x
①可分离变量的微分方程
u e P( x)d x P( x) ue P( x)d x P( x) u e P( x)d x Q( x)
即 两端积分得
非齐பைடு நூலகம்方程
dy P(x) y Q(x)
dx
u Q(
对应齐次方程通解
x
)
e
P( x)d
y
x
dx

常微分方程常见形式及解法课件PPT

常微分方程常见形式及解法课件PPT

2021/3/10
11
谢谢观看
2021/3/10
12
常微分方程常见形式及解法
2021/3/10
知行1301 13275001
毕文彬
1
微分方程指描述未知函数的导数与自变量之间的关系 的方程。微分方程的解是一个符合方程的函数。而在 初等数学的代数方程,其解是常数值。 常微分方程(ODE)是指一微分方程的未知数是单一 自变数的函数。最简单的常微分方程,未知数是一个 实数或是复数的函数,但未知数也可能是一个向量函 数或是矩阵函数,后者可对应一个由常微分方程组成 的系统。微分方程的表达通式是:
非齐次一阶常系数线性微分方程:
齐次二阶线性微分方程:
描述谐振子的齐次二阶常系数线性微分方程:
非齐次一阶非线性微分方程:
描述长度为L的单摆的二阶非线性微分方程:
3
2021/3/10
微分方程的解
微分方程的解通常是一个函数表达式(含一 个或多个待定常数,由初始条件确定)。例如 : dy/dx=sinx, 的解是 y=-cosx+C, 其中C是待定常数; 例如,如果知道 y=f(π)=2, 则可推出 C=1, 而可知 y=-cosx+1,
4
简易微分方程的求解方法
01
一阶线性常微分方程
02
二阶常系数齐次常微分方程
2021/3/10
5
01 一阶线性常微分方程
对于一阶线性常微分方程,常用的方法是常 数变易法: 对于方程:
可知其通解:
然后将这个通解代回到原式中,即可求出 C(x)的值
2021/3/10
6
02 二阶常系数齐次常微分方程
对于二阶常系数齐次常微分方程,常 用方法是求出其特征方程的解 对于方程: 可知其通解: 其特征方程: 根据其特征方程,判断根的分布情况 ,然后得到方程的通解 一般的通解形式为(在r1=r2的情况下):

常微分方程总结 PPT

常微分方程总结 PPT
2. 可分离变量方程的求解方法: 分离变量后积分; 根据定解条件定常数 . y 3 .齐次方程的求解方法: 令 u , x
8
机动 目录 上页 下页 返回 结束
3. 解微分方程应用题的方法和步骤
(1) 找出事物的共性及可贯穿于全过程的规律列方程. 常用的方法: 1) 根据几何关系列方程 ( 如: P263,5(2) ) 2) 根据物理规律列方程 ( 如: 例4 , 例 5 )
线性无关概念.
23
机动 目录 上页 下页 返回 结束
定义: 设 y1 ( x), y2 ( x),, yn ( x) 是定义在区间 I 上的
n 个函数, 若存在不全为 0 的常数 使得
则称这 n个函数在 I 上线性相关, 否则称为线性无关. 例如, 在( , )上都有
故它们在任何区间 I 上都线性相关;
微分方程的基本概念
含未知函数及其导数的方程叫做微分方程 . 常微分方程 (本章内容)
分类
偏微分方程
方程中所含未知函数导数的最高阶数叫做微分方程
的阶. 一般地 , n 阶常微分方程的形式是
F ( x, y, y,, y ( n ) ) 0

y ( n ) f ( x, y, y,, y ( n 1) ) ( n 阶显式微分方程)
y p( x) y q( x) y f ( x) ,
y
( n) ( n 1)
为二阶线性微分方程.
n 阶线性微分方程的一般形式为
a1 ( x) y an 1 ( x) y an ( x) y f ( x) f ( x) 0 时, 称为非齐次方程 ;
f ( x) 0 时, 称为齐次方程.
若 Q(x) 0, 称为非齐次方程 . dy P( x) y 0 1. 解齐次方程 dx

常微分方程拉氏变换法求解常微分方程课件

常微分方程拉氏变换法求解常微分方程课件
求解代数方程
求解得到的代数方程,得到$F(s)$的表达式。
解出常微分方程的解
要点一
反变换求解
通过反拉氏变换将$F(s)$还原为$f(t)$,从而得到常微分方 程的解。
要点二
验证解的正确性
将得到的解代入原常微分方程进行验证,确保解的正确性。
06
总结与展望
总结
拉氏变换法的优势
拉氏变换法在求解常微分方程时 具有明显的优势,它可以将复杂 的微分方程转化为代数方程,大 大简化了求解过程。
通过逐一求解一阶常微分方程,拉氏变换法可以应用于高阶微分方程的求解。
拉氏变换法的缺点
计算量大
在应用拉氏变换法求解常微分方程时,需要进行复 杂的积分和代数运算,计算量较大。
对初值条件敏感
对于某些常微分方程,初值条件的微小变化可能导 致拉氏变换法的失效。
不易理解
拉氏变换法的概念较为抽象,不易被初学者理解。
与其他方法的结合
可以考虑将拉氏变换法与其他数值方法或解析方法结合,以更有效 地求解各种类型的微分方程。
实际应用价值
随着科学技术的不断发展,常微分方程在各个领域的应用越来越广 泛,因此拉氏变换法在实际应用中也将发挥更大的作用。
感谢观 看
THANKS
信号处理中,拉氏变换法可以用于分析信号的滤波、调制 和解调等过程,优化信号处理效果。
04
拉氏变换法的优缺点
拉氏变换法的优点
求解过程简化
拉氏变换法可以将复杂的常微分方程转化为简 单的代数方程,从而简化了求解过程。
适用于多种初值条件
拉氏变换法可以处理多种初值条件,使得该方 法具有更广泛的适用性。
可应用于高阶微分方程
拉氏变换法求解一阶常微分方程

完美版课件常微分方程

完美版课件常微分方程


思2 一阶微分方程
8.2.3 一阶线性微分方程
形如 y′+p(x)y=Q(x) (8-3) 的方程称为一阶线性微分方程,其中p(x)和Q(x)是已知连续函数.
注意:所谓线性是指其中对未知函数y和y′都是一次的.
当Q(x)≡0时,有y′+p(x)y=0(8-4)
注意:在求解非齐次方程时,可以用常数变易法求解, 也可以直接由式(8-7)求解.
8.2 一阶微分方程
例 例8-9】求解方程(dy)/(dx)-ycotx=xsinx.
解 方法一 常数变易法.首先对齐次线性方程 (dy)/(dx)-ycotx=0 分离变量,得(dy)/y=cotxdx 积分,得ln|y|=ln|sinx|+C1, 因此,齐次方程的通解为y=Csinx(C=±eC1) 将上式中的C变易为C(x),再把y=C(x)sinx代 入原方程,得C′(x)sinx+C(x)cosx-C(x) sinxcotx=xsinx,即C′(x)=x 因此C(x)=(1/2)x2+C 于是原方程的通解为 y=C(x)sinx=((1/2)x2+C)sinx
8.2 一阶微分方程
微分方程研究的主要问题就是如何求解,但并不是所有的微分方程都能用初等积分的方 法求出.因此,我们不能奢求能够解出所有的微分方程,但是对于某些特殊类型的方程, 是可以用初等积分的方法求解的.
8.2.1 可分离变量的微分方程 在一阶方程中,如果可以将含有未知函数y的式子及dy与含有自变量x的式子及dx分开至 方程两边,然后就可以分别对y和x积分求解. 形如 (dy)/(dx)=f(x)g(y)[g(y)≠0] (8-1) 的方程称为可分离变量的微分方程. 对式(8-1),可以将关于y和x的式子分开,得(dy)/g(y)=f(x)dx 然后两边积分得∫(dy)/g(y)=∫f(x)dx+C

第六章—常微分方程的数值解法 PPT

第六章—常微分方程的数值解法 PPT

§6.1 引言
初值问题的数 点值 :解 按法 节特 点顺 进序 ,依 由
知的 0,yy1,,y, i 求i出 1 ,y这可以通过 得递 到推 。
初值 问题 的 常见 解法
单步法: 利用前一个单步的信息(一个点),在y=f(x)
上找下一点yi, 有欧拉法,龙格-库格法。
预测校正法: 多步法,利用一个以上的前点信息求f(x)
第六章 常微分方程的数值解法
本章内容
§6.1 引言 §6.2 欧拉方法 §6.3 龙格—库塔方法 §6.4 边值问题的数值方法
§6.1 引言
一. 问题提出
有一个或多个导数及其函数的方程式称为微分 方程,在工程中常遇到求解微分方程的问题。
如,一阶常微分初方值程问的题 dy f(x,y) x[a,b] dx y(x0)y0
推进Pn1(xn1, yn1, ) 显然两个顶点P, n Pn1的坐标有关系
yn1 - yn xn1 - xn
f (xn, yn),
即yn1 ynr)公式。
y
y y(x)
P2 P3 P4 Pn
P1
P0
x O
§6.2 欧拉方法及其改进
例:利用 Euler 方法求初值问题
y(x0)y(x1) hy(x0)
记为
y ( x 1 ) y ( x 0 ) h y ( x 0 ) y 0 h f ( x 0 ,y 0 ) y 1
y i 1 y i h f ( x i,y i)( i 0 ,.,. n . 1 )
几何意义:折线逼近解y y(x)曲线。
设已做出折线的顶点P, n 过Pn(xn, yn)依方向场的方向再
需要用数值方法来求解,一般只要求得到若干个 点上的近似值或者解的简单的近似表达式(精度要求 满足即可)。

常微分方程全册ppt课件

常微分方程全册ppt课件

z z (5) z ; x y
2u 2u (6) 2 x y uz 0 . 2 x y
都是偏微分方程 注: 本课程主要研究常微分方程,同时把常微分方程简称 为微分方程或方程
微分方程的阶 定义 微分方程中出现的未知函数的最高阶导数或微分的阶数称为 微分方程的阶数.
z z (5) z ; x y
2 3
(2) xdy ydx 0 ;
d 4x d 2x (4) 5 2 3x sin t ; 4 dt dt
2u 2u (6) 2 x y uz 0 . 2 x y
常微分方程 如果在一个微分方程中,自变量的个数只有一个,则这样 的微分方程称为常微分方程
两种群竞争模型
Lorenz方程
Lorenz吸引子,蝴蝶效应
对初值的敏感性
分形(fractal)
吸引盆
总结
微分方程反映量与量之间的关系,与时间有关,是一个动态系 统 从已知的自然规律出发,考虑主要因素,构造出由自变量、未 知函数及其导数的关系史,即微分方程,从而建立数学模型 数学模型的建立有多种方式 研究微分方程的解和解结构的性质,检查是否与实际相吻合, 不断改进模型 由微分方程发现或预测新的规律和性质
如:
dy (1) 2x dx
是一阶微分方程
(2) xdy ydx 0
d 2x dx (3) tx x 0 2 dt dt
d 4x d 2x (4) 5 2 3x sin t 4 dt dt
3
是二阶微分方程
是四阶微分方程
n阶微分方程的一般形式为
此ppt下载后可自行编辑
教学课件
常微分方程

《常系数线性微分方程的解法》课件

《常系数线性微分方程的解法》课件
则方程(4.19)有两个复值解
e( i ) t e t (cos t i sin t) e( i ) t e t (cos t i sin t)
对应两个实值解 e t cos t, e t sin t
14
例1 求方程
d4x dt 4
x
0
的通解。
解 第一步:求特征根
F () 4 1 0
1,2 1, 3,4 i
类似地
1 k1
2 k2
m km
e1t , te1t , t 2e1t ,, t k11e1t
e2t , te2t , t 2e2t ,, t k2 1e2t
emt , temt , t 2emt ,, t km 1emt
基 本 解 组
(4.26)
k1 k2 km n, ki 1
21
证明 假若这些函数线性相关,则存在不全为零的数A(jr)使得
L[ ye1t ]
e1t ( y(n) b1 y(n1) b2 y(n2) bn1 y bn y) 0
L1[ y] y(n) b1 y(n1) b2 y(n2) bn1 y bn y 0
…….(4.23)
L[ ye1t ] e1t L1[ y]
特征方程 G() n b1 n1 bn1 bn 0(4.24)
都是实值函数,而 x z(t) (t) i (t) 是方程的复数解,
则 z(t) 的实部 (t),虚部 (t) 和共轭复数函数 z(t)
也是方程4.2的解。
9
定理9
若方程
dnx
d n1x
dx
dtn a1(t) dtn1 an1(t) dt an (t)x u(t) iv(t)
24
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

齐次二阶线性微分方程:
描述谐振子的齐次二阶常系数线性微分方程:
非齐次一阶非线性微分方程:
描述长度为L的单摆的二阶非线性微分方程:
.
3
微分方程的解
微分方程的解通常是一个函数表达式(含一 个或多个待定常数,由初始条件确定)。例如 : dy/dx=sinx, 的解是 y=-cosx+C, 其中C是待定常数; 例如,如果知道 y=f(π)=2, 则可推出 C=1, 而可知 y=-cosx+1,
.
4
简易微分方程的求解方法
01
一阶线性常微分方程
02
二阶常系数齐次常微分方程
.
5
01 一阶线性常微分方程
对于一阶线性常微分方程,常用的方法是常 数变易法: 对于方程:
可知其通解:
然后将这个通解代回到原式中,即可求出 C(x)的值
.
6
02 二阶常系数齐次常微分方程
对于二阶常系数齐次常微分方程,常 用方法是求出其特征方程的解 对于方程: 可知其通解: 其特征方程: 根据其特征方程,判断根的分布情况 ,然后得到方程的通解 一般的通解形式为(在r1=r2的情况下):
常微分方程常见形式及解法
知行1301 13275001
毕文彬
.
1
微分方程指描述未知函数的导数与自变量之间的关系 的方程。微分方程的解是一个符合方程的函数。而在 初等数学的代数方程,其解是常数值。 常微分方程(ODE)是指一微分方程的未知数是单一 自变数的函数。最简单的常微分方程,未知数是一个 实数或是复数的函数,但未知数也可能是一个向量函 数或是矩阵函数,后者可对应一个由常微分方程组成 的系统。微分方程的表达通式是:
(在的r1≠r2情况下): (在共轭复数根的情况下):
.
7
一般通解
01
可分离方程
02
一般一阶微分方程
03
一般二阶微分方程
04
线性方程 (最高到n阶)
.
8
01
可分离方程
.
9
02 一般一阶微分方程
.
10
03 一般二阶微分方程 04 线性方程 (最高到n阶)
.
11
谢谢观看.12 Nhomakorabea此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
常微分方程常依其阶数分类,阶数是指自变数导数的 最高阶数,最常见的二种为一阶微分方程及二阶微分 方程。例如以下的贝塞尔方程:
(其中y为应变数)为二阶微分方程,其解为贝塞尔
函数。
.
2
常见例子
以下是常微分方程的一些例子,其中u为未知的函数,自变 数为x,c及ω均为常数。
非齐次一阶常系数线性微分方程:
相关文档
最新文档